The dynamic regulation effect in X@Fe-N4/C electrocatalyst for the sequential oxygen reduction reaction

Metal-nitrogen-carbon based single atom catalysts (SACs) have been the subject of oxygen reduction reaction (ORR) electrocatalysts for electrochemical devices. Nevertheless, the scaling relationship of ΔG*OOH, ΔG*OH and ΔG*O represents a significant obstacle to further enhancement of ORR efficiency...

Full description

Saved in:
Bibliographic Details
Published inColloids and surfaces. A, Physicochemical and engineering aspects Vol. 713; p. 136512
Main Authors Zhang, Xiaoming, Wang, Suli, Xia, Zhangxun, Li, Huanqiao, Yu, Shansheng, Sun, Gongquan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 20.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal-nitrogen-carbon based single atom catalysts (SACs) have been the subject of oxygen reduction reaction (ORR) electrocatalysts for electrochemical devices. Nevertheless, the scaling relationship of ΔG*OOH, ΔG*OH and ΔG*O represents a significant obstacle to further enhancement of ORR efficiency for SACs. Accordingly, a confinement model X@M-N4/C electrocatalyst was constructed. The density functional theory calculations demonstrate that the overpotential of Br@Fe-N4/C54 (0.47 V vs. RHE) for ORR is significantly lower than that of Fe-N4/C54 (0.67 V vs. RHE). The variation in distance between the Br and Fe atoms during the ORR process provides evidence that supports the hypothesis that the Br atom regulates the Fe-N4 active center, through in-situ dynamic non-bonding coordination (dFe-Br>3 Å). The confined Br atom results in an increase in ΔG*OH and a decrease in ΔG*O. This results in a disruption of the linear relationship and a reduction in the overpotential associated with the rate-determining elementary reaction (*O+H++e-→*OH). The Fe-N4 active center facilitates the sequential ORR catalytic process through in-situ dynamic regulation of the trapped Br atom. This conclusion is also applicable to Br@Fe-N4/graphene and Br@Fe-N4/CNT. The findings of our research represent a significant advancement in the field of enhancing the performance of SACs for multi-electron electrocatalytic reactions. [Display omitted] •The enhanced ORR activity of Br@Fe-N4/C is attributable to a sequential catalytic process.•The dynamic regulation of Fe-N4 through the disrupted SR of ΔGads is achieved by non-bonding Br coordination.•The incorporation of a Br atom within C60 has been demonstrated to enhance stability.
AbstractList Metal-nitrogen-carbon based single atom catalysts (SACs) have been the subject of oxygen reduction reaction (ORR) electrocatalysts for electrochemical devices. Nevertheless, the scaling relationship of ΔG*OOH, ΔG*OH and ΔG*O represents a significant obstacle to further enhancement of ORR efficiency for SACs. Accordingly, a confinement model X@M-N₄/C electrocatalyst was constructed. The density functional theory calculations demonstrate that the overpotential of Br@Fe-N₄/C54 (0.47 V vs. RHE) for ORR is significantly lower than that of Fe-N₄/C54 (0.67 V vs. RHE). The variation in distance between the Br and Fe atoms during the ORR process provides evidence that supports the hypothesis that the Br atom regulates the Fe-N₄ active center, through in-situ dynamic non-bonding coordination (dFₑ₋Bᵣ>3 Å). The confined Br atom results in an increase in ΔG*OH and a decrease in ΔG*O. This results in a disruption of the linear relationship and a reduction in the overpotential associated with the rate-determining elementary reaction (*O+H⁺+e⁻→*OH). The Fe-N₄ active center facilitates the sequential ORR catalytic process through in-situ dynamic regulation of the trapped Br atom. This conclusion is also applicable to Br@Fe-N₄/graphene and Br@Fe-N₄/CNT. The findings of our research represent a significant advancement in the field of enhancing the performance of SACs for multi-electron electrocatalytic reactions.
Metal-nitrogen-carbon based single atom catalysts (SACs) have been the subject of oxygen reduction reaction (ORR) electrocatalysts for electrochemical devices. Nevertheless, the scaling relationship of ΔG*OOH, ΔG*OH and ΔG*O represents a significant obstacle to further enhancement of ORR efficiency for SACs. Accordingly, a confinement model X@M-N4/C electrocatalyst was constructed. The density functional theory calculations demonstrate that the overpotential of Br@Fe-N4/C54 (0.47 V vs. RHE) for ORR is significantly lower than that of Fe-N4/C54 (0.67 V vs. RHE). The variation in distance between the Br and Fe atoms during the ORR process provides evidence that supports the hypothesis that the Br atom regulates the Fe-N4 active center, through in-situ dynamic non-bonding coordination (dFe-Br>3 Å). The confined Br atom results in an increase in ΔG*OH and a decrease in ΔG*O. This results in a disruption of the linear relationship and a reduction in the overpotential associated with the rate-determining elementary reaction (*O+H++e-→*OH). The Fe-N4 active center facilitates the sequential ORR catalytic process through in-situ dynamic regulation of the trapped Br atom. This conclusion is also applicable to Br@Fe-N4/graphene and Br@Fe-N4/CNT. The findings of our research represent a significant advancement in the field of enhancing the performance of SACs for multi-electron electrocatalytic reactions. [Display omitted] •The enhanced ORR activity of Br@Fe-N4/C is attributable to a sequential catalytic process.•The dynamic regulation of Fe-N4 through the disrupted SR of ΔGads is achieved by non-bonding Br coordination.•The incorporation of a Br atom within C60 has been demonstrated to enhance stability.
ArticleNumber 136512
Author Zhang, Xiaoming
Wang, Suli
Sun, Gongquan
Xia, Zhangxun
Yu, Shansheng
Li, Huanqiao
Author_xml – sequence: 1
  givenname: Xiaoming
  surname: Zhang
  fullname: Zhang, Xiaoming
  organization: Division of Fuel Cells and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
– sequence: 2
  givenname: Suli
  surname: Wang
  fullname: Wang, Suli
  email: suliwang@dicp.ac.cn
  organization: Division of Fuel Cells and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
– sequence: 3
  givenname: Zhangxun
  surname: Xia
  fullname: Xia, Zhangxun
  organization: Division of Fuel Cells and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
– sequence: 4
  givenname: Huanqiao
  surname: Li
  fullname: Li, Huanqiao
  organization: Division of Fuel Cells and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
– sequence: 5
  givenname: Shansheng
  surname: Yu
  fullname: Yu, Shansheng
  organization: Department of Materials Science, Jilin University, Changchun 130012, China
– sequence: 6
  givenname: Gongquan
  surname: Sun
  fullname: Sun, Gongquan
  email: gqsun@dicp.ac.cn
  organization: Division of Fuel Cells and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
BookMark eNqFkM1OwzAQhH0oElB4BeQjlxR7m8T4VlTxJ1VwKRI3y3HWxVVqg50g-vaYBs6cdrWaGe18p2Tig0dCLjibccbrq-3MhC4N0eoZMKhmfF5XHCbkhEkQhRCVOCanKW0ZY2Ul5AnZrN-Qtnuvd87QiJuh070LnqK1aHrqPH1d3GHxVF4tKXb5FIPRve72qac2RNpne8KPAX3vdEfD136DPge1gznkRNSH5YwcWd0lPP-dU_Jyd7tePhSr5_vH5c2qMADQF0KzWrYcNDIQjQFeadM0TcVtLXkltTQ1GJDcGKslNteiaSxyziVrc0OA-ZRcjrnvMeSvUq92LhnsOu0xDEnNoQQmGECZpfUoNTGkFNGq9-h2Ou4VZ-qHptqqP5rqh6YaaWbjYjRiLvLpMKpkHHqDrYuZkGqD-y_iG0IKho8
Cites_doi 10.1021/acs.chemrev.7b00488
10.1016/j.elecom.2018.06.019
10.1021/cs500807v
10.1126/science.1170051
10.1016/j.apcatb.2022.121290
10.1103/PhysRevLett.77.3865
10.1002/smll.202311817
10.1016/j.apcatb.2018.03.056
10.1021/acssuschemeng.4c04016
10.1002/eem2.12128
10.1039/D0EE01968B
10.1021/jacs.2c12933
10.1016/j.matt.2019.09.011
10.1002/jcc.20495
10.1021/jacs.6b09470
10.1021/jacs.9b05576
10.1039/C9TA01389J
10.1002/adma.202202544
10.1021/acsnano.2c06459
10.1016/j.jcat.2018.12.012
10.1038/s41467-022-34169-w
10.1002/aenm.201801956
10.1007/s41918-023-00197-3
10.1016/j.apcatb.2019.118217
10.1063/1.1316015
10.1038/s41560-021-00878-7
10.1002/anie.202110243
10.1063/1.458452
10.1039/D2TA10062B
10.1038/s41467-024-51858-w
10.1039/C9TA03163D
10.1039/C9CS00903E
10.1021/acs.jpcc.2c06682
10.1021/jacs.3c08665
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.colsurfa.2025.136512
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
ExternalDocumentID 10_1016_j_colsurfa_2025_136512
S0927775725004133
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATTM
AAXKI
AAXUO
ABMAC
ABNEU
ABNUV
ABXRA
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AEZYN
AFJKZ
AFRZQ
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPD
SSG
SSH
SSK
SSM
SSQ
SSZ
T5K
WH7
~02
~G-
29F
AAQXK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AGCQF
AGQPQ
AGRNS
AI.
AIIUN
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
RIG
SCB
VH1
WUQ
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c222t-7a069d12ae027bc215acbbb51f69159a9c62c291ccfa9eb87bbfe11190d092223
IEDL.DBID .~1
ISSN 0927-7757
IngestDate Fri Aug 22 20:23:15 EDT 2025
Tue Jul 01 05:11:04 EDT 2025
Sat Apr 12 15:21:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Sequential catalytic
Non-bonding coordination
Dynamic regulation
Oxygen reduction reaction
Halogen atom
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c222t-7a069d12ae027bc215acbbb51f69159a9c62c291ccfa9eb87bbfe11190d092223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3242070224
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3242070224
crossref_primary_10_1016_j_colsurfa_2025_136512
elsevier_sciencedirect_doi_10_1016_j_colsurfa_2025_136512
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-20
PublicationDateYYYYMMDD 2025-05-20
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-20
  day: 20
PublicationDecade 2020
PublicationTitle Colloids and surfaces. A, Physicochemical and engineering aspects
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Perdew, Burke, Ernzerhof (bib33) 1996; 77
Zhang, Guan (bib1) 2021; 4
Adabi (bib8) 2021; 6
Yang (bib22) 2024; 12
Ding (bib18) 2022; 16
Liu (bib28) 2023; 145
Martinaiou (bib5) 2020; 262
Wang, Wang, Yi, Wang (bib20) 2025; 64
Delley (bib30) 1990; 92
Zhou (bib14) 2022; 13
Zhang (bib15) 2022; 16
Wang (bib23) 2020; 78
Zhou, Gao, Kang, Chu, Wang (bib35) 2019; 7
Lefevre, Proietti, Jaouen, Dodelet (bib2) 2009; 324
Huang, Tang (bib24) 2022; 126
Zhu (bib37) 2018; 8
Gokhale (bib11) 2018; 93
Hu (bib10) 2018; 234
Zhang (bib21) 2023; 11
Sa (bib7) 2016; 138
Deng (bib36) 2019; 370
Sun (bib16) 2019; 141
Wu (bib27) 2019; 7
Xu (bib32) 2022; 309
Kulkarni, Siahrostami, Patel, Norskov (bib12) 2018; 118
Delley (bib31) 2000; 113
Huang (bib13) 2019; 1
Grimme (bib34) 2006; 27
Chen (bib25) 2021; 60
Zago, Scarpetta-Pizo, Zagal, Specchia (bib4) 2024; 7
Shi (bib6) 2020; 13
He, Liu, Priest, Shi, Wu (bib3) 2020; 49
Chi (bib26) 2024; 20
Yin (bib19) 2024; 15
Zhou (bib29) 2023; 145
Li (bib9) 2014; 4
Peng (bib17) 2022; 34
Sun (10.1016/j.colsurfa.2025.136512_bib16) 2019; 141
Wu (10.1016/j.colsurfa.2025.136512_bib27) 2019; 7
Liu (10.1016/j.colsurfa.2025.136512_bib28) 2023; 145
Peng (10.1016/j.colsurfa.2025.136512_bib17) 2022; 34
Zhang (10.1016/j.colsurfa.2025.136512_bib21) 2023; 11
Sa (10.1016/j.colsurfa.2025.136512_bib7) 2016; 138
Zhang (10.1016/j.colsurfa.2025.136512_bib15) 2022; 16
Deng (10.1016/j.colsurfa.2025.136512_bib36) 2019; 370
Zhang (10.1016/j.colsurfa.2025.136512_bib1) 2021; 4
Yang (10.1016/j.colsurfa.2025.136512_bib22) 2024; 12
Wang (10.1016/j.colsurfa.2025.136512_bib23) 2020; 78
Hu (10.1016/j.colsurfa.2025.136512_bib10) 2018; 234
Zago (10.1016/j.colsurfa.2025.136512_bib4) 2024; 7
Adabi (10.1016/j.colsurfa.2025.136512_bib8) 2021; 6
Huang (10.1016/j.colsurfa.2025.136512_bib13) 2019; 1
Grimme (10.1016/j.colsurfa.2025.136512_bib34) 2006; 27
Kulkarni (10.1016/j.colsurfa.2025.136512_bib12) 2018; 118
Wang (10.1016/j.colsurfa.2025.136512_bib20) 2025; 64
Xu (10.1016/j.colsurfa.2025.136512_bib32) 2022; 309
Zhou (10.1016/j.colsurfa.2025.136512_bib35) 2019; 7
He (10.1016/j.colsurfa.2025.136512_bib3) 2020; 49
Delley (10.1016/j.colsurfa.2025.136512_bib30) 1990; 92
Huang (10.1016/j.colsurfa.2025.136512_bib24) 2022; 126
Chen (10.1016/j.colsurfa.2025.136512_bib25) 2021; 60
Yin (10.1016/j.colsurfa.2025.136512_bib19) 2024; 15
Delley (10.1016/j.colsurfa.2025.136512_bib31) 2000; 113
Zhu (10.1016/j.colsurfa.2025.136512_bib37) 2018; 8
Martinaiou (10.1016/j.colsurfa.2025.136512_bib5) 2020; 262
Gokhale (10.1016/j.colsurfa.2025.136512_bib11) 2018; 93
Perdew (10.1016/j.colsurfa.2025.136512_bib33) 1996; 77
Li (10.1016/j.colsurfa.2025.136512_bib9) 2014; 4
Zhou (10.1016/j.colsurfa.2025.136512_bib14) 2022; 13
Ding (10.1016/j.colsurfa.2025.136512_bib18) 2022; 16
Shi (10.1016/j.colsurfa.2025.136512_bib6) 2020; 13
Zhou (10.1016/j.colsurfa.2025.136512_bib29) 2023; 145
Chi (10.1016/j.colsurfa.2025.136512_bib26) 2024; 20
Lefevre (10.1016/j.colsurfa.2025.136512_bib2) 2009; 324
References_xml – volume: 113
  start-page: 7756
  year: 2000
  end-page: 7764
  ident: bib31
  article-title: From molecules to solids with the DMol(3) approach
  publication-title: J. Chem. Phys.
– volume: 4
  start-page: 307
  year: 2021
  end-page: 335
  ident: bib1
  article-title: Applications of Atomically Dispersed Oxygen Reduction Catalysts in Fuel Cells and Zinc-Air Batteries
  publication-title: Energy Environ. Mater.
– volume: 4
  start-page: 3193
  year: 2014
  end-page: 3200
  ident: bib9
  article-title: Phosphate-Tolerant Oxygen Reduction Catalysts
  publication-title: ACS Catal.
– volume: 49
  start-page: 3484
  year: 2020
  end-page: 3524
  ident: bib3
  article-title: Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement
  publication-title: Chem. Soc. Rev.
– volume: 145
  start-page: 3647
  year: 2023
  end-page: 3655
  ident: bib29
  article-title: Boosting Oxygen Electrocatalytic Activity of Fe-N-C Catalysts by Phosphorus Incorporation
  publication-title: J. Am. Chem. Soc.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib33
  article-title: Generalized Gradient Approximation Made Simple
  publication-title: Phys. Rev. Lett.
– volume: 126
  start-page: 21606
  year: 2022
  end-page: 21615
  ident: bib24
  article-title: Axial Coordination Effect on the Oxygen Reduction Reaction of FeN4 Electrocatalysts Based on Grand Canonical Density Functional Theory
  publication-title: J. Phys. Chem. C.
– volume: 118
  start-page: 2302
  year: 2018
  end-page: 2312
  ident: bib12
  article-title: Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction
  publication-title: Chem. Rev.
– volume: 370
  start-page: 378
  year: 2019
  end-page: 384
  ident: bib36
  article-title: 2D transition metal–TCNQ sheets as bifunctional single-atom catalysts for oxygen reduction and evolution reaction (ORR/OER)
  publication-title: J. Catal.
– volume: 16
  start-page: 15165
  year: 2022
  end-page: 15174
  ident: bib18
  article-title: Engineering Atomic Single Metal-FeNCl Sites with Enhanced Oxygen-Reduction Activity for High-Performance Proton Exchange Membrane Fuel Cells
  publication-title: ACS Nano
– volume: 145
  start-page: 25252
  year: 2023
  end-page: 25263
  ident: bib28
  article-title: Avoiding Sabatier's Limitation on Spatially Correlated Pt-Mn Atomic Pair Sites for Oxygen Electroreduction
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2018
  ident: bib37
  article-title: Hierarchically Porous M-N-C (M = Co and Fe) Single-Atom Electrocatalysts with Robust MNx Active Moieties Enable Enhanced ORR Performance
  publication-title: Adv. Energy Mater.
– volume: 234
  start-page: 357
  year: 2018
  end-page: 364
  ident: bib10
  article-title: Immunity of the Fe-N-C catalysts to electrolyte adsorption: Phosphate but not perchloric anions
  publication-title: Appl. Catal. B: Environ.
– volume: 15
  start-page: 7489
  year: 2024
  ident: bib19
  article-title: A Fe-N-C electrocatalyst boosted by trace bromide ions with high performance in proton exchange membrane fuel cells
  publication-title: Nat. Commun.
– volume: 93
  start-page: 91
  year: 2018
  end-page: 94
  ident: bib11
  article-title: Implementing PGM-free electrocatalysts in high-temperature polymer electrolyte membrane fuel cells
  publication-title: Electrochem. Commun.
– volume: 141
  start-page: 12372
  year: 2019
  end-page: 12381
  ident: bib16
  article-title: Activity-Selectivity Trends in the Electrochemical Production of Hydrogen Peroxide over Single-Site Metal-Nitrogen-Carbon Catalysts
  publication-title: J. Am. Chem. Soc.
– volume: 34
  year: 2022
  ident: bib17
  article-title: Mesopore-Rich Fe-N-C Catalyst with FeN-O-NC Single-Atom Sites Delivers Remarkable Oxygen Reduction Reaction Performance in Alkaline Media
  publication-title: Adv. Mater.
– volume: 6
  start-page: 834
  year: 2021
  end-page: 843
  ident: bib8
  article-title: High-performing commercial Fe-N-C cathode electrocatalyst for anion-exchange membrane fuel cells
  publication-title: Nat. Energy
– volume: 138
  start-page: 15046
  year: 2016
  end-page: 15056
  ident: bib7
  article-title: A General Approach to Preferential Formation of Active Fe-N Sites in Fe-N/C Electrocatalysts for Efficient Oxygen Reduction Reaction
  publication-title: J. Am. Chem. Soc.
– volume: 78
  year: 2020
  ident: bib23
  article-title: Axial ligand effect on the stability of Fe-N-C electrocatalysts for acidic oxygen reduction reaction
  publication-title: Nano Energy
– volume: 13
  start-page: 6414
  year: 2022
  ident: bib14
  article-title: Regulating the scaling relationship for high catalytic kinetics and selectivity of the oxygen reduction reaction
  publication-title: Nat. Commun.
– volume: 262
  year: 2020
  ident: bib5
  article-title: Activity and degradation study of an Fe-N-C catalyst for ORR in Direct Methanol Fuel Cell (DMFC)
  publication-title: Appl. Catal. B-Environ.
– volume: 324
  start-page: 71
  year: 2009
  end-page: 74
  ident: bib2
  article-title: Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells
  publication-title: Science
– volume: 7
  start-page: 14001
  year: 2019
  end-page: 14010
  ident: bib27
  article-title: Insight into the role of Ni-Fe dual sites in the oxygen evolution reaction based on atomically metal-doped polymeric carbon nitride
  publication-title: J. Mater. Chem. A
– volume: 64
  year: 2025
  ident: bib20
  article-title: Molecular Evidence for the Axial Coordination Effect of Atomic Iodine on Fe-N4 Sites in Oxygen Reduction Reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 309
  year: 2022
  ident: bib32
  article-title: Investigation on the demetallation of Fe-N-C for oxygen reduction reaction: The influence of structure and structural evolution of active site
  publication-title: Appl. Catal. B-Environ.
– volume: 1
  start-page: 1494
  year: 2019
  end-page: 1518
  ident: bib13
  article-title: Strategies to Break the Scaling Relation toward Enhanced Oxygen Electrocatalysis
  publication-title: Matter
– volume: 7
  start-page: 12050
  year: 2019
  end-page: 12059
  ident: bib35
  article-title: Transition metal-embedded two-dimensional C3N as a highly active electrocatalyst for oxygen evolution and reduction reactions
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 3544
  year: 2020
  end-page: 3555
  ident: bib6
  article-title: Methanol tolerance of atomically dispersed single metal site catalysts: mechanistic understanding and high-performance direct methanol fuel cells
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 1799
  ident: bib34
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comput. Chem.
– volume: 60
  start-page: 25404
  year: 2021
  end-page: 25410
  ident: bib25
  article-title: Unraveling the Origin of Sulfur-Doped Fe-N-C Single-Atom Catalyst for Enhanced Oxygen Reduction Activity: Effect of Iron Spin-State Tuning
  publication-title: Angew. Chem. -Int. Ed.
– volume: 20
  year: 2024
  ident: bib26
  article-title: Simultaneously Engineering the First and Second Coordination Shells of Single Iron Catalysts for Enhanced Oxygen Reduction
  publication-title: Small
– volume: 16
  year: 2022
  ident: bib15
  article-title: Strategy to weaken the oxygen adsorption on single-atom catalysts towards oxygen-involved reactions
  publication-title: Mater. Today Adv.
– volume: 12
  start-page: 11033
  year: 2024
  end-page: 11043
  ident: bib22
  article-title: Regulating the Electronic Configuration of Single-Atom Catalysts with Fe-N Sites via Environmental Sulfur Atom Doping for an Enhanced Oxygen Reduction Reaction
  publication-title: Acs Sustain. Chem. Eng.
– volume: 11
  start-page: 11326
  year: 2023
  end-page: 11333
  ident: bib21
  article-title: Axial modulation of Fe sites realizing high-performance oxygen reduction reaction of FeN4 catalysts
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2024
  ident: bib4
  article-title: PGM-Free Biomass-Derived Electrocatalysts for Oxygen Reduction in Energy Conversion Devices: Promising Materials
  publication-title: Electrochem. Energy Rev.
– volume: 92
  start-page: 508
  year: 1990
  end-page: 517
  ident: bib30
  article-title: An All-Electron Numerical-Method for Solving the Local Density Functional for Polyatomic-Molecules
  publication-title: J. Chem. Phys.
– volume: 118
  start-page: 2302
  year: 2018
  ident: 10.1016/j.colsurfa.2025.136512_bib12
  article-title: Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00488
– volume: 16
  year: 2022
  ident: 10.1016/j.colsurfa.2025.136512_bib15
  article-title: Strategy to weaken the oxygen adsorption on single-atom catalysts towards oxygen-involved reactions
  publication-title: Mater. Today Adv.
– volume: 93
  start-page: 91
  year: 2018
  ident: 10.1016/j.colsurfa.2025.136512_bib11
  article-title: Implementing PGM-free electrocatalysts in high-temperature polymer electrolyte membrane fuel cells
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2018.06.019
– volume: 64
  year: 2025
  ident: 10.1016/j.colsurfa.2025.136512_bib20
  article-title: Molecular Evidence for the Axial Coordination Effect of Atomic Iodine on Fe-N4 Sites in Oxygen Reduction Reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 3193
  year: 2014
  ident: 10.1016/j.colsurfa.2025.136512_bib9
  article-title: Phosphate-Tolerant Oxygen Reduction Catalysts
  publication-title: ACS Catal.
  doi: 10.1021/cs500807v
– volume: 324
  start-page: 71
  year: 2009
  ident: 10.1016/j.colsurfa.2025.136512_bib2
  article-title: Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells
  publication-title: Science
  doi: 10.1126/science.1170051
– volume: 309
  year: 2022
  ident: 10.1016/j.colsurfa.2025.136512_bib32
  article-title: Investigation on the demetallation of Fe-N-C for oxygen reduction reaction: The influence of structure and structural evolution of active site
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2022.121290
– volume: 78
  year: 2020
  ident: 10.1016/j.colsurfa.2025.136512_bib23
  article-title: Axial ligand effect on the stability of Fe-N-C electrocatalysts for acidic oxygen reduction reaction
  publication-title: Nano Energy
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.colsurfa.2025.136512_bib33
  article-title: Generalized Gradient Approximation Made Simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 20
  year: 2024
  ident: 10.1016/j.colsurfa.2025.136512_bib26
  article-title: Simultaneously Engineering the First and Second Coordination Shells of Single Iron Catalysts for Enhanced Oxygen Reduction
  publication-title: Small
  doi: 10.1002/smll.202311817
– volume: 234
  start-page: 357
  year: 2018
  ident: 10.1016/j.colsurfa.2025.136512_bib10
  article-title: Immunity of the Fe-N-C catalysts to electrolyte adsorption: Phosphate but not perchloric anions
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.03.056
– volume: 12
  start-page: 11033
  year: 2024
  ident: 10.1016/j.colsurfa.2025.136512_bib22
  article-title: Regulating the Electronic Configuration of Single-Atom Catalysts with Fe-N Sites via Environmental Sulfur Atom Doping for an Enhanced Oxygen Reduction Reaction
  publication-title: Acs Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.4c04016
– volume: 4
  start-page: 307
  year: 2021
  ident: 10.1016/j.colsurfa.2025.136512_bib1
  article-title: Applications of Atomically Dispersed Oxygen Reduction Catalysts in Fuel Cells and Zinc-Air Batteries
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12128
– volume: 13
  start-page: 3544
  year: 2020
  ident: 10.1016/j.colsurfa.2025.136512_bib6
  article-title: Methanol tolerance of atomically dispersed single metal site catalysts: mechanistic understanding and high-performance direct methanol fuel cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01968B
– volume: 145
  start-page: 3647
  year: 2023
  ident: 10.1016/j.colsurfa.2025.136512_bib29
  article-title: Boosting Oxygen Electrocatalytic Activity of Fe-N-C Catalysts by Phosphorus Incorporation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c12933
– volume: 1
  start-page: 1494
  year: 2019
  ident: 10.1016/j.colsurfa.2025.136512_bib13
  article-title: Strategies to Break the Scaling Relation toward Enhanced Oxygen Electrocatalysis
  publication-title: Matter
  doi: 10.1016/j.matt.2019.09.011
– volume: 27
  start-page: 1787
  year: 2006
  ident: 10.1016/j.colsurfa.2025.136512_bib34
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 138
  start-page: 15046
  year: 2016
  ident: 10.1016/j.colsurfa.2025.136512_bib7
  article-title: A General Approach to Preferential Formation of Active Fe-N Sites in Fe-N/C Electrocatalysts for Efficient Oxygen Reduction Reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09470
– volume: 141
  start-page: 12372
  year: 2019
  ident: 10.1016/j.colsurfa.2025.136512_bib16
  article-title: Activity-Selectivity Trends in the Electrochemical Production of Hydrogen Peroxide over Single-Site Metal-Nitrogen-Carbon Catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05576
– volume: 7
  start-page: 12050
  year: 2019
  ident: 10.1016/j.colsurfa.2025.136512_bib35
  article-title: Transition metal-embedded two-dimensional C3N as a highly active electrocatalyst for oxygen evolution and reduction reactions
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01389J
– volume: 34
  year: 2022
  ident: 10.1016/j.colsurfa.2025.136512_bib17
  article-title: Mesopore-Rich Fe-N-C Catalyst with FeN-O-NC Single-Atom Sites Delivers Remarkable Oxygen Reduction Reaction Performance in Alkaline Media
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202202544
– volume: 16
  start-page: 15165
  year: 2022
  ident: 10.1016/j.colsurfa.2025.136512_bib18
  article-title: Engineering Atomic Single Metal-FeNCl Sites with Enhanced Oxygen-Reduction Activity for High-Performance Proton Exchange Membrane Fuel Cells
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c06459
– volume: 370
  start-page: 378
  year: 2019
  ident: 10.1016/j.colsurfa.2025.136512_bib36
  article-title: 2D transition metal–TCNQ sheets as bifunctional single-atom catalysts for oxygen reduction and evolution reaction (ORR/OER)
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.12.012
– volume: 13
  start-page: 6414
  year: 2022
  ident: 10.1016/j.colsurfa.2025.136512_bib14
  article-title: Regulating the scaling relationship for high catalytic kinetics and selectivity of the oxygen reduction reaction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34169-w
– volume: 8
  year: 2018
  ident: 10.1016/j.colsurfa.2025.136512_bib37
  article-title: Hierarchically Porous M-N-C (M = Co and Fe) Single-Atom Electrocatalysts with Robust MNx Active Moieties Enable Enhanced ORR Performance
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801956
– volume: 7
  issue: 1
  year: 2024
  ident: 10.1016/j.colsurfa.2025.136512_bib4
  article-title: PGM-Free Biomass-Derived Electrocatalysts for Oxygen Reduction in Energy Conversion Devices: Promising Materials
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-023-00197-3
– volume: 262
  year: 2020
  ident: 10.1016/j.colsurfa.2025.136512_bib5
  article-title: Activity and degradation study of an Fe-N-C catalyst for ORR in Direct Methanol Fuel Cell (DMFC)
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.118217
– volume: 113
  start-page: 7756
  year: 2000
  ident: 10.1016/j.colsurfa.2025.136512_bib31
  article-title: From molecules to solids with the DMol(3) approach
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1316015
– volume: 6
  start-page: 834
  year: 2021
  ident: 10.1016/j.colsurfa.2025.136512_bib8
  article-title: High-performing commercial Fe-N-C cathode electrocatalyst for anion-exchange membrane fuel cells
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00878-7
– volume: 60
  start-page: 25404
  year: 2021
  ident: 10.1016/j.colsurfa.2025.136512_bib25
  article-title: Unraveling the Origin of Sulfur-Doped Fe-N-C Single-Atom Catalyst for Enhanced Oxygen Reduction Activity: Effect of Iron Spin-State Tuning
  publication-title: Angew. Chem. -Int. Ed.
  doi: 10.1002/anie.202110243
– volume: 92
  start-page: 508
  year: 1990
  ident: 10.1016/j.colsurfa.2025.136512_bib30
  article-title: An All-Electron Numerical-Method for Solving the Local Density Functional for Polyatomic-Molecules
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458452
– volume: 11
  start-page: 11326
  year: 2023
  ident: 10.1016/j.colsurfa.2025.136512_bib21
  article-title: Axial modulation of Fe sites realizing high-performance oxygen reduction reaction of FeN4 catalysts
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA10062B
– volume: 15
  start-page: 7489
  year: 2024
  ident: 10.1016/j.colsurfa.2025.136512_bib19
  article-title: A Fe-N-C electrocatalyst boosted by trace bromide ions with high performance in proton exchange membrane fuel cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-51858-w
– volume: 7
  start-page: 14001
  year: 2019
  ident: 10.1016/j.colsurfa.2025.136512_bib27
  article-title: Insight into the role of Ni-Fe dual sites in the oxygen evolution reaction based on atomically metal-doped polymeric carbon nitride
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03163D
– volume: 49
  start-page: 3484
  year: 2020
  ident: 10.1016/j.colsurfa.2025.136512_bib3
  article-title: Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00903E
– volume: 126
  start-page: 21606
  year: 2022
  ident: 10.1016/j.colsurfa.2025.136512_bib24
  article-title: Axial Coordination Effect on the Oxygen Reduction Reaction of FeN4 Electrocatalysts Based on Grand Canonical Density Functional Theory
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.2c06682
– volume: 145
  start-page: 25252
  year: 2023
  ident: 10.1016/j.colsurfa.2025.136512_bib28
  article-title: Avoiding Sabatier's Limitation on Spatially Correlated Pt-Mn Atomic Pair Sites for Oxygen Electroreduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c08665
SSID ssj0004579
Score 2.46161
Snippet Metal-nitrogen-carbon based single atom catalysts (SACs) have been the subject of oxygen reduction reaction (ORR) electrocatalysts for electrochemical devices....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 136512
SubjectTerms catalytic activity
density functional theory
Dynamic regulation
electrochemistry
Halogen atom
Non-bonding coordination
Oxygen reduction reaction
Sequential catalytic
Title The dynamic regulation effect in X@Fe-N4/C electrocatalyst for the sequential oxygen reduction reaction
URI https://dx.doi.org/10.1016/j.colsurfa.2025.136512
https://www.proquest.com/docview/3242070224
Volume 713
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jHtSD6FScP0YEr7FtTNvl5iiOqbiLDnYLSZrKxujG1oG7-Lf70rQwBfHgrS1tKF8e3_vavHwPoZssMj6XASNUMkpsUBAps5SAGJYgMJRWZfeGl2E0GLGncThuoKTeC2PLKivud5xesnV1xavQ9BaTiffqcxrHcRhDEveBiq3jJ2OxjfLbz2DLMbzy26MxsXdv7RKewtiz1XqZWf8hGpYVXwH9LUH9oOoy__QP0UElHHHPvdsRapi8hXaTul9bC-1vWQseo3eYf5y6dvN46RrOwxRgV7-BJzke3_cNGTIvwVUrnPJPzmZVYNCxGHQhdmXWQAEzPP_YQKTBQKlzm4UjtyPiBI36D2_JgFRNFYgGKVCQWPoRTwMqDXyQKg0ZX2qlVBhkEQdpI7mOqKY80DqT3KhurFRmgBC5nwKGICZOUTOf5-YMYc6sXWEEWVZqFqSqG4VaSqpDUBna53dt5NVIioXzzhB1UdlU1NgLi71w2LcRrwEX36JAAMH_-ex1PUMCkLfrHjI38_VKWM0IzAZi5fwf41-gPXtmKweof4maxXJtrkCQFKpTRlwH7fQenwfDLzY64YQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7ofJg-iE7FeY3ga2gbe1neHMMxb3txg72FJE1lY3SyC7h_70nTwhTEB99KSkL5cvjO1_bkOwC3WWx8LoOQMhkyaoOCSpmlFMWwRIGhtCq6N7z2494wfBpFoy3oVGdhbFllyf2O0wu2Lke8Ek3vYzz23nzOkiSJEkziPlLx3TbsWHeqqAY77cfnXn_DNLy03GMJtRM2DgpPcPnpYjXPrAURi4qir4D9lqN-sHWRgroHsF9qR9J2j3cIWyZvQL1TtWxrwN6Gu-ARvGMIkNR1nCdz13Med4G4Eg4yzsnovmtoP_Q6pOyGU3zMWS-WBKUsQWlIXKU1ssCUzD7XGGy4UOoMZ_HKHYo4hmH3YdDp0bKvAtWoBpY0kX7M04BJg--kSmPSl1opFQVZzFHdSK5jphkPtM4kN6qVKJUZ5ETup4gh6okTqOWz3JwC4aF1LIwx0UodBqlqxZGWkukIhYb2-V0TvApJ8eHsM0RVVzYRFfbCYi8c9k3gFeDiWyAI5Pg_595UOyQQefvrQ-ZmtloIKxuR3FCvnP1j_Wuo9wavL-Llsf98Drv2ji0kYP4F1JbzlblEfbJUV2X8fQH1NOQ1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+dynamic+regulation+effect+in+X%40Fe-N4%2FC+electrocatalyst+for+the+sequential+oxygen+reduction+reaction&rft.jtitle=Colloids+and+surfaces.+A%2C+Physicochemical+and+engineering+aspects&rft.au=Zhang%2C+Xiaoming&rft.au=Wang%2C+Suli&rft.au=Xia%2C+Zhangxun&rft.au=Li%2C+Huanqiao&rft.date=2025-05-20&rft.pub=Elsevier+B.V&rft.issn=0927-7757&rft.volume=713&rft_id=info:doi/10.1016%2Fj.colsurfa.2025.136512&rft.externalDocID=S0927775725004133
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7757&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7757&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7757&client=summon