Can ensemble‐based parameter estimation aid parameterization design?

Ensemble‐based data assimilation algorithms can be exploited to estimate uncertain parameters in parameterization schemes by means of state augmentation. Parameters are appended to the model state vector and, just like state variables, they are optimized objectively on the basis of flow‐dependent en...

Full description

Saved in:
Bibliographic Details
Published inQuarterly journal of the Royal Meteorological Society
Main Authors Serafin, Stefano, Weissmann, Martin
Format Journal Article
LanguageEnglish
Published 26.06.2025
Online AccessGet full text
ISSN0035-9009
1477-870X
DOI10.1002/qj.5031

Cover

Abstract Ensemble‐based data assimilation algorithms can be exploited to estimate uncertain parameters in parameterization schemes by means of state augmentation. Parameters are appended to the model state vector and, just like state variables, they are optimized objectively on the basis of flow‐dependent ensemble covariances with observable quantities. Ensemble‐based parameter estimation (PE) is a well‐established methodology and has been used recently to account for model errors in the assimilation process. In this study, we discuss if and how it can be a useful tool for parameterization design. With simple experiments tailored to turbulence modelling, we demonstrate that quickly converged and physically interpretable empirical parameters can be obtained only under restrictive conditions. The error variance of the assimilated observations needs to be as low as that of the state perturbations induced by the parameter to be estimated, and parametric uncertainty must be the dominant contributor to the uncertainty of the assimilation ensemble. Based on these results, we outline a possible strategy for offline PE targeted at parameterization development. The strategy relies on ensemble‐based PE experiments that ingest synthetic observations from high‐resolution nature runs, in which the parameterized process is fully resolved; it is thus potentially well suited to refine the design of, for example, boundary‐layer turbulence, convection, or orographic drag parameterizations. We also demonstrate that optimally converged parameters can, to some extent, compensate for structural errors in parameterizations, and suggest exploiting this property to extend the flexibility of parameterization schemes. This can be achieved by replacing fixed parameters with adaptive parameters, drawn from lookup tables compiled from parameter estimation results.
AbstractList Ensemble‐based data assimilation algorithms can be exploited to estimate uncertain parameters in parameterization schemes by means of state augmentation. Parameters are appended to the model state vector and, just like state variables, they are optimized objectively on the basis of flow‐dependent ensemble covariances with observable quantities. Ensemble‐based parameter estimation (PE) is a well‐established methodology and has been used recently to account for model errors in the assimilation process. In this study, we discuss if and how it can be a useful tool for parameterization design. With simple experiments tailored to turbulence modelling, we demonstrate that quickly converged and physically interpretable empirical parameters can be obtained only under restrictive conditions. The error variance of the assimilated observations needs to be as low as that of the state perturbations induced by the parameter to be estimated, and parametric uncertainty must be the dominant contributor to the uncertainty of the assimilation ensemble. Based on these results, we outline a possible strategy for offline PE targeted at parameterization development. The strategy relies on ensemble‐based PE experiments that ingest synthetic observations from high‐resolution nature runs, in which the parameterized process is fully resolved; it is thus potentially well suited to refine the design of, for example, boundary‐layer turbulence, convection, or orographic drag parameterizations. We also demonstrate that optimally converged parameters can, to some extent, compensate for structural errors in parameterizations, and suggest exploiting this property to extend the flexibility of parameterization schemes. This can be achieved by replacing fixed parameters with adaptive parameters, drawn from lookup tables compiled from parameter estimation results.
Author Serafin, Stefano
Weissmann, Martin
Author_xml – sequence: 1
  givenname: Stefano
  orcidid: 0000-0002-5838-7514
  surname: Serafin
  fullname: Serafin, Stefano
  organization: Department of Meteorology and Geophysics University of Vienna Vienna Austria
– sequence: 2
  givenname: Martin
  surname: Weissmann
  fullname: Weissmann, Martin
  organization: Department of Meteorology and Geophysics University of Vienna Vienna Austria
BookMark eNpNj8FKxDAURYOMYGcUf6E7Vx1f8ppJsxIpjgoDbhTclTR5kZZpOpN0oys_wW_0S3QYF64u3AuHe-ZsFsZAjF1yWHIAcb3vlxKQn7CMl0oVlYLXGcsAUBYaQJ-xeUo9AEglVMbWtQk5hURDu6Xvz6_WJHL5zkQz0EQxpzR1g5m6MeSm-zd0H8fSUerews05O_Vmm-jiLxfsZX33XD8Um6f7x_p2U1ghxFSsBAeFlviKW0W-qrzGEoU3orXSaBROtrzSpJTxlsg6XTrvJFp0HrlAXLCrI9fGMaVIvtnF33_xveHQHPSbfd8c9PEHtyFRCg
Cites_doi 10.1002/qj.3257
10.1111/j.1600-0870.2009.00407.x
10.1175/1520-0493(2000)128<0824:QSAOAP>2.0.CO;2
10.1016/S0377-0265(97)00032-8
10.1016/B978-0-12-382225-3.00494-1
10.1175/1520-0493(1995)123<1128:OLEOEC>2.0.CO;2
10.1175/MWR3443.1
10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
10.1016/j.jcp.2007.01.037
10.1007/BF00122760
10.1175/2007MWR2071.1
10.1002/qj.49712555417
10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2
10.1109/MCS.2009.932223
10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
10.1029/2017JD028092
10.1175/MWR-D-19-0233.1
10.5194/gmd-18-433-2025
10.1017/CBO9780511812590
10.1029/2012MS000167
10.1175/MWR-D-13-00200.1
10.1175/MWR-D-16-0063.1
10.1175/MWR-D-19-0154.1
10.1175/JAM2539.1
10.1175/MWR-D-14-00017.1
10.2151/jmsj.2013-403
10.1175/MWR-D-11-00276.1
10.1175/1520-0469(1978)035<1427:AMSOTS>2.0.CO;2
10.1175/JAM2545.1
10.1175/MWR-D-19-0045.1
10.2151/jmsj.2013-201
10.1111/j.1600-0870.2006.00178.x
10.1175/MWR-D-20-0002.1
10.1111/j.1751-5823.2003.tb00194.x
10.1256/qj.05.137
10.1016/j.ocemod.2003.12.004
10.1175/MWR-D-12-00280.1
10.1029/2006GL026186
10.1145/42288.214372
10.1002/qj.2748
10.1175/2010MWR3067.1
10.1175/1520-0469(1970)027<1213:ANOTVS>2.0.CO;2
10.1023/A:1022146015946
10.1175/MWR3224.1
10.1175/2007MWR2070.1
10.1007/BF00119875
10.1016/j.physd.2006.11.008
10.1175/2010MWR3292.1
10.1016/S1352-2310(99)00349-0
10.1256/qj.05.108
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/qj.5031
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1477-870X
ExternalDocumentID 10_1002_qj_5031
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ACAHQ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GODZA
H.T
H.X
HBH
HGLYW
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
XV2
ZZTAW
~02
~IA
~WT
ID FETCH-LOGICAL-c222t-621073ce161c7ef88f93432fa2bc5a932d5b189e77afceecd94dfd53c3df31233
ISSN 0035-9009
IngestDate Thu Jul 03 08:38:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c222t-621073ce161c7ef88f93432fa2bc5a932d5b189e77afceecd94dfd53c3df31233
ORCID 0000-0002-5838-7514
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/qj.5031
ParticipantIDs crossref_primary_10_1002_qj_5031
PublicationCentury 2000
PublicationDate 2025-06-26
PublicationDateYYYYMMDD 2025-06-26
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-26
  day: 26
PublicationDecade 2020
PublicationTitle Quarterly journal of the Royal Meteorological Society
PublicationYear 2025
References Serafin S. (e_1_2_8_44_1) 2007; 46
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Aksoy A. (e_1_2_8_3_1) 2006; 33
Evensen G. (e_1_2_8_18_1) 2009; 29
Hacker J.P. (e_1_2_8_21_1) 2007; 135
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
Aksoy A. (e_1_2_8_2_1) 2015
Lee J.A. (e_1_2_8_28_1) 2017; 145
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
Bratley P. (e_1_2_8_12_1) 1988; 14
e_1_2_8_13_1
e_1_2_8_38_1
Hu X.M. (e_1_2_8_24_1) 2010; 37
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
Stull R.B. (e_1_2_8_48_1) 1988
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_1
Baek S.J. (e_1_2_8_9_1) 2006; 58
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Ruckstuhl Y. (e_1_2_8_36_1) 2020; 148
Dee D.P. (e_1_2_8_15_1) 2006; 131
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 37
  start-page: 1
  year: 2010
  ident: e_1_2_8_24_1
  article-title: Ensemble‐based simultaneous state and parameter estimation for treatment of mesoscale model error: a real‐data study
  publication-title: Geophysical Research Letters
– ident: e_1_2_8_35_1
  doi: 10.1002/qj.3257
– ident: e_1_2_8_53_1
  doi: 10.1111/j.1600-0870.2009.00407.x
– ident: e_1_2_8_47_1
  doi: 10.1175/1520-0493(2000)128<0824:QSAOAP>2.0.CO;2
– ident: e_1_2_8_29_1
  doi: 10.1016/S0377-0265(97)00032-8
– start-page: 181
  volume-title: Encyclopedia of the atmospheric sciences
  year: 2015
  ident: e_1_2_8_2_1
  doi: 10.1016/B978-0-12-382225-3.00494-1
– ident: e_1_2_8_14_1
  doi: 10.1175/1520-0493(1995)123<1128:OLEOEC>2.0.CO;2
– volume: 135
  start-page: 2958
  year: 2007
  ident: e_1_2_8_21_1
  article-title: PBL state estimation with surface observations, a column model, and an ensemble filter
  publication-title: Monthly Weather Review
  doi: 10.1175/MWR3443.1
– ident: e_1_2_8_23_1
  doi: 10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
– ident: e_1_2_8_45_1
  doi: 10.1016/j.jcp.2007.01.037
– ident: e_1_2_8_51_1
  doi: 10.1007/BF00122760
– ident: e_1_2_8_50_1
  doi: 10.1175/2007MWR2071.1
– ident: e_1_2_8_19_1
  doi: 10.1002/qj.49712555417
– ident: e_1_2_8_6_1
  doi: 10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2
– volume: 29
  start-page: 83
  year: 2009
  ident: e_1_2_8_18_1
  article-title: The ensemble kalman filter for combined state and parameter estimation: Monte Carlo techniques for data assimilation in large systems
  publication-title: IEEE Control Systems
  doi: 10.1109/MCS.2009.932223
– ident: e_1_2_8_5_1
  doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
– ident: e_1_2_8_26_1
  doi: 10.1029/2017JD028092
– volume: 148
  start-page: 1607
  year: 2020
  ident: e_1_2_8_36_1
  article-title: Combined state‐parameter estimation with the LETKF for convective‐scale weather forecasting
  publication-title: Monthly Weather Review
  doi: 10.1175/MWR-D-19-0233.1
– ident: e_1_2_8_17_1
  doi: 10.5194/gmd-18-433-2025
– ident: e_1_2_8_46_1
  doi: 10.1017/CBO9780511812590
– ident: e_1_2_8_40_1
  doi: 10.1029/2012MS000167
– ident: e_1_2_8_10_1
  doi: 10.1175/MWR-D-13-00200.1
– volume: 145
  start-page: 5
  year: 2017
  ident: e_1_2_8_28_1
  article-title: Improving wind predictions in the marine atmospheric boundary layer through parameter estimation in a single‐column model
  publication-title: Monthly Weather Review
  doi: 10.1175/MWR-D-16-0063.1
– ident: e_1_2_8_30_1
  doi: 10.1175/MWR-D-19-0154.1
– ident: e_1_2_8_34_1
  doi: 10.1175/JAM2539.1
– ident: e_1_2_8_37_1
  doi: 10.1175/MWR-D-14-00017.1
– ident: e_1_2_8_39_1
  doi: 10.2151/jmsj.2013-403
– ident: e_1_2_8_52_1
  doi: 10.1175/MWR-D-11-00276.1
– ident: e_1_2_8_13_1
  doi: 10.1175/1520-0469(1978)035<1427:AMSOTS>2.0.CO;2
– volume: 46
  start-page: 1438
  year: 2007
  ident: e_1_2_8_44_1
  article-title: Sensitivity of a mesoscale model to microphysical parameterizations in the MAP SOP events IOP2b and IOP8
  publication-title: Journal of Applied Meteorology and Climatology
  doi: 10.1175/JAM2545.1
– ident: e_1_2_8_8_1
  doi: 10.1175/MWR-D-19-0045.1
– ident: e_1_2_8_38_1
  doi: 10.2151/jmsj.2013-201
– volume: 58
  start-page: 293
  year: 2006
  ident: e_1_2_8_9_1
  article-title: Local ensemble Kalman filtering in the presence of model bias
  publication-title: Tellus. Series A, Dynamic Meteorology and Oceanography
  doi: 10.1111/j.1600-0870.2006.00178.x
– ident: e_1_2_8_42_1
  doi: 10.1175/MWR-D-20-0002.1
– ident: e_1_2_8_11_1
  doi: 10.1111/j.1751-5823.2003.tb00194.x
– volume: 131
  start-page: 3323
  year: 2006
  ident: e_1_2_8_15_1
  article-title: Bias and data assimilation
  publication-title: Quarterly Journal of the Royal Meteorological Society
  doi: 10.1256/qj.05.137
– ident: e_1_2_8_7_1
  doi: 10.1016/j.ocemod.2003.12.004
– ident: e_1_2_8_20_1
  doi: 10.1175/MWR-D-12-00280.1
– volume-title: Atmospheric and oceanographic sciences library
  year: 1988
  ident: e_1_2_8_48_1
– volume: 33
  start-page: 5
  year: 2006
  ident: e_1_2_8_3_1
  article-title: Ensemble‐based simultaneous state and parameter estimation with MM5
  publication-title: Geophysical Research Letters
  doi: 10.1029/2006GL026186
– volume: 14
  start-page: 88
  year: 1988
  ident: e_1_2_8_12_1
  article-title: Algorithm 659: implementing Sobol's quasirandom sequence generator
  publication-title: Acm Transactions On Mathematical Software Association for Computing Machinery
  doi: 10.1145/42288.214372
– ident: e_1_2_8_41_1
  doi: 10.1002/qj.2748
– ident: e_1_2_8_27_1
  doi: 10.1175/2010MWR3067.1
– ident: e_1_2_8_33_1
  doi: 10.1175/1520-0469(1970)027<1213:ANOTVS>2.0.CO;2
– ident: e_1_2_8_32_1
  doi: 10.1023/A:1022146015946
– ident: e_1_2_8_4_1
  doi: 10.1175/MWR3224.1
– ident: e_1_2_8_49_1
  doi: 10.1175/2007MWR2070.1
– ident: e_1_2_8_22_1
  doi: 10.1007/BF00119875
– ident: e_1_2_8_25_1
  doi: 10.1016/j.physd.2006.11.008
– ident: e_1_2_8_31_1
  doi: 10.1175/2010MWR3292.1
– ident: e_1_2_8_43_1
  doi: 10.1016/S1352-2310(99)00349-0
– ident: e_1_2_8_16_1
  doi: 10.1256/qj.05.108
SSID ssj0005727
Score 2.4550195
SecondaryResourceType online_first
Snippet Ensemble‐based data assimilation algorithms can be exploited to estimate uncertain parameters in parameterization schemes by means of state augmentation....
SourceID crossref
SourceType Index Database
Title Can ensemble‐based parameter estimation aid parameterization design?
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LTsJAFIYnihs3xmvEW2Zh3JBiaTuddmUMkRATXSgk7MhcEwkXIXWhKx_BZ_RJPMMMbSUkXlhMaKGFzAdn_k7P-Qehc8YFZ5JQM1EVQiN8jwci8XgkeeKLWMLDZFvcx-1udNsjvcWy7K66JON18bayruQ_VGEfcDVVsn8gm58UdsBz4AstEIb2V4yb8OeEy1A14kOVZy2YcUnWjKX3yKS61IyNhq1PrLGn0guuALMm5zkcSwl-ea5n2VrCaFQ73XAHJ5jM8rjpUj_z2Ro1Y9p6EzxmSrPxpLj_A5xHbl1m62BQnnYIiEmPsrXti1AaEi_1fRvvlI2eEYUhj_q9lbHZer1OB3Xiu8D_zf16aVTKcwWtr3LQnw765sB1tBFQau_IPxROYYS61Xndt7L10ebAS_eJJeFRUhCdbbTlpD--thx30Joa76Jq0ZWv-AI3h4bVfGsPtYAvXvD9fP-Yk8U5QFyQxUAWL5PFluzVPuq2bjrNtufWvfAEqLXMi-EynIZCgRgXVOkk0akp_9Us4IIwENyS8EaSKkqZBo0jZBpJLUkoQqlDUCLhAaqMJ2N1iLBWUUQkDwnIsqhBG2lC4jTWsc-TRAnWqCK86JT-s7U36S91-NHPbzlGm8VP5ARVstmLOgWtlvGzOaUvMDlE3A
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+ensemble%E2%80%90based+parameter+estimation+aid+parameterization+design%3F&rft.jtitle=Quarterly+journal+of+the+Royal+Meteorological+Society&rft.au=Serafin%2C+Stefano&rft.au=Weissmann%2C+Martin&rft.date=2025-06-26&rft.issn=0035-9009&rft.eissn=1477-870X&rft_id=info:doi/10.1002%2Fqj.5031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qj_5031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9009&client=summon