Higher-Order Wave Equation Within the Duffin–Kemmer–Petiau Formalism

Within the framework of the Duffin–Kemmer–Petiau (DKP) formalism a consistent approach to derivation of the third-order wave equation is suggested. For this purpose, an additional algebraic object, the so-called q -commutator ( q is a primitive cubic root of unity) and a new set of matrices η μ inst...

Full description

Saved in:
Bibliographic Details
Published inRussian physics journal Vol. 59; no. 11; pp. 1948 - 1955
Main Authors Markov, Yu. A., Markova, M. A., Bondarenko, A. I.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2017
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Within the framework of the Duffin–Kemmer–Petiau (DKP) formalism a consistent approach to derivation of the third-order wave equation is suggested. For this purpose, an additional algebraic object, the so-called q -commutator ( q is a primitive cubic root of unity) and a new set of matrices η μ instead of the original matrices β μ of the DKP algebra are introduced. It is shown that in terms of these η-matrices, we have succeeded to reduce the procedure of the construction of cubic root of the third-order wave operator to a few simple algebraic transformations and to a certain operation of passage to the limit z → q , where z is some complex deformation parameter entering into the definition of the η μ -matrices. A corresponding generalization of the result obtained to the case of interaction with an external electromagnetic field introduced through the minimal coupling scheme is performed. The application to the problem of construction within the DKP approach of the path integral representation in parasuperspace for the propagator of a massive vector particle in a background gauge field is discussed.
AbstractList Within the framework of the Duffin–Kemmer–Petiau (DKP) formalism a consistent approach to derivation of the third-order wave equation is suggested. For this purpose, an additional algebraic object, the so-called q -commutator ( q is a primitive cubic root of unity) and a new set of matrices η μ instead of the original matrices β μ of the DKP algebra are introduced. It is shown that in terms of these η-matrices, we have succeeded to reduce the procedure of the construction of cubic root of the third-order wave operator to a few simple algebraic transformations and to a certain operation of passage to the limit z → q , where z is some complex deformation parameter entering into the definition of the η μ -matrices. A corresponding generalization of the result obtained to the case of interaction with an external electromagnetic field introduced through the minimal coupling scheme is performed. The application to the problem of construction within the DKP approach of the path integral representation in parasuperspace for the propagator of a massive vector particle in a background gauge field is discussed.
Within the framework of the Duffin-Kemmer-Petiau (DKP) formalism a consistent approach to derivation of the third-order wave equation is suggested. For this purpose, an additional algebraic object, the so-called q-commutator (q is a primitive cubic root of unity) and a new set of matrices [[eta].sub.[mu]] instead of the original matrices [[beta].sub.[mu]] of the DKP algebra are introduced. It is shown that in terms of these [eta]-matrices, we have succeeded to reduce the procedure of the construction of cubic root of the third-order wave operator to a few simple algebraic transformations and to a certain operation of passage to the limit z [right arrow] q, where z is some complex deformation parameter entering into the definition of the [[eta].sub.[mu]]-matrices. A corresponding generalization of the result obtained to the case of interaction with an external electromagnetic field introduced through the minimal coupling scheme is performed. The application to the problem of construction within the DKP approach of the path integral representation in parasuperspace for the propagator of a massive vector particle in a background gauge field is discussed. Keywords: Duffin-Kemmer-Petiau theory, third-order wave equation, deformation, Fock-Schwinger propertime representation
Within the framework of the Duffin–Kemmer–Petiau (DKP) formalism a consistent approach to derivation of the third-order wave equation is suggested. For this purpose, an additional algebraic object, the so-called q-commutator (q is a primitive cubic root of unity) and a new set of matrices ημ instead of the original matrices βμ of the DKP algebra are introduced. It is shown that in terms of these η-matrices, we have succeeded to reduce the procedure of the construction of cubic root of the third-order wave operator to a few simple algebraic transformations and to a certain operation of passage to the limit z → q, where z is some complex deformation parameter entering into the definition of the ημ-matrices. A corresponding generalization of the result obtained to the case of interaction with an external electromagnetic field introduced through the minimal coupling scheme is performed. The application to the problem of construction within the DKP approach of the path integral representation in parasuperspace for the propagator of a massive vector particle in a background gauge field is discussed.
Audience Academic
Author Bondarenko, A. I.
Markova, M. A.
Markov, Yu. A.
Author_xml – sequence: 1
  givenname: Yu. A.
  surname: Markov
  fullname: Markov, Yu. A.
  email: markov@icc.ru
  organization: V. M. Matrosov Institute for System Dynamics and Control Theory of the Siberian Branch of the Russian Academy of Sciences
– sequence: 2
  givenname: M. A.
  surname: Markova
  fullname: Markova, M. A.
  organization: V. M. Matrosov Institute for System Dynamics and Control Theory of the Siberian Branch of the Russian Academy of Sciences
– sequence: 3
  givenname: A. I.
  surname: Bondarenko
  fullname: Bondarenko, A. I.
  organization: V. M. Matrosov Institute for System Dynamics and Control Theory of the Siberian Branch of the Russian Academy of Sciences
BookMark eNp1kEtOwzAQhi1UJNrCAdhFYu3iRxI7y6q0FFGpLEBdWo4zaV01SWsnSOy4AzfkJLgKCzZoFvPQ_82M_hEa1E0NCN1SMqGEiHtPKZUMEypw6AnmF2hIE8FxxpgchJqkMZZSiis08n5PSFClYoiWS7vdgcNrV4CLNvodovmp061t6mhj252to3YH0UNXlrb-_vx6hqoCF4oXaK3uokXjKn2wvrpGl6U-eLj5zWP0tpi_zpZ4tX58mk1X2DDGONZpEXNJTCIMB5GnFASTGZMmM5DGtIS0TLKcmlgkusghY0IDTfKCpJwUDAo-Rnf93qNrTh34Vu2bztXhpKJSsiQjVIqgmvSqrT6AsnXZtE6bEAVU1gTrShvm0ziTnAqSkgDQHjCu8d5BqY7OVtp9KErU2WHVO6yCw-eeKB4Y1jM-aOstuD-v_Av9AI2agGA
Cites_doi 10.1063/1.529922
10.1016/S0029-5582(56)80047-3
10.1016/0029-5582(63)90865-4
10.1073/pnas.29.5.135
10.1098/rspa.1939.0131
10.1103/PhysRev.71.793
10.1103/PhysRev.54.1114
10.1007/BF02724855
10.1016/S0375-9601(98)00365-X
10.1016/S0370-2693(00)00190-8
ContentType Journal Article
Copyright Springer Science+Business Media New York 2017
COPYRIGHT 2017 Springer
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Springer Science+Business Media New York 2017
– notice: COPYRIGHT 2017 Springer
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
DOI 10.1007/s11182-017-1000-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1573-9228
EndPage 1955
ExternalDocumentID A498317060
10_1007_s11182_017_1000_3
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
1N0
1SB
28-
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADJSZ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYGD
AFEXP
AFGCZ
AFGFF
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IGS
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9T
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
AAYZH
ID FETCH-LOGICAL-c2223-a6d4380c57c3e7b61e728928c9ce641fe6f59b1c475adbe927ae15bd0630d2ed3
IEDL.DBID AGYKE
ISSN 1064-8887
IngestDate Thu Oct 10 17:35:15 EDT 2024
Tue Nov 12 22:47:55 EST 2024
Thu Sep 12 17:58:17 EDT 2024
Sat Dec 16 12:01:43 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords deformation
Duffin–Kemmer–Petiau theory
third-order wave equation
Fock–Schwinger proper-time representation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2223-a6d4380c57c3e7b61e728928c9ce641fe6f59b1c475adbe927ae15bd0630d2ed3
PQID 1882590187
PQPubID 2043529
PageCount 8
ParticipantIDs proquest_journals_1882590187
gale_infotracacademiconefile_A498317060
crossref_primary_10_1007_s11182_017_1000_3
springer_journals_10_1007_s11182_017_1000_3
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Russian physics journal
PublicationTitleAbbrev Russ Phys J
PublicationYear 2017
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References DuffinRJPhys. Rev.19385411141938PhRv...54.1114D10.1103/PhysRev.54.1114
FradkinESGitmanDMPhys. Rev.1991D4432301991PhRvD..44.3230F
E. Schrödinger, Proc. Roy. Irish. Acad., A48, 135 (1943); ibid., A49, 29 (1943).
UmezawaHViscontiANucl. Phys.1956B134810.1016/S0029-5582(56)80047-3
Harish-Chandra, Proc. Roy. Soc., A186, 502 (1946); Proc. Camb. Phil. Soc., 43, 414 (1947); Phys. Rev., 71, 793 (1947).
RyanCSudarshanECGNucl. Phys.19634720710.1016/0029-5582(63)90865-4
ChernikovNAActa Physica Polonica19622151
KemmerNProc. R. Soc.1939A173911939RSPSA.173...91K57110.1098/rspa.1939.0131
NowakowskiMPhys. Lett.1998A2443291998PhLA..244..329N10.1016/S0375-9601(98)00365-X
M. Omote and S. Kamefuchi, Lett. Nuovo Cimento, 24, 345 (1979); Y. Ohnuki and S. Kamefuchi, J. Math. Phys., 21, 609 (1980).
PlyushchayMSRausch de TraubenbergMPhys. Lett.2000B4772762000PhLB..477..276P10.1016/S0370-2693(00)00190-8
R. Kerner, J. Math. Phys., 33, 403 (1992); Class. Quant. Grav., 9, 137 (1992).
D. V. Volkov, Soviet Phys. JETP, 9, 1107 (1959); ibid. 11, 375 (1960).
M Nowakowski (1000_CR1) 1998; A244
H Umezawa (1000_CR3) 1956; B1
NA Chernikov (1000_CR12) 1962; 21
ES Fradkin (1000_CR5) 1991; D44
RJ Duffin (1000_CR4) 1938; 54
MS Plyushchay (1000_CR7) 2000; B477
1000_CR11
1000_CR10
1000_CR8
C Ryan (1000_CR13) 1963; 47
N Kemmer (1000_CR2) 1939; A173
1000_CR9
1000_CR6
References_xml – ident: 1000_CR6
  doi: 10.1063/1.529922
– volume: 21
  start-page: 51
  year: 1962
  ident: 1000_CR12
  publication-title: Acta Physica Polonica
  contributor:
    fullname: NA Chernikov
– volume: B1
  start-page: 348
  year: 1956
  ident: 1000_CR3
  publication-title: Nucl. Phys.
  doi: 10.1016/S0029-5582(56)80047-3
  contributor:
    fullname: H Umezawa
– volume: 47
  start-page: 207
  year: 1963
  ident: 1000_CR13
  publication-title: Nucl. Phys.
  doi: 10.1016/0029-5582(63)90865-4
  contributor:
    fullname: C Ryan
– ident: 1000_CR11
– ident: 1000_CR8
  doi: 10.1073/pnas.29.5.135
– volume: A173
  start-page: 91
  year: 1939
  ident: 1000_CR2
  publication-title: Proc. R. Soc.
  doi: 10.1098/rspa.1939.0131
  contributor:
    fullname: N Kemmer
– ident: 1000_CR9
  doi: 10.1103/PhysRev.71.793
– volume: 54
  start-page: 1114
  year: 1938
  ident: 1000_CR4
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.54.1114
  contributor:
    fullname: RJ Duffin
– ident: 1000_CR10
  doi: 10.1007/BF02724855
– volume: A244
  start-page: 329
  year: 1998
  ident: 1000_CR1
  publication-title: Phys. Lett.
  doi: 10.1016/S0375-9601(98)00365-X
  contributor:
    fullname: M Nowakowski
– volume: B477
  start-page: 276
  year: 2000
  ident: 1000_CR7
  publication-title: Phys. Lett.
  doi: 10.1016/S0370-2693(00)00190-8
  contributor:
    fullname: MS Plyushchay
– volume: D44
  start-page: 3230
  year: 1991
  ident: 1000_CR5
  publication-title: Phys. Rev.
  contributor:
    fullname: ES Fradkin
SSID ssj0010067
Score 2.0490808
Snippet Within the framework of the Duffin–Kemmer–Petiau (DKP) formalism a consistent approach to derivation of the third-order wave equation is suggested. For this...
Within the framework of the Duffin-Kemmer-Petiau (DKP) formalism a consistent approach to derivation of the third-order wave equation is suggested. For this...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1948
SubjectTerms Algebra
Condensed Matter Physics
Deformation
Electromagnetic fields
Formalism
Hadrons
Heavy Ions
Lasers
Mathematical and Computational Physics
Matrices (mathematics)
Nuclear Physics
Operators (mathematics)
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Theoretical
Transformations (mathematics)
Wave equations
Title Higher-Order Wave Equation Within the Duffin–Kemmer–Petiau Formalism
URI https://link.springer.com/article/10.1007/s11182-017-1000-3
https://www.proquest.com/docview/1882590187
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB11ERIXdkShVDkgIYFcNaubYwUtFRXLgarlFNmOI6JCgDblwIl_4A_5EjxZKFA49JYoUazM2DPPszwDHFDDaOCB28R3myaxfE4Js7kgDRG4gXK4Uk_6Ky4unW7fOh_awwIYX6GLaFTPM5KJoZ71uiEUJmhUMSRNzCKUs77Tcuvsttf-yh2gAU5ynI5F1P6O5rnMvz7ywxv9tslzydHE53RW0z7ASUJViKUmo_o05nXxOk_kuMDvrMFKBkG1Vjpn1qEgow1YSkpBxWQTumnpB7lCUk5twF6k1n5OCcG1QRjfhZGmQKN2Og2CMPp4e-9JjH2ri2uprMVU6yAKvg8nD1vQ77RvTrokO2-BCEQJhDk-8s8LmwpTUu7okqrtmNEUrpCOpQfSCWyX68KiNvO5dA3KpG5zH2m7fEP65jaUosdI7oAmFdBg1OEB4whRLC6RC4xR26LMZQ6rwFEud-8ppdXwZgTKKBpPiQbvG55ZgUPUjIdLLh4zwbLOATUUkld5LUvNs4QGqALVXHlethYnnq42Edhh26QVOM6V8e3xf8PuLvT2HiwbqM2kPK0KpXg8lfsKr8S8lk3QGhT7RusTaLDgxw
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BEYILYhWBAjkgIYEsNaubYwWtCl3g0Kq9WbbjiEoQoEk58w_8IV-CJwtlPXBLlCiWXsYzz56ZZ4Bjats1PHCbhEHdIW4oKOGekKQmoyDSAVdZWX9Fr--3h-7V2BsXfdxJWe1epiQzTz1vdkMuTNCr4p40cRZhCeXVUTB_aDc-Ugfof7MUp-8SvbyjZSrzt098CUbfXfKP3GgWclrrsFZwRbOR_9wNWFDxJixnNZsy2YJ2XqNBrlE90xzxZ2U2n3LlbnM0SW8nsanZnXkxi6JJ_Pby2lG4Sa0vbpSe1jOzhXT1bpLcb8Ow1Ryct0lxMAKRGM4J90MUipcelY6iwrcU1esmuy4DqXzXipQfeYGwpEs9HgoV2JQryxMh6muFtgqdHajED7HaBVNpRsCpLyIukEu4QqFoF6eeS3nAfW7AaYkQe8z1L9hc6RjhZBpOvK8xx4ATxJDh3EinXPKixF8PhSpTrOFqg8j0egyoljCzYtIkzNJsH1th69SAsxL6T4__GnbvX28fwUp70Ouy7mW_sw-rNlpDVlNWhUo6nakDTTJScZgZ1TtaOccC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BEYgLO6KsOSAhgUybxImbYwUthbIdQMDJ2I4jKiAsTTlw4h_4Q74ETxZ2DohbokRx7LFnnj0zbwCWmeNUseA2CYOaS2goGRGeVKSqoiAyBlfbaX7F3r7fOqY7p95pXue0W0S7Fy7JLKcBWZripHIbRpX3xDfExQQ1LJ5PE7cfBigSI5VgoL511m68ORJQG6cOT58Ss9ljhWPzp498Mk1fFfQ3T2lqgJqjcF78ehZ3crneS-S6evzC6viPvo3BSA5OrXo2m8ahT8cTMJgGiaruJLSyoBBygHSd1ol40FbjLqMKt046yUUntgyctDZ7UdSJX56e2xpPxc3FoTZ6pGc1ER9fdbrXU3DcbBxttEheiYEoxA9E-CEy0yuPKVcz6duamY2aU1OB0j61I-1HXiBtRZknQqkDhwltezJEQq_Q0aE7DaX4JtYzYGkDQQTzZSQkghcqNbKECeZRJgLhizKsFkLgtxnhBn-nVsah4WZo8L7K3TKsoJg4LsbkXiiR5xSYppDWitepmYEpQVAZ5gtJ8nyVdrlttheYe1tjZVgrBPPh8W_Nzv7p7SUYOtxs8t3t_fYcDDso2DSGbR5KyX1PLxhQk8jFfOK-Avka7JY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higher-Order+Wave+Equation+Within+the+Duffin%E2%80%93Kemmer%E2%80%93Petiau+Formalism&rft.jtitle=Russian+physics+journal&rft.au=Markov%2C+Yu.+A.&rft.au=Markova%2C+M.+A.&rft.au=Bondarenko%2C+A.+I.&rft.date=2017-03-01&rft.pub=Springer+US&rft.issn=1064-8887&rft.eissn=1573-9228&rft.volume=59&rft.issue=11&rft.spage=1948&rft.epage=1955&rft_id=info:doi/10.1007%2Fs11182-017-1000-3&rft.externalDocID=10_1007_s11182_017_1000_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-8887&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-8887&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-8887&client=summon