Higher-Order Wave Equation Within the Duffin–Kemmer–Petiau Formalism
Within the framework of the Duffin–Kemmer–Petiau (DKP) formalism a consistent approach to derivation of the third-order wave equation is suggested. For this purpose, an additional algebraic object, the so-called q -commutator ( q is a primitive cubic root of unity) and a new set of matrices η μ inst...
Saved in:
Published in | Russian physics journal Vol. 59; no. 11; pp. 1948 - 1955 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2017
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Within the framework of the Duffin–Kemmer–Petiau (DKP) formalism a consistent approach to derivation of the third-order wave equation is suggested. For this purpose, an additional algebraic object, the so-called
q
-commutator (
q
is a primitive cubic root of unity) and a new set of matrices η
μ
instead of the original matrices β
μ
of the DKP algebra are introduced. It is shown that in terms of these η-matrices, we have succeeded to reduce the procedure of the construction of cubic root of the third-order wave operator to a few simple algebraic transformations and to a certain operation of passage to the limit
z
→
q
, where
z
is some complex deformation parameter entering into the definition of the η
μ
-matrices. A corresponding generalization of the result obtained to the case of interaction with an external electromagnetic field introduced through the minimal coupling scheme is performed. The application to the problem of construction within the DKP approach of the path integral representation in parasuperspace for the propagator of a massive vector particle in a background gauge field is discussed. |
---|---|
AbstractList | Within the framework of the Duffin–Kemmer–Petiau (DKP) formalism a consistent approach to derivation of the third-order wave equation is suggested. For this purpose, an additional algebraic object, the so-called
q
-commutator (
q
is a primitive cubic root of unity) and a new set of matrices η
μ
instead of the original matrices β
μ
of the DKP algebra are introduced. It is shown that in terms of these η-matrices, we have succeeded to reduce the procedure of the construction of cubic root of the third-order wave operator to a few simple algebraic transformations and to a certain operation of passage to the limit
z
→
q
, where
z
is some complex deformation parameter entering into the definition of the η
μ
-matrices. A corresponding generalization of the result obtained to the case of interaction with an external electromagnetic field introduced through the minimal coupling scheme is performed. The application to the problem of construction within the DKP approach of the path integral representation in parasuperspace for the propagator of a massive vector particle in a background gauge field is discussed. Within the framework of the Duffin-Kemmer-Petiau (DKP) formalism a consistent approach to derivation of the third-order wave equation is suggested. For this purpose, an additional algebraic object, the so-called q-commutator (q is a primitive cubic root of unity) and a new set of matrices [[eta].sub.[mu]] instead of the original matrices [[beta].sub.[mu]] of the DKP algebra are introduced. It is shown that in terms of these [eta]-matrices, we have succeeded to reduce the procedure of the construction of cubic root of the third-order wave operator to a few simple algebraic transformations and to a certain operation of passage to the limit z [right arrow] q, where z is some complex deformation parameter entering into the definition of the [[eta].sub.[mu]]-matrices. A corresponding generalization of the result obtained to the case of interaction with an external electromagnetic field introduced through the minimal coupling scheme is performed. The application to the problem of construction within the DKP approach of the path integral representation in parasuperspace for the propagator of a massive vector particle in a background gauge field is discussed. Keywords: Duffin-Kemmer-Petiau theory, third-order wave equation, deformation, Fock-Schwinger propertime representation Within the framework of the Duffin–Kemmer–Petiau (DKP) formalism a consistent approach to derivation of the third-order wave equation is suggested. For this purpose, an additional algebraic object, the so-called q-commutator (q is a primitive cubic root of unity) and a new set of matrices ημ instead of the original matrices βμ of the DKP algebra are introduced. It is shown that in terms of these η-matrices, we have succeeded to reduce the procedure of the construction of cubic root of the third-order wave operator to a few simple algebraic transformations and to a certain operation of passage to the limit z → q, where z is some complex deformation parameter entering into the definition of the ημ-matrices. A corresponding generalization of the result obtained to the case of interaction with an external electromagnetic field introduced through the minimal coupling scheme is performed. The application to the problem of construction within the DKP approach of the path integral representation in parasuperspace for the propagator of a massive vector particle in a background gauge field is discussed. |
Audience | Academic |
Author | Bondarenko, A. I. Markova, M. A. Markov, Yu. A. |
Author_xml | – sequence: 1 givenname: Yu. A. surname: Markov fullname: Markov, Yu. A. email: markov@icc.ru organization: V. M. Matrosov Institute for System Dynamics and Control Theory of the Siberian Branch of the Russian Academy of Sciences – sequence: 2 givenname: M. A. surname: Markova fullname: Markova, M. A. organization: V. M. Matrosov Institute for System Dynamics and Control Theory of the Siberian Branch of the Russian Academy of Sciences – sequence: 3 givenname: A. I. surname: Bondarenko fullname: Bondarenko, A. I. organization: V. M. Matrosov Institute for System Dynamics and Control Theory of the Siberian Branch of the Russian Academy of Sciences |
BookMark | eNp1kEtOwzAQhi1UJNrCAdhFYu3iRxI7y6q0FFGpLEBdWo4zaV01SWsnSOy4AzfkJLgKCzZoFvPQ_82M_hEa1E0NCN1SMqGEiHtPKZUMEypw6AnmF2hIE8FxxpgchJqkMZZSiis08n5PSFClYoiWS7vdgcNrV4CLNvodovmp061t6mhj252to3YH0UNXlrb-_vx6hqoCF4oXaK3uokXjKn2wvrpGl6U-eLj5zWP0tpi_zpZ4tX58mk1X2DDGONZpEXNJTCIMB5GnFASTGZMmM5DGtIS0TLKcmlgkusghY0IDTfKCpJwUDAo-Rnf93qNrTh34Vu2bztXhpKJSsiQjVIqgmvSqrT6AsnXZtE6bEAVU1gTrShvm0ziTnAqSkgDQHjCu8d5BqY7OVtp9KErU2WHVO6yCw-eeKB4Y1jM-aOstuD-v_Av9AI2agGA |
Cites_doi | 10.1063/1.529922 10.1016/S0029-5582(56)80047-3 10.1016/0029-5582(63)90865-4 10.1073/pnas.29.5.135 10.1098/rspa.1939.0131 10.1103/PhysRev.71.793 10.1103/PhysRev.54.1114 10.1007/BF02724855 10.1016/S0375-9601(98)00365-X 10.1016/S0370-2693(00)00190-8 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2017 COPYRIGHT 2017 Springer Copyright Springer Science & Business Media 2017 |
Copyright_xml | – notice: Springer Science+Business Media New York 2017 – notice: COPYRIGHT 2017 Springer – notice: Copyright Springer Science & Business Media 2017 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11182-017-1000-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1573-9228 |
EndPage | 1955 |
ExternalDocumentID | A498317060 10_1007_s11182_017_1000_3 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 1SB 28- 29P 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADJSZ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYGD AFEXP AFGCZ AFGFF AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IGS IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9T PF0 PT4 PT5 QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~A9 ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION AAYZH |
ID | FETCH-LOGICAL-c2223-a6d4380c57c3e7b61e728928c9ce641fe6f59b1c475adbe927ae15bd0630d2ed3 |
IEDL.DBID | AGYKE |
ISSN | 1064-8887 |
IngestDate | Thu Oct 10 17:35:15 EDT 2024 Tue Nov 12 22:47:55 EST 2024 Thu Sep 12 17:58:17 EDT 2024 Sat Dec 16 12:01:43 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | deformation Duffin–Kemmer–Petiau theory third-order wave equation Fock–Schwinger proper-time representation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2223-a6d4380c57c3e7b61e728928c9ce641fe6f59b1c475adbe927ae15bd0630d2ed3 |
PQID | 1882590187 |
PQPubID | 2043529 |
PageCount | 8 |
ParticipantIDs | proquest_journals_1882590187 gale_infotracacademiconefile_A498317060 crossref_primary_10_1007_s11182_017_1000_3 springer_journals_10_1007_s11182_017_1000_3 |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Russian physics journal |
PublicationTitleAbbrev | Russ Phys J |
PublicationYear | 2017 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | DuffinRJPhys. Rev.19385411141938PhRv...54.1114D10.1103/PhysRev.54.1114 FradkinESGitmanDMPhys. Rev.1991D4432301991PhRvD..44.3230F E. Schrödinger, Proc. Roy. Irish. Acad., A48, 135 (1943); ibid., A49, 29 (1943). UmezawaHViscontiANucl. Phys.1956B134810.1016/S0029-5582(56)80047-3 Harish-Chandra, Proc. Roy. Soc., A186, 502 (1946); Proc. Camb. Phil. Soc., 43, 414 (1947); Phys. Rev., 71, 793 (1947). RyanCSudarshanECGNucl. Phys.19634720710.1016/0029-5582(63)90865-4 ChernikovNAActa Physica Polonica19622151 KemmerNProc. R. Soc.1939A173911939RSPSA.173...91K57110.1098/rspa.1939.0131 NowakowskiMPhys. Lett.1998A2443291998PhLA..244..329N10.1016/S0375-9601(98)00365-X M. Omote and S. Kamefuchi, Lett. Nuovo Cimento, 24, 345 (1979); Y. Ohnuki and S. Kamefuchi, J. Math. Phys., 21, 609 (1980). PlyushchayMSRausch de TraubenbergMPhys. Lett.2000B4772762000PhLB..477..276P10.1016/S0370-2693(00)00190-8 R. Kerner, J. Math. Phys., 33, 403 (1992); Class. Quant. Grav., 9, 137 (1992). D. V. Volkov, Soviet Phys. JETP, 9, 1107 (1959); ibid. 11, 375 (1960). M Nowakowski (1000_CR1) 1998; A244 H Umezawa (1000_CR3) 1956; B1 NA Chernikov (1000_CR12) 1962; 21 ES Fradkin (1000_CR5) 1991; D44 RJ Duffin (1000_CR4) 1938; 54 MS Plyushchay (1000_CR7) 2000; B477 1000_CR11 1000_CR10 1000_CR8 C Ryan (1000_CR13) 1963; 47 N Kemmer (1000_CR2) 1939; A173 1000_CR9 1000_CR6 |
References_xml | – ident: 1000_CR6 doi: 10.1063/1.529922 – volume: 21 start-page: 51 year: 1962 ident: 1000_CR12 publication-title: Acta Physica Polonica contributor: fullname: NA Chernikov – volume: B1 start-page: 348 year: 1956 ident: 1000_CR3 publication-title: Nucl. Phys. doi: 10.1016/S0029-5582(56)80047-3 contributor: fullname: H Umezawa – volume: 47 start-page: 207 year: 1963 ident: 1000_CR13 publication-title: Nucl. Phys. doi: 10.1016/0029-5582(63)90865-4 contributor: fullname: C Ryan – ident: 1000_CR11 – ident: 1000_CR8 doi: 10.1073/pnas.29.5.135 – volume: A173 start-page: 91 year: 1939 ident: 1000_CR2 publication-title: Proc. R. Soc. doi: 10.1098/rspa.1939.0131 contributor: fullname: N Kemmer – ident: 1000_CR9 doi: 10.1103/PhysRev.71.793 – volume: 54 start-page: 1114 year: 1938 ident: 1000_CR4 publication-title: Phys. Rev. doi: 10.1103/PhysRev.54.1114 contributor: fullname: RJ Duffin – ident: 1000_CR10 doi: 10.1007/BF02724855 – volume: A244 start-page: 329 year: 1998 ident: 1000_CR1 publication-title: Phys. Lett. doi: 10.1016/S0375-9601(98)00365-X contributor: fullname: M Nowakowski – volume: B477 start-page: 276 year: 2000 ident: 1000_CR7 publication-title: Phys. Lett. doi: 10.1016/S0370-2693(00)00190-8 contributor: fullname: MS Plyushchay – volume: D44 start-page: 3230 year: 1991 ident: 1000_CR5 publication-title: Phys. Rev. contributor: fullname: ES Fradkin |
SSID | ssj0010067 |
Score | 2.0490808 |
Snippet | Within the framework of the Duffin–Kemmer–Petiau (DKP) formalism a consistent approach to derivation of the third-order wave equation is suggested. For this... Within the framework of the Duffin-Kemmer-Petiau (DKP) formalism a consistent approach to derivation of the third-order wave equation is suggested. For this... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1948 |
SubjectTerms | Algebra Condensed Matter Physics Deformation Electromagnetic fields Formalism Hadrons Heavy Ions Lasers Mathematical and Computational Physics Matrices (mathematics) Nuclear Physics Operators (mathematics) Optical Devices Optics Photonics Physics Physics and Astronomy Theoretical Transformations (mathematics) Wave equations |
Title | Higher-Order Wave Equation Within the Duffin–Kemmer–Petiau Formalism |
URI | https://link.springer.com/article/10.1007/s11182-017-1000-3 https://www.proquest.com/docview/1882590187 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB11ERIXdkShVDkgIYFcNaubYwUtFRXLgarlFNmOI6JCgDblwIl_4A_5EjxZKFA49JYoUazM2DPPszwDHFDDaOCB28R3myaxfE4Js7kgDRG4gXK4Uk_6Ky4unW7fOh_awwIYX6GLaFTPM5KJoZ71uiEUJmhUMSRNzCKUs77Tcuvsttf-yh2gAU5ynI5F1P6O5rnMvz7ywxv9tslzydHE53RW0z7ASUJViKUmo_o05nXxOk_kuMDvrMFKBkG1Vjpn1qEgow1YSkpBxWQTumnpB7lCUk5twF6k1n5OCcG1QRjfhZGmQKN2Og2CMPp4e-9JjH2ri2uprMVU6yAKvg8nD1vQ77RvTrokO2-BCEQJhDk-8s8LmwpTUu7okqrtmNEUrpCOpQfSCWyX68KiNvO5dA3KpG5zH2m7fEP65jaUosdI7oAmFdBg1OEB4whRLC6RC4xR26LMZQ6rwFEud-8ppdXwZgTKKBpPiQbvG55ZgUPUjIdLLh4zwbLOATUUkld5LUvNs4QGqALVXHlethYnnq42Edhh26QVOM6V8e3xf8PuLvT2HiwbqM2kPK0KpXg8lfsKr8S8lk3QGhT7RusTaLDgxw |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BEYILYhWBAjkgIYEsNaubYwWtCl3g0Kq9WbbjiEoQoEk58w_8IV-CJwtlPXBLlCiWXsYzz56ZZ4Bjats1PHCbhEHdIW4oKOGekKQmoyDSAVdZWX9Fr--3h-7V2BsXfdxJWe1epiQzTz1vdkMuTNCr4p40cRZhCeXVUTB_aDc-Ugfof7MUp-8SvbyjZSrzt098CUbfXfKP3GgWclrrsFZwRbOR_9wNWFDxJixnNZsy2YJ2XqNBrlE90xzxZ2U2n3LlbnM0SW8nsanZnXkxi6JJ_Pby2lG4Sa0vbpSe1jOzhXT1bpLcb8Ow1Ryct0lxMAKRGM4J90MUipcelY6iwrcU1esmuy4DqXzXipQfeYGwpEs9HgoV2JQryxMh6muFtgqdHajED7HaBVNpRsCpLyIukEu4QqFoF6eeS3nAfW7AaYkQe8z1L9hc6RjhZBpOvK8xx4ATxJDh3EinXPKixF8PhSpTrOFqg8j0egyoljCzYtIkzNJsH1th69SAsxL6T4__GnbvX28fwUp70Ouy7mW_sw-rNlpDVlNWhUo6nakDTTJScZgZ1TtaOccC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BEYgLO6KsOSAhgUybxImbYwUthbIdQMDJ2I4jKiAsTTlw4h_4Q74ETxZ2DohbokRx7LFnnj0zbwCWmeNUseA2CYOaS2goGRGeVKSqoiAyBlfbaX7F3r7fOqY7p95pXue0W0S7Fy7JLKcBWZripHIbRpX3xDfExQQ1LJ5PE7cfBigSI5VgoL511m68ORJQG6cOT58Ss9ljhWPzp498Mk1fFfQ3T2lqgJqjcF78ehZ3crneS-S6evzC6viPvo3BSA5OrXo2m8ahT8cTMJgGiaruJLSyoBBygHSd1ol40FbjLqMKt046yUUntgyctDZ7UdSJX56e2xpPxc3FoTZ6pGc1ER9fdbrXU3DcbBxttEheiYEoxA9E-CEy0yuPKVcz6duamY2aU1OB0j61I-1HXiBtRZknQqkDhwltezJEQq_Q0aE7DaX4JtYzYGkDQQTzZSQkghcqNbKECeZRJgLhizKsFkLgtxnhBn-nVsah4WZo8L7K3TKsoJg4LsbkXiiR5xSYppDWitepmYEpQVAZ5gtJ8nyVdrlttheYe1tjZVgrBPPh8W_Nzv7p7SUYOtxs8t3t_fYcDDso2DSGbR5KyX1PLxhQk8jFfOK-Avka7JY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higher-Order+Wave+Equation+Within+the+Duffin%E2%80%93Kemmer%E2%80%93Petiau+Formalism&rft.jtitle=Russian+physics+journal&rft.au=Markov%2C+Yu.+A.&rft.au=Markova%2C+M.+A.&rft.au=Bondarenko%2C+A.+I.&rft.date=2017-03-01&rft.pub=Springer+US&rft.issn=1064-8887&rft.eissn=1573-9228&rft.volume=59&rft.issue=11&rft.spage=1948&rft.epage=1955&rft_id=info:doi/10.1007%2Fs11182-017-1000-3&rft.externalDocID=10_1007_s11182_017_1000_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-8887&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-8887&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-8887&client=summon |