The dynamic regulation effect in X@Fe-N4/C electrocatalyst for the sequential oxygen reduction reaction
Metal-nitrogen-carbon based single atom catalysts (SACs) have been the subject of oxygen reduction reaction (ORR) electrocatalysts for electrochemical devices. Nevertheless, the scaling relationship of ΔG*OOH, ΔG*OH and ΔG*O represents a significant obstacle to further enhancement of ORR efficiency...
Saved in:
Published in | Colloids and surfaces. A, Physicochemical and engineering aspects Vol. 713; p. 136512 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
20.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal-nitrogen-carbon based single atom catalysts (SACs) have been the subject of oxygen reduction reaction (ORR) electrocatalysts for electrochemical devices. Nevertheless, the scaling relationship of ΔG*OOH, ΔG*OH and ΔG*O represents a significant obstacle to further enhancement of ORR efficiency for SACs. Accordingly, a confinement model X@M-N4/C electrocatalyst was constructed. The density functional theory calculations demonstrate that the overpotential of Br@Fe-N4/C54 (0.47 V vs. RHE) for ORR is significantly lower than that of Fe-N4/C54 (0.67 V vs. RHE). The variation in distance between the Br and Fe atoms during the ORR process provides evidence that supports the hypothesis that the Br atom regulates the Fe-N4 active center, through in-situ dynamic non-bonding coordination (dFe-Br>3 Å). The confined Br atom results in an increase in ΔG*OH and a decrease in ΔG*O. This results in a disruption of the linear relationship and a reduction in the overpotential associated with the rate-determining elementary reaction (*O+H++e-→*OH). The Fe-N4 active center facilitates the sequential ORR catalytic process through in-situ dynamic regulation of the trapped Br atom. This conclusion is also applicable to Br@Fe-N4/graphene and Br@Fe-N4/CNT. The findings of our research represent a significant advancement in the field of enhancing the performance of SACs for multi-electron electrocatalytic reactions.
[Display omitted]
•The enhanced ORR activity of Br@Fe-N4/C is attributable to a sequential catalytic process.•The dynamic regulation of Fe-N4 through the disrupted SR of ΔGads is achieved by non-bonding Br coordination.•The incorporation of a Br atom within C60 has been demonstrated to enhance stability. |
---|---|
AbstractList | Metal-nitrogen-carbon based single atom catalysts (SACs) have been the subject of oxygen reduction reaction (ORR) electrocatalysts for electrochemical devices. Nevertheless, the scaling relationship of ΔG*OOH, ΔG*OH and ΔG*O represents a significant obstacle to further enhancement of ORR efficiency for SACs. Accordingly, a confinement model X@M-N₄/C electrocatalyst was constructed. The density functional theory calculations demonstrate that the overpotential of Br@Fe-N₄/C54 (0.47 V vs. RHE) for ORR is significantly lower than that of Fe-N₄/C54 (0.67 V vs. RHE). The variation in distance between the Br and Fe atoms during the ORR process provides evidence that supports the hypothesis that the Br atom regulates the Fe-N₄ active center, through in-situ dynamic non-bonding coordination (dFₑ₋Bᵣ>3 Å). The confined Br atom results in an increase in ΔG*OH and a decrease in ΔG*O. This results in a disruption of the linear relationship and a reduction in the overpotential associated with the rate-determining elementary reaction (*O+H⁺+e⁻→*OH). The Fe-N₄ active center facilitates the sequential ORR catalytic process through in-situ dynamic regulation of the trapped Br atom. This conclusion is also applicable to Br@Fe-N₄/graphene and Br@Fe-N₄/CNT. The findings of our research represent a significant advancement in the field of enhancing the performance of SACs for multi-electron electrocatalytic reactions. Metal-nitrogen-carbon based single atom catalysts (SACs) have been the subject of oxygen reduction reaction (ORR) electrocatalysts for electrochemical devices. Nevertheless, the scaling relationship of ΔG*OOH, ΔG*OH and ΔG*O represents a significant obstacle to further enhancement of ORR efficiency for SACs. Accordingly, a confinement model X@M-N4/C electrocatalyst was constructed. The density functional theory calculations demonstrate that the overpotential of Br@Fe-N4/C54 (0.47 V vs. RHE) for ORR is significantly lower than that of Fe-N4/C54 (0.67 V vs. RHE). The variation in distance between the Br and Fe atoms during the ORR process provides evidence that supports the hypothesis that the Br atom regulates the Fe-N4 active center, through in-situ dynamic non-bonding coordination (dFe-Br>3 Å). The confined Br atom results in an increase in ΔG*OH and a decrease in ΔG*O. This results in a disruption of the linear relationship and a reduction in the overpotential associated with the rate-determining elementary reaction (*O+H++e-→*OH). The Fe-N4 active center facilitates the sequential ORR catalytic process through in-situ dynamic regulation of the trapped Br atom. This conclusion is also applicable to Br@Fe-N4/graphene and Br@Fe-N4/CNT. The findings of our research represent a significant advancement in the field of enhancing the performance of SACs for multi-electron electrocatalytic reactions. [Display omitted] •The enhanced ORR activity of Br@Fe-N4/C is attributable to a sequential catalytic process.•The dynamic regulation of Fe-N4 through the disrupted SR of ΔGads is achieved by non-bonding Br coordination.•The incorporation of a Br atom within C60 has been demonstrated to enhance stability. |
ArticleNumber | 136512 |
Author | Zhang, Xiaoming Wang, Suli Sun, Gongquan Xia, Zhangxun Yu, Shansheng Li, Huanqiao |
Author_xml | – sequence: 1 givenname: Xiaoming surname: Zhang fullname: Zhang, Xiaoming organization: Division of Fuel Cells and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China – sequence: 2 givenname: Suli surname: Wang fullname: Wang, Suli email: suliwang@dicp.ac.cn organization: Division of Fuel Cells and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China – sequence: 3 givenname: Zhangxun surname: Xia fullname: Xia, Zhangxun organization: Division of Fuel Cells and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China – sequence: 4 givenname: Huanqiao surname: Li fullname: Li, Huanqiao organization: Division of Fuel Cells and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China – sequence: 5 givenname: Shansheng surname: Yu fullname: Yu, Shansheng organization: Department of Materials Science, Jilin University, Changchun 130012, China – sequence: 6 givenname: Gongquan surname: Sun fullname: Sun, Gongquan email: gqsun@dicp.ac.cn organization: Division of Fuel Cells and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China |
BookMark | eNqFkM1OwzAQhH0oElB4BeQjlxR7m8T4VlTxJ1VwKRI3y3HWxVVqg50g-vaYBs6cdrWaGe18p2Tig0dCLjibccbrq-3MhC4N0eoZMKhmfF5XHCbkhEkQhRCVOCanKW0ZY2Ul5AnZrN-Qtnuvd87QiJuh070LnqK1aHrqPH1d3GHxVF4tKXb5FIPRve72qac2RNpne8KPAX3vdEfD136DPge1gznkRNSH5YwcWd0lPP-dU_Jyd7tePhSr5_vH5c2qMADQF0KzWrYcNDIQjQFeadM0TcVtLXkltTQ1GJDcGKslNteiaSxyziVrc0OA-ZRcjrnvMeSvUq92LhnsOu0xDEnNoQQmGECZpfUoNTGkFNGq9-h2Ou4VZ-qHptqqP5rqh6YaaWbjYjRiLvLpMKpkHHqDrYuZkGqD-y_iG0IKho8 |
Cites_doi | 10.1021/acs.chemrev.7b00488 10.1016/j.elecom.2018.06.019 10.1021/cs500807v 10.1126/science.1170051 10.1016/j.apcatb.2022.121290 10.1103/PhysRevLett.77.3865 10.1002/smll.202311817 10.1016/j.apcatb.2018.03.056 10.1021/acssuschemeng.4c04016 10.1002/eem2.12128 10.1039/D0EE01968B 10.1021/jacs.2c12933 10.1016/j.matt.2019.09.011 10.1002/jcc.20495 10.1021/jacs.6b09470 10.1021/jacs.9b05576 10.1039/C9TA01389J 10.1002/adma.202202544 10.1021/acsnano.2c06459 10.1016/j.jcat.2018.12.012 10.1038/s41467-022-34169-w 10.1002/aenm.201801956 10.1007/s41918-023-00197-3 10.1016/j.apcatb.2019.118217 10.1063/1.1316015 10.1038/s41560-021-00878-7 10.1002/anie.202110243 10.1063/1.458452 10.1039/D2TA10062B 10.1038/s41467-024-51858-w 10.1039/C9TA03163D 10.1039/C9CS00903E 10.1021/acs.jpcc.2c06682 10.1021/jacs.3c08665 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.colsurfa.2025.136512 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
ExternalDocumentID | 10_1016_j_colsurfa_2025_136512 S0927775725004133 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATTM AAXKI AAXUO ABMAC ABNEU ABNUV ABXRA ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEIPS AEKER AEZYN AFJKZ AFRZQ AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV CS3 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCE SDF SDG SDP SES SEW SPC SPD SSG SSH SSK SSM SSQ SSZ T5K WH7 ~02 ~G- 29F AAQXK AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AGCQF AGQPQ AGRNS AI. AIIUN ASPBG AVWKF AZFZN BBWZM CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- RIG SCB VH1 WUQ 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c222t-7a069d12ae027bc215acbbb51f69159a9c62c291ccfa9eb87bbfe11190d092223 |
IEDL.DBID | .~1 |
ISSN | 0927-7757 |
IngestDate | Fri Aug 22 20:23:15 EDT 2025 Tue Jul 01 05:11:04 EDT 2025 Sat Apr 12 15:21:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sequential catalytic Non-bonding coordination Dynamic regulation Oxygen reduction reaction Halogen atom |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c222t-7a069d12ae027bc215acbbb51f69159a9c62c291ccfa9eb87bbfe11190d092223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3242070224 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3242070224 crossref_primary_10_1016_j_colsurfa_2025_136512 elsevier_sciencedirect_doi_10_1016_j_colsurfa_2025_136512 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-20 |
PublicationDateYYYYMMDD | 2025-05-20 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Colloids and surfaces. A, Physicochemical and engineering aspects |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Perdew, Burke, Ernzerhof (bib33) 1996; 77 Zhang, Guan (bib1) 2021; 4 Adabi (bib8) 2021; 6 Yang (bib22) 2024; 12 Ding (bib18) 2022; 16 Liu (bib28) 2023; 145 Martinaiou (bib5) 2020; 262 Wang, Wang, Yi, Wang (bib20) 2025; 64 Delley (bib30) 1990; 92 Zhou (bib14) 2022; 13 Zhang (bib15) 2022; 16 Wang (bib23) 2020; 78 Zhou, Gao, Kang, Chu, Wang (bib35) 2019; 7 Lefevre, Proietti, Jaouen, Dodelet (bib2) 2009; 324 Huang, Tang (bib24) 2022; 126 Zhu (bib37) 2018; 8 Gokhale (bib11) 2018; 93 Hu (bib10) 2018; 234 Zhang (bib21) 2023; 11 Sa (bib7) 2016; 138 Deng (bib36) 2019; 370 Sun (bib16) 2019; 141 Wu (bib27) 2019; 7 Xu (bib32) 2022; 309 Kulkarni, Siahrostami, Patel, Norskov (bib12) 2018; 118 Delley (bib31) 2000; 113 Huang (bib13) 2019; 1 Grimme (bib34) 2006; 27 Chen (bib25) 2021; 60 Zago, Scarpetta-Pizo, Zagal, Specchia (bib4) 2024; 7 Shi (bib6) 2020; 13 He, Liu, Priest, Shi, Wu (bib3) 2020; 49 Chi (bib26) 2024; 20 Yin (bib19) 2024; 15 Zhou (bib29) 2023; 145 Li (bib9) 2014; 4 Peng (bib17) 2022; 34 Sun (10.1016/j.colsurfa.2025.136512_bib16) 2019; 141 Wu (10.1016/j.colsurfa.2025.136512_bib27) 2019; 7 Liu (10.1016/j.colsurfa.2025.136512_bib28) 2023; 145 Peng (10.1016/j.colsurfa.2025.136512_bib17) 2022; 34 Zhang (10.1016/j.colsurfa.2025.136512_bib21) 2023; 11 Sa (10.1016/j.colsurfa.2025.136512_bib7) 2016; 138 Zhang (10.1016/j.colsurfa.2025.136512_bib15) 2022; 16 Deng (10.1016/j.colsurfa.2025.136512_bib36) 2019; 370 Zhang (10.1016/j.colsurfa.2025.136512_bib1) 2021; 4 Yang (10.1016/j.colsurfa.2025.136512_bib22) 2024; 12 Wang (10.1016/j.colsurfa.2025.136512_bib23) 2020; 78 Hu (10.1016/j.colsurfa.2025.136512_bib10) 2018; 234 Zago (10.1016/j.colsurfa.2025.136512_bib4) 2024; 7 Adabi (10.1016/j.colsurfa.2025.136512_bib8) 2021; 6 Huang (10.1016/j.colsurfa.2025.136512_bib13) 2019; 1 Grimme (10.1016/j.colsurfa.2025.136512_bib34) 2006; 27 Kulkarni (10.1016/j.colsurfa.2025.136512_bib12) 2018; 118 Wang (10.1016/j.colsurfa.2025.136512_bib20) 2025; 64 Xu (10.1016/j.colsurfa.2025.136512_bib32) 2022; 309 Zhou (10.1016/j.colsurfa.2025.136512_bib35) 2019; 7 He (10.1016/j.colsurfa.2025.136512_bib3) 2020; 49 Delley (10.1016/j.colsurfa.2025.136512_bib30) 1990; 92 Huang (10.1016/j.colsurfa.2025.136512_bib24) 2022; 126 Chen (10.1016/j.colsurfa.2025.136512_bib25) 2021; 60 Yin (10.1016/j.colsurfa.2025.136512_bib19) 2024; 15 Delley (10.1016/j.colsurfa.2025.136512_bib31) 2000; 113 Zhu (10.1016/j.colsurfa.2025.136512_bib37) 2018; 8 Martinaiou (10.1016/j.colsurfa.2025.136512_bib5) 2020; 262 Gokhale (10.1016/j.colsurfa.2025.136512_bib11) 2018; 93 Perdew (10.1016/j.colsurfa.2025.136512_bib33) 1996; 77 Li (10.1016/j.colsurfa.2025.136512_bib9) 2014; 4 Zhou (10.1016/j.colsurfa.2025.136512_bib14) 2022; 13 Ding (10.1016/j.colsurfa.2025.136512_bib18) 2022; 16 Shi (10.1016/j.colsurfa.2025.136512_bib6) 2020; 13 Zhou (10.1016/j.colsurfa.2025.136512_bib29) 2023; 145 Chi (10.1016/j.colsurfa.2025.136512_bib26) 2024; 20 Lefevre (10.1016/j.colsurfa.2025.136512_bib2) 2009; 324 |
References_xml | – volume: 113 start-page: 7756 year: 2000 end-page: 7764 ident: bib31 article-title: From molecules to solids with the DMol(3) approach publication-title: J. Chem. Phys. – volume: 4 start-page: 307 year: 2021 end-page: 335 ident: bib1 article-title: Applications of Atomically Dispersed Oxygen Reduction Catalysts in Fuel Cells and Zinc-Air Batteries publication-title: Energy Environ. Mater. – volume: 4 start-page: 3193 year: 2014 end-page: 3200 ident: bib9 article-title: Phosphate-Tolerant Oxygen Reduction Catalysts publication-title: ACS Catal. – volume: 49 start-page: 3484 year: 2020 end-page: 3524 ident: bib3 article-title: Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement publication-title: Chem. Soc. Rev. – volume: 145 start-page: 3647 year: 2023 end-page: 3655 ident: bib29 article-title: Boosting Oxygen Electrocatalytic Activity of Fe-N-C Catalysts by Phosphorus Incorporation publication-title: J. Am. Chem. Soc. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib33 article-title: Generalized Gradient Approximation Made Simple publication-title: Phys. Rev. Lett. – volume: 126 start-page: 21606 year: 2022 end-page: 21615 ident: bib24 article-title: Axial Coordination Effect on the Oxygen Reduction Reaction of FeN4 Electrocatalysts Based on Grand Canonical Density Functional Theory publication-title: J. Phys. Chem. C. – volume: 118 start-page: 2302 year: 2018 end-page: 2312 ident: bib12 article-title: Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction publication-title: Chem. Rev. – volume: 370 start-page: 378 year: 2019 end-page: 384 ident: bib36 article-title: 2D transition metal–TCNQ sheets as bifunctional single-atom catalysts for oxygen reduction and evolution reaction (ORR/OER) publication-title: J. Catal. – volume: 16 start-page: 15165 year: 2022 end-page: 15174 ident: bib18 article-title: Engineering Atomic Single Metal-FeNCl Sites with Enhanced Oxygen-Reduction Activity for High-Performance Proton Exchange Membrane Fuel Cells publication-title: ACS Nano – volume: 145 start-page: 25252 year: 2023 end-page: 25263 ident: bib28 article-title: Avoiding Sabatier's Limitation on Spatially Correlated Pt-Mn Atomic Pair Sites for Oxygen Electroreduction publication-title: J. Am. Chem. Soc. – volume: 8 year: 2018 ident: bib37 article-title: Hierarchically Porous M-N-C (M = Co and Fe) Single-Atom Electrocatalysts with Robust MNx Active Moieties Enable Enhanced ORR Performance publication-title: Adv. Energy Mater. – volume: 234 start-page: 357 year: 2018 end-page: 364 ident: bib10 article-title: Immunity of the Fe-N-C catalysts to electrolyte adsorption: Phosphate but not perchloric anions publication-title: Appl. Catal. B: Environ. – volume: 15 start-page: 7489 year: 2024 ident: bib19 article-title: A Fe-N-C electrocatalyst boosted by trace bromide ions with high performance in proton exchange membrane fuel cells publication-title: Nat. Commun. – volume: 93 start-page: 91 year: 2018 end-page: 94 ident: bib11 article-title: Implementing PGM-free electrocatalysts in high-temperature polymer electrolyte membrane fuel cells publication-title: Electrochem. Commun. – volume: 141 start-page: 12372 year: 2019 end-page: 12381 ident: bib16 article-title: Activity-Selectivity Trends in the Electrochemical Production of Hydrogen Peroxide over Single-Site Metal-Nitrogen-Carbon Catalysts publication-title: J. Am. Chem. Soc. – volume: 34 year: 2022 ident: bib17 article-title: Mesopore-Rich Fe-N-C Catalyst with FeN-O-NC Single-Atom Sites Delivers Remarkable Oxygen Reduction Reaction Performance in Alkaline Media publication-title: Adv. Mater. – volume: 6 start-page: 834 year: 2021 end-page: 843 ident: bib8 article-title: High-performing commercial Fe-N-C cathode electrocatalyst for anion-exchange membrane fuel cells publication-title: Nat. Energy – volume: 138 start-page: 15046 year: 2016 end-page: 15056 ident: bib7 article-title: A General Approach to Preferential Formation of Active Fe-N Sites in Fe-N/C Electrocatalysts for Efficient Oxygen Reduction Reaction publication-title: J. Am. Chem. Soc. – volume: 78 year: 2020 ident: bib23 article-title: Axial ligand effect on the stability of Fe-N-C electrocatalysts for acidic oxygen reduction reaction publication-title: Nano Energy – volume: 13 start-page: 6414 year: 2022 ident: bib14 article-title: Regulating the scaling relationship for high catalytic kinetics and selectivity of the oxygen reduction reaction publication-title: Nat. Commun. – volume: 262 year: 2020 ident: bib5 article-title: Activity and degradation study of an Fe-N-C catalyst for ORR in Direct Methanol Fuel Cell (DMFC) publication-title: Appl. Catal. B-Environ. – volume: 324 start-page: 71 year: 2009 end-page: 74 ident: bib2 article-title: Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells publication-title: Science – volume: 7 start-page: 14001 year: 2019 end-page: 14010 ident: bib27 article-title: Insight into the role of Ni-Fe dual sites in the oxygen evolution reaction based on atomically metal-doped polymeric carbon nitride publication-title: J. Mater. Chem. A – volume: 64 year: 2025 ident: bib20 article-title: Molecular Evidence for the Axial Coordination Effect of Atomic Iodine on Fe-N4 Sites in Oxygen Reduction Reaction publication-title: Angew. Chem. Int. Ed. – volume: 309 year: 2022 ident: bib32 article-title: Investigation on the demetallation of Fe-N-C for oxygen reduction reaction: The influence of structure and structural evolution of active site publication-title: Appl. Catal. B-Environ. – volume: 1 start-page: 1494 year: 2019 end-page: 1518 ident: bib13 article-title: Strategies to Break the Scaling Relation toward Enhanced Oxygen Electrocatalysis publication-title: Matter – volume: 7 start-page: 12050 year: 2019 end-page: 12059 ident: bib35 article-title: Transition metal-embedded two-dimensional C3N as a highly active electrocatalyst for oxygen evolution and reduction reactions publication-title: J. Mater. Chem. A – volume: 13 start-page: 3544 year: 2020 end-page: 3555 ident: bib6 article-title: Methanol tolerance of atomically dispersed single metal site catalysts: mechanistic understanding and high-performance direct methanol fuel cells publication-title: Energy Environ. Sci. – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: bib34 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. – volume: 60 start-page: 25404 year: 2021 end-page: 25410 ident: bib25 article-title: Unraveling the Origin of Sulfur-Doped Fe-N-C Single-Atom Catalyst for Enhanced Oxygen Reduction Activity: Effect of Iron Spin-State Tuning publication-title: Angew. Chem. -Int. Ed. – volume: 20 year: 2024 ident: bib26 article-title: Simultaneously Engineering the First and Second Coordination Shells of Single Iron Catalysts for Enhanced Oxygen Reduction publication-title: Small – volume: 16 year: 2022 ident: bib15 article-title: Strategy to weaken the oxygen adsorption on single-atom catalysts towards oxygen-involved reactions publication-title: Mater. Today Adv. – volume: 12 start-page: 11033 year: 2024 end-page: 11043 ident: bib22 article-title: Regulating the Electronic Configuration of Single-Atom Catalysts with Fe-N Sites via Environmental Sulfur Atom Doping for an Enhanced Oxygen Reduction Reaction publication-title: Acs Sustain. Chem. Eng. – volume: 11 start-page: 11326 year: 2023 end-page: 11333 ident: bib21 article-title: Axial modulation of Fe sites realizing high-performance oxygen reduction reaction of FeN4 catalysts publication-title: J. Mater. Chem. A – volume: 7 year: 2024 ident: bib4 article-title: PGM-Free Biomass-Derived Electrocatalysts for Oxygen Reduction in Energy Conversion Devices: Promising Materials publication-title: Electrochem. Energy Rev. – volume: 92 start-page: 508 year: 1990 end-page: 517 ident: bib30 article-title: An All-Electron Numerical-Method for Solving the Local Density Functional for Polyatomic-Molecules publication-title: J. Chem. Phys. – volume: 118 start-page: 2302 year: 2018 ident: 10.1016/j.colsurfa.2025.136512_bib12 article-title: Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00488 – volume: 16 year: 2022 ident: 10.1016/j.colsurfa.2025.136512_bib15 article-title: Strategy to weaken the oxygen adsorption on single-atom catalysts towards oxygen-involved reactions publication-title: Mater. Today Adv. – volume: 93 start-page: 91 year: 2018 ident: 10.1016/j.colsurfa.2025.136512_bib11 article-title: Implementing PGM-free electrocatalysts in high-temperature polymer electrolyte membrane fuel cells publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2018.06.019 – volume: 64 year: 2025 ident: 10.1016/j.colsurfa.2025.136512_bib20 article-title: Molecular Evidence for the Axial Coordination Effect of Atomic Iodine on Fe-N4 Sites in Oxygen Reduction Reaction publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 3193 year: 2014 ident: 10.1016/j.colsurfa.2025.136512_bib9 article-title: Phosphate-Tolerant Oxygen Reduction Catalysts publication-title: ACS Catal. doi: 10.1021/cs500807v – volume: 324 start-page: 71 year: 2009 ident: 10.1016/j.colsurfa.2025.136512_bib2 article-title: Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells publication-title: Science doi: 10.1126/science.1170051 – volume: 309 year: 2022 ident: 10.1016/j.colsurfa.2025.136512_bib32 article-title: Investigation on the demetallation of Fe-N-C for oxygen reduction reaction: The influence of structure and structural evolution of active site publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2022.121290 – volume: 78 year: 2020 ident: 10.1016/j.colsurfa.2025.136512_bib23 article-title: Axial ligand effect on the stability of Fe-N-C electrocatalysts for acidic oxygen reduction reaction publication-title: Nano Energy – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.colsurfa.2025.136512_bib33 article-title: Generalized Gradient Approximation Made Simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 20 year: 2024 ident: 10.1016/j.colsurfa.2025.136512_bib26 article-title: Simultaneously Engineering the First and Second Coordination Shells of Single Iron Catalysts for Enhanced Oxygen Reduction publication-title: Small doi: 10.1002/smll.202311817 – volume: 234 start-page: 357 year: 2018 ident: 10.1016/j.colsurfa.2025.136512_bib10 article-title: Immunity of the Fe-N-C catalysts to electrolyte adsorption: Phosphate but not perchloric anions publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.03.056 – volume: 12 start-page: 11033 year: 2024 ident: 10.1016/j.colsurfa.2025.136512_bib22 article-title: Regulating the Electronic Configuration of Single-Atom Catalysts with Fe-N Sites via Environmental Sulfur Atom Doping for an Enhanced Oxygen Reduction Reaction publication-title: Acs Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.4c04016 – volume: 4 start-page: 307 year: 2021 ident: 10.1016/j.colsurfa.2025.136512_bib1 article-title: Applications of Atomically Dispersed Oxygen Reduction Catalysts in Fuel Cells and Zinc-Air Batteries publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12128 – volume: 13 start-page: 3544 year: 2020 ident: 10.1016/j.colsurfa.2025.136512_bib6 article-title: Methanol tolerance of atomically dispersed single metal site catalysts: mechanistic understanding and high-performance direct methanol fuel cells publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01968B – volume: 145 start-page: 3647 year: 2023 ident: 10.1016/j.colsurfa.2025.136512_bib29 article-title: Boosting Oxygen Electrocatalytic Activity of Fe-N-C Catalysts by Phosphorus Incorporation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c12933 – volume: 1 start-page: 1494 year: 2019 ident: 10.1016/j.colsurfa.2025.136512_bib13 article-title: Strategies to Break the Scaling Relation toward Enhanced Oxygen Electrocatalysis publication-title: Matter doi: 10.1016/j.matt.2019.09.011 – volume: 27 start-page: 1787 year: 2006 ident: 10.1016/j.colsurfa.2025.136512_bib34 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 138 start-page: 15046 year: 2016 ident: 10.1016/j.colsurfa.2025.136512_bib7 article-title: A General Approach to Preferential Formation of Active Fe-N Sites in Fe-N/C Electrocatalysts for Efficient Oxygen Reduction Reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09470 – volume: 141 start-page: 12372 year: 2019 ident: 10.1016/j.colsurfa.2025.136512_bib16 article-title: Activity-Selectivity Trends in the Electrochemical Production of Hydrogen Peroxide over Single-Site Metal-Nitrogen-Carbon Catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05576 – volume: 7 start-page: 12050 year: 2019 ident: 10.1016/j.colsurfa.2025.136512_bib35 article-title: Transition metal-embedded two-dimensional C3N as a highly active electrocatalyst for oxygen evolution and reduction reactions publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01389J – volume: 34 year: 2022 ident: 10.1016/j.colsurfa.2025.136512_bib17 article-title: Mesopore-Rich Fe-N-C Catalyst with FeN-O-NC Single-Atom Sites Delivers Remarkable Oxygen Reduction Reaction Performance in Alkaline Media publication-title: Adv. Mater. doi: 10.1002/adma.202202544 – volume: 16 start-page: 15165 year: 2022 ident: 10.1016/j.colsurfa.2025.136512_bib18 article-title: Engineering Atomic Single Metal-FeNCl Sites with Enhanced Oxygen-Reduction Activity for High-Performance Proton Exchange Membrane Fuel Cells publication-title: ACS Nano doi: 10.1021/acsnano.2c06459 – volume: 370 start-page: 378 year: 2019 ident: 10.1016/j.colsurfa.2025.136512_bib36 article-title: 2D transition metal–TCNQ sheets as bifunctional single-atom catalysts for oxygen reduction and evolution reaction (ORR/OER) publication-title: J. Catal. doi: 10.1016/j.jcat.2018.12.012 – volume: 13 start-page: 6414 year: 2022 ident: 10.1016/j.colsurfa.2025.136512_bib14 article-title: Regulating the scaling relationship for high catalytic kinetics and selectivity of the oxygen reduction reaction publication-title: Nat. Commun. doi: 10.1038/s41467-022-34169-w – volume: 8 year: 2018 ident: 10.1016/j.colsurfa.2025.136512_bib37 article-title: Hierarchically Porous M-N-C (M = Co and Fe) Single-Atom Electrocatalysts with Robust MNx Active Moieties Enable Enhanced ORR Performance publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801956 – volume: 7 issue: 1 year: 2024 ident: 10.1016/j.colsurfa.2025.136512_bib4 article-title: PGM-Free Biomass-Derived Electrocatalysts for Oxygen Reduction in Energy Conversion Devices: Promising Materials publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-023-00197-3 – volume: 262 year: 2020 ident: 10.1016/j.colsurfa.2025.136512_bib5 article-title: Activity and degradation study of an Fe-N-C catalyst for ORR in Direct Methanol Fuel Cell (DMFC) publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.118217 – volume: 113 start-page: 7756 year: 2000 ident: 10.1016/j.colsurfa.2025.136512_bib31 article-title: From molecules to solids with the DMol(3) approach publication-title: J. Chem. Phys. doi: 10.1063/1.1316015 – volume: 6 start-page: 834 year: 2021 ident: 10.1016/j.colsurfa.2025.136512_bib8 article-title: High-performing commercial Fe-N-C cathode electrocatalyst for anion-exchange membrane fuel cells publication-title: Nat. Energy doi: 10.1038/s41560-021-00878-7 – volume: 60 start-page: 25404 year: 2021 ident: 10.1016/j.colsurfa.2025.136512_bib25 article-title: Unraveling the Origin of Sulfur-Doped Fe-N-C Single-Atom Catalyst for Enhanced Oxygen Reduction Activity: Effect of Iron Spin-State Tuning publication-title: Angew. Chem. -Int. Ed. doi: 10.1002/anie.202110243 – volume: 92 start-page: 508 year: 1990 ident: 10.1016/j.colsurfa.2025.136512_bib30 article-title: An All-Electron Numerical-Method for Solving the Local Density Functional for Polyatomic-Molecules publication-title: J. Chem. Phys. doi: 10.1063/1.458452 – volume: 11 start-page: 11326 year: 2023 ident: 10.1016/j.colsurfa.2025.136512_bib21 article-title: Axial modulation of Fe sites realizing high-performance oxygen reduction reaction of FeN4 catalysts publication-title: J. Mater. Chem. A doi: 10.1039/D2TA10062B – volume: 15 start-page: 7489 year: 2024 ident: 10.1016/j.colsurfa.2025.136512_bib19 article-title: A Fe-N-C electrocatalyst boosted by trace bromide ions with high performance in proton exchange membrane fuel cells publication-title: Nat. Commun. doi: 10.1038/s41467-024-51858-w – volume: 7 start-page: 14001 year: 2019 ident: 10.1016/j.colsurfa.2025.136512_bib27 article-title: Insight into the role of Ni-Fe dual sites in the oxygen evolution reaction based on atomically metal-doped polymeric carbon nitride publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03163D – volume: 49 start-page: 3484 year: 2020 ident: 10.1016/j.colsurfa.2025.136512_bib3 article-title: Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00903E – volume: 126 start-page: 21606 year: 2022 ident: 10.1016/j.colsurfa.2025.136512_bib24 article-title: Axial Coordination Effect on the Oxygen Reduction Reaction of FeN4 Electrocatalysts Based on Grand Canonical Density Functional Theory publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.2c06682 – volume: 145 start-page: 25252 year: 2023 ident: 10.1016/j.colsurfa.2025.136512_bib28 article-title: Avoiding Sabatier's Limitation on Spatially Correlated Pt-Mn Atomic Pair Sites for Oxygen Electroreduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c08665 |
SSID | ssj0004579 |
Score | 2.46161 |
Snippet | Metal-nitrogen-carbon based single atom catalysts (SACs) have been the subject of oxygen reduction reaction (ORR) electrocatalysts for electrochemical devices.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 136512 |
SubjectTerms | catalytic activity density functional theory Dynamic regulation electrochemistry Halogen atom Non-bonding coordination Oxygen reduction reaction Sequential catalytic |
Title | The dynamic regulation effect in X@Fe-N4/C electrocatalyst for the sequential oxygen reduction reaction |
URI | https://dx.doi.org/10.1016/j.colsurfa.2025.136512 https://www.proquest.com/docview/3242070224 |
Volume | 713 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jHtSD6FScP0YEr7FtTNvl5iiOqbiLDnYLSZrKxujG1oG7-Lf70rQwBfHgrS1tKF8e3_vavHwPoZssMj6XASNUMkpsUBAps5SAGJYgMJRWZfeGl2E0GLGncThuoKTeC2PLKivud5xesnV1xavQ9BaTiffqcxrHcRhDEveBiq3jJ2OxjfLbz2DLMbzy26MxsXdv7RKewtiz1XqZWf8hGpYVXwH9LUH9oOoy__QP0UElHHHPvdsRapi8hXaTul9bC-1vWQseo3eYf5y6dvN46RrOwxRgV7-BJzke3_cNGTIvwVUrnPJPzmZVYNCxGHQhdmXWQAEzPP_YQKTBQKlzm4UjtyPiBI36D2_JgFRNFYgGKVCQWPoRTwMqDXyQKg0ZX2qlVBhkEQdpI7mOqKY80DqT3KhurFRmgBC5nwKGICZOUTOf5-YMYc6sXWEEWVZqFqSqG4VaSqpDUBna53dt5NVIioXzzhB1UdlU1NgLi71w2LcRrwEX36JAAMH_-ex1PUMCkLfrHjI38_VKWM0IzAZi5fwf41-gPXtmKweof4maxXJtrkCQFKpTRlwH7fQenwfDLzY64YQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7ofJg-iE7FeY3ga2gbe1neHMMxb3txg72FJE1lY3SyC7h_70nTwhTEB99KSkL5cvjO1_bkOwC3WWx8LoOQMhkyaoOCSpmlFMWwRIGhtCq6N7z2494wfBpFoy3oVGdhbFllyf2O0wu2Lke8Ek3vYzz23nzOkiSJEkziPlLx3TbsWHeqqAY77cfnXn_DNLy03GMJtRM2DgpPcPnpYjXPrAURi4qir4D9lqN-sHWRgroHsF9qR9J2j3cIWyZvQL1TtWxrwN6Gu-ARvGMIkNR1nCdz13Med4G4Eg4yzsnovmtoP_Q6pOyGU3zMWS-WBKUsQWlIXKU1ssCUzD7XGGy4UOoMZ_HKHYo4hmH3YdDp0bKvAtWoBpY0kX7M04BJg--kSmPSl1opFQVZzFHdSK5jphkPtM4kN6qVKJUZ5ETup4gh6okTqOWz3JwC4aF1LIwx0UodBqlqxZGWkukIhYb2-V0TvApJ8eHsM0RVVzYRFfbCYi8c9k3gFeDiWyAI5Pg_595UOyQQefvrQ-ZmtloIKxuR3FCvnP1j_Wuo9wavL-Llsf98Drv2ji0kYP4F1JbzlblEfbJUV2X8fQH1NOQ1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+dynamic+regulation+effect+in+X%40Fe-N4%2FC+electrocatalyst+for+the+sequential+oxygen+reduction+reaction&rft.jtitle=Colloids+and+surfaces.+A%2C+Physicochemical+and+engineering+aspects&rft.au=Zhang%2C+Xiaoming&rft.au=Wang%2C+Suli&rft.au=Xia%2C+Zhangxun&rft.au=Li%2C+Huanqiao&rft.date=2025-05-20&rft.pub=Elsevier+B.V&rft.issn=0927-7757&rft.volume=713&rft_id=info:doi/10.1016%2Fj.colsurfa.2025.136512&rft.externalDocID=S0927775725004133 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7757&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7757&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7757&client=summon |