Can ensemble‐based parameter estimation aid parameterization design?
Ensemble‐based data assimilation algorithms can be exploited to estimate uncertain parameters in parameterization schemes by means of state augmentation. Parameters are appended to the model state vector and, just like state variables, they are optimized objectively on the basis of flow‐dependent en...
Saved in:
Published in | Quarterly journal of the Royal Meteorological Society |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
26.06.2025
|
Online Access | Get full text |
ISSN | 0035-9009 1477-870X |
DOI | 10.1002/qj.5031 |
Cover
Abstract | Ensemble‐based data assimilation algorithms can be exploited to estimate uncertain parameters in parameterization schemes by means of state augmentation. Parameters are appended to the model state vector and, just like state variables, they are optimized objectively on the basis of flow‐dependent ensemble covariances with observable quantities. Ensemble‐based parameter estimation (PE) is a well‐established methodology and has been used recently to account for model errors in the assimilation process. In this study, we discuss if and how it can be a useful tool for parameterization design. With simple experiments tailored to turbulence modelling, we demonstrate that quickly converged and physically interpretable empirical parameters can be obtained only under restrictive conditions. The error variance of the assimilated observations needs to be as low as that of the state perturbations induced by the parameter to be estimated, and parametric uncertainty must be the dominant contributor to the uncertainty of the assimilation ensemble. Based on these results, we outline a possible strategy for offline PE targeted at parameterization development. The strategy relies on ensemble‐based PE experiments that ingest synthetic observations from high‐resolution nature runs, in which the parameterized process is fully resolved; it is thus potentially well suited to refine the design of, for example, boundary‐layer turbulence, convection, or orographic drag parameterizations. We also demonstrate that optimally converged parameters can, to some extent, compensate for structural errors in parameterizations, and suggest exploiting this property to extend the flexibility of parameterization schemes. This can be achieved by replacing fixed parameters with adaptive parameters, drawn from lookup tables compiled from parameter estimation results. |
---|---|
AbstractList | Ensemble‐based data assimilation algorithms can be exploited to estimate uncertain parameters in parameterization schemes by means of state augmentation. Parameters are appended to the model state vector and, just like state variables, they are optimized objectively on the basis of flow‐dependent ensemble covariances with observable quantities. Ensemble‐based parameter estimation (PE) is a well‐established methodology and has been used recently to account for model errors in the assimilation process. In this study, we discuss if and how it can be a useful tool for parameterization design. With simple experiments tailored to turbulence modelling, we demonstrate that quickly converged and physically interpretable empirical parameters can be obtained only under restrictive conditions. The error variance of the assimilated observations needs to be as low as that of the state perturbations induced by the parameter to be estimated, and parametric uncertainty must be the dominant contributor to the uncertainty of the assimilation ensemble. Based on these results, we outline a possible strategy for offline PE targeted at parameterization development. The strategy relies on ensemble‐based PE experiments that ingest synthetic observations from high‐resolution nature runs, in which the parameterized process is fully resolved; it is thus potentially well suited to refine the design of, for example, boundary‐layer turbulence, convection, or orographic drag parameterizations. We also demonstrate that optimally converged parameters can, to some extent, compensate for structural errors in parameterizations, and suggest exploiting this property to extend the flexibility of parameterization schemes. This can be achieved by replacing fixed parameters with adaptive parameters, drawn from lookup tables compiled from parameter estimation results. |
Author | Serafin, Stefano Weissmann, Martin |
Author_xml | – sequence: 1 givenname: Stefano orcidid: 0000-0002-5838-7514 surname: Serafin fullname: Serafin, Stefano organization: Department of Meteorology and Geophysics University of Vienna Vienna Austria – sequence: 2 givenname: Martin surname: Weissmann fullname: Weissmann, Martin organization: Department of Meteorology and Geophysics University of Vienna Vienna Austria |
BookMark | eNpNj8FKxDAURYOMYGcUf6E7Vx1f8ppJsxIpjgoDbhTclTR5kZZpOpN0oys_wW_0S3QYF64u3AuHe-ZsFsZAjF1yWHIAcb3vlxKQn7CMl0oVlYLXGcsAUBYaQJ-xeUo9AEglVMbWtQk5hURDu6Xvz6_WJHL5zkQz0EQxpzR1g5m6MeSm-zd0H8fSUerews05O_Vmm-jiLxfsZX33XD8Um6f7x_p2U1ghxFSsBAeFlviKW0W-qrzGEoU3orXSaBROtrzSpJTxlsg6XTrvJFp0HrlAXLCrI9fGMaVIvtnF33_xveHQHPSbfd8c9PEHtyFRCg |
Cites_doi | 10.1002/qj.3257 10.1111/j.1600-0870.2009.00407.x 10.1175/1520-0493(2000)128<0824:QSAOAP>2.0.CO;2 10.1016/S0377-0265(97)00032-8 10.1016/B978-0-12-382225-3.00494-1 10.1175/1520-0493(1995)123<1128:OLEOEC>2.0.CO;2 10.1175/MWR3443.1 10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2 10.1016/j.jcp.2007.01.037 10.1007/BF00122760 10.1175/2007MWR2071.1 10.1002/qj.49712555417 10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2 10.1109/MCS.2009.932223 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2 10.1029/2017JD028092 10.1175/MWR-D-19-0233.1 10.5194/gmd-18-433-2025 10.1017/CBO9780511812590 10.1029/2012MS000167 10.1175/MWR-D-13-00200.1 10.1175/MWR-D-16-0063.1 10.1175/MWR-D-19-0154.1 10.1175/JAM2539.1 10.1175/MWR-D-14-00017.1 10.2151/jmsj.2013-403 10.1175/MWR-D-11-00276.1 10.1175/1520-0469(1978)035<1427:AMSOTS>2.0.CO;2 10.1175/JAM2545.1 10.1175/MWR-D-19-0045.1 10.2151/jmsj.2013-201 10.1111/j.1600-0870.2006.00178.x 10.1175/MWR-D-20-0002.1 10.1111/j.1751-5823.2003.tb00194.x 10.1256/qj.05.137 10.1016/j.ocemod.2003.12.004 10.1175/MWR-D-12-00280.1 10.1029/2006GL026186 10.1145/42288.214372 10.1002/qj.2748 10.1175/2010MWR3067.1 10.1175/1520-0469(1970)027<1213:ANOTVS>2.0.CO;2 10.1023/A:1022146015946 10.1175/MWR3224.1 10.1175/2007MWR2070.1 10.1007/BF00119875 10.1016/j.physd.2006.11.008 10.1175/2010MWR3292.1 10.1016/S1352-2310(99)00349-0 10.1256/qj.05.108 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1002/qj.5031 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1477-870X |
ExternalDocumentID | 10_1002_qj_5031 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABJNI ACAHQ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GODZA H.T H.X HBH HGLYW HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NNB O66 O9- OK1 P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 SUPJJ UB1 W8V W99 WBKPD WIB WIH WIK WJL WOHZO WQJ WUPDE WXSBR WYISQ XG1 XV2 ZZTAW ~02 ~IA ~WT |
ID | FETCH-LOGICAL-c222t-621073ce161c7ef88f93432fa2bc5a932d5b189e77afceecd94dfd53c3df31233 |
ISSN | 0035-9009 |
IngestDate | Thu Jul 03 08:38:58 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c222t-621073ce161c7ef88f93432fa2bc5a932d5b189e77afceecd94dfd53c3df31233 |
ORCID | 0000-0002-5838-7514 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/qj.5031 |
ParticipantIDs | crossref_primary_10_1002_qj_5031 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-26 |
PublicationDateYYYYMMDD | 2025-06-26 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | Quarterly journal of the Royal Meteorological Society |
PublicationYear | 2025 |
References | Serafin S. (e_1_2_8_44_1) 2007; 46 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Aksoy A. (e_1_2_8_3_1) 2006; 33 Evensen G. (e_1_2_8_18_1) 2009; 29 Hacker J.P. (e_1_2_8_21_1) 2007; 135 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 Aksoy A. (e_1_2_8_2_1) 2015 Lee J.A. (e_1_2_8_28_1) 2017; 145 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 Bratley P. (e_1_2_8_12_1) 1988; 14 e_1_2_8_13_1 e_1_2_8_38_1 Hu X.M. (e_1_2_8_24_1) 2010; 37 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 Stull R.B. (e_1_2_8_48_1) 1988 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_42_1 Baek S.J. (e_1_2_8_9_1) 2006; 58 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Ruckstuhl Y. (e_1_2_8_36_1) 2020; 148 Dee D.P. (e_1_2_8_15_1) 2006; 131 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 37 start-page: 1 year: 2010 ident: e_1_2_8_24_1 article-title: Ensemble‐based simultaneous state and parameter estimation for treatment of mesoscale model error: a real‐data study publication-title: Geophysical Research Letters – ident: e_1_2_8_35_1 doi: 10.1002/qj.3257 – ident: e_1_2_8_53_1 doi: 10.1111/j.1600-0870.2009.00407.x – ident: e_1_2_8_47_1 doi: 10.1175/1520-0493(2000)128<0824:QSAOAP>2.0.CO;2 – ident: e_1_2_8_29_1 doi: 10.1016/S0377-0265(97)00032-8 – start-page: 181 volume-title: Encyclopedia of the atmospheric sciences year: 2015 ident: e_1_2_8_2_1 doi: 10.1016/B978-0-12-382225-3.00494-1 – ident: e_1_2_8_14_1 doi: 10.1175/1520-0493(1995)123<1128:OLEOEC>2.0.CO;2 – volume: 135 start-page: 2958 year: 2007 ident: e_1_2_8_21_1 article-title: PBL state estimation with surface observations, a column model, and an ensemble filter publication-title: Monthly Weather Review doi: 10.1175/MWR3443.1 – ident: e_1_2_8_23_1 doi: 10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2 – ident: e_1_2_8_45_1 doi: 10.1016/j.jcp.2007.01.037 – ident: e_1_2_8_51_1 doi: 10.1007/BF00122760 – ident: e_1_2_8_50_1 doi: 10.1175/2007MWR2071.1 – ident: e_1_2_8_19_1 doi: 10.1002/qj.49712555417 – ident: e_1_2_8_6_1 doi: 10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2 – volume: 29 start-page: 83 year: 2009 ident: e_1_2_8_18_1 article-title: The ensemble kalman filter for combined state and parameter estimation: Monte Carlo techniques for data assimilation in large systems publication-title: IEEE Control Systems doi: 10.1109/MCS.2009.932223 – ident: e_1_2_8_5_1 doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2 – ident: e_1_2_8_26_1 doi: 10.1029/2017JD028092 – volume: 148 start-page: 1607 year: 2020 ident: e_1_2_8_36_1 article-title: Combined state‐parameter estimation with the LETKF for convective‐scale weather forecasting publication-title: Monthly Weather Review doi: 10.1175/MWR-D-19-0233.1 – ident: e_1_2_8_17_1 doi: 10.5194/gmd-18-433-2025 – ident: e_1_2_8_46_1 doi: 10.1017/CBO9780511812590 – ident: e_1_2_8_40_1 doi: 10.1029/2012MS000167 – ident: e_1_2_8_10_1 doi: 10.1175/MWR-D-13-00200.1 – volume: 145 start-page: 5 year: 2017 ident: e_1_2_8_28_1 article-title: Improving wind predictions in the marine atmospheric boundary layer through parameter estimation in a single‐column model publication-title: Monthly Weather Review doi: 10.1175/MWR-D-16-0063.1 – ident: e_1_2_8_30_1 doi: 10.1175/MWR-D-19-0154.1 – ident: e_1_2_8_34_1 doi: 10.1175/JAM2539.1 – ident: e_1_2_8_37_1 doi: 10.1175/MWR-D-14-00017.1 – ident: e_1_2_8_39_1 doi: 10.2151/jmsj.2013-403 – ident: e_1_2_8_52_1 doi: 10.1175/MWR-D-11-00276.1 – ident: e_1_2_8_13_1 doi: 10.1175/1520-0469(1978)035<1427:AMSOTS>2.0.CO;2 – volume: 46 start-page: 1438 year: 2007 ident: e_1_2_8_44_1 article-title: Sensitivity of a mesoscale model to microphysical parameterizations in the MAP SOP events IOP2b and IOP8 publication-title: Journal of Applied Meteorology and Climatology doi: 10.1175/JAM2545.1 – ident: e_1_2_8_8_1 doi: 10.1175/MWR-D-19-0045.1 – ident: e_1_2_8_38_1 doi: 10.2151/jmsj.2013-201 – volume: 58 start-page: 293 year: 2006 ident: e_1_2_8_9_1 article-title: Local ensemble Kalman filtering in the presence of model bias publication-title: Tellus. Series A, Dynamic Meteorology and Oceanography doi: 10.1111/j.1600-0870.2006.00178.x – ident: e_1_2_8_42_1 doi: 10.1175/MWR-D-20-0002.1 – ident: e_1_2_8_11_1 doi: 10.1111/j.1751-5823.2003.tb00194.x – volume: 131 start-page: 3323 year: 2006 ident: e_1_2_8_15_1 article-title: Bias and data assimilation publication-title: Quarterly Journal of the Royal Meteorological Society doi: 10.1256/qj.05.137 – ident: e_1_2_8_7_1 doi: 10.1016/j.ocemod.2003.12.004 – ident: e_1_2_8_20_1 doi: 10.1175/MWR-D-12-00280.1 – volume-title: Atmospheric and oceanographic sciences library year: 1988 ident: e_1_2_8_48_1 – volume: 33 start-page: 5 year: 2006 ident: e_1_2_8_3_1 article-title: Ensemble‐based simultaneous state and parameter estimation with MM5 publication-title: Geophysical Research Letters doi: 10.1029/2006GL026186 – volume: 14 start-page: 88 year: 1988 ident: e_1_2_8_12_1 article-title: Algorithm 659: implementing Sobol's quasirandom sequence generator publication-title: Acm Transactions On Mathematical Software Association for Computing Machinery doi: 10.1145/42288.214372 – ident: e_1_2_8_41_1 doi: 10.1002/qj.2748 – ident: e_1_2_8_27_1 doi: 10.1175/2010MWR3067.1 – ident: e_1_2_8_33_1 doi: 10.1175/1520-0469(1970)027<1213:ANOTVS>2.0.CO;2 – ident: e_1_2_8_32_1 doi: 10.1023/A:1022146015946 – ident: e_1_2_8_4_1 doi: 10.1175/MWR3224.1 – ident: e_1_2_8_49_1 doi: 10.1175/2007MWR2070.1 – ident: e_1_2_8_22_1 doi: 10.1007/BF00119875 – ident: e_1_2_8_25_1 doi: 10.1016/j.physd.2006.11.008 – ident: e_1_2_8_31_1 doi: 10.1175/2010MWR3292.1 – ident: e_1_2_8_43_1 doi: 10.1016/S1352-2310(99)00349-0 – ident: e_1_2_8_16_1 doi: 10.1256/qj.05.108 |
SSID | ssj0005727 |
Score | 2.4550195 |
SecondaryResourceType | online_first |
Snippet | Ensemble‐based data assimilation algorithms can be exploited to estimate uncertain parameters in parameterization schemes by means of state augmentation.... |
SourceID | crossref |
SourceType | Index Database |
Title | Can ensemble‐based parameter estimation aid parameterization design? |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LTsJAFIYnihs3xmvEW2Zh3JBiaTuddmUMkRATXSgk7MhcEwkXIXWhKx_BZ_RJPMMMbSUkXlhMaKGFzAdn_k7P-Qehc8YFZ5JQM1EVQiN8jwci8XgkeeKLWMLDZFvcx-1udNsjvcWy7K66JON18bayruQ_VGEfcDVVsn8gm58UdsBz4AstEIb2V4yb8OeEy1A14kOVZy2YcUnWjKX3yKS61IyNhq1PrLGn0guuALMm5zkcSwl-ea5n2VrCaFQ73XAHJ5jM8rjpUj_z2Ro1Y9p6EzxmSrPxpLj_A5xHbl1m62BQnnYIiEmPsrXti1AaEi_1fRvvlI2eEYUhj_q9lbHZer1OB3Xiu8D_zf16aVTKcwWtr3LQnw765sB1tBFQau_IPxROYYS61Xndt7L10ebAS_eJJeFRUhCdbbTlpD--thx30Joa76Jq0ZWv-AI3h4bVfGsPtYAvXvD9fP-Yk8U5QFyQxUAWL5PFluzVPuq2bjrNtufWvfAEqLXMi-EynIZCgRgXVOkk0akp_9Us4IIwENyS8EaSKkqZBo0jZBpJLUkoQqlDUCLhAaqMJ2N1iLBWUUQkDwnIsqhBG2lC4jTWsc-TRAnWqCK86JT-s7U36S91-NHPbzlGm8VP5ARVstmLOgWtlvGzOaUvMDlE3A |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+ensemble%E2%80%90based+parameter+estimation+aid+parameterization+design%3F&rft.jtitle=Quarterly+journal+of+the+Royal+Meteorological+Society&rft.au=Serafin%2C+Stefano&rft.au=Weissmann%2C+Martin&rft.date=2025-06-26&rft.issn=0035-9009&rft.eissn=1477-870X&rft_id=info:doi/10.1002%2Fqj.5031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qj_5031 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9009&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9009&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9009&client=summon |