MANDALA—Visual Exploration of Anomalies in Industrial Multivariate Time Series Data

The detection, description and understanding of anomalies in multivariate time series data is an important task in several industrial domains. Automated data analysis provides many tools and algorithms to detect anomalies, while visual interfaces enable domain experts to explore and analyze data int...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 44; no. 1
Main Authors Suschnigg, J., Mutlu, B., Koutroulis, G., Hussain, H., Schreck, T.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The detection, description and understanding of anomalies in multivariate time series data is an important task in several industrial domains. Automated data analysis provides many tools and algorithms to detect anomalies, while visual interfaces enable domain experts to explore and analyze data interactively to gain insights using their expertise. Anomalies in multivariate time series can be diverse with respect to the dimensions, temporal occurrence and length within a dataset. Their detection and description depend on the analyst's domain, task and background knowledge. Therefore, anomaly analysis is often an underspecified problem. We propose a visual analytics tool called MANDALA (Multivariate ANomaly Detection And expLorAtion), which uses kernel density estimation to detect anomalies and provides users with visual means to explore and explain them. To assess our algorithm's effectiveness, we evaluate its ability to identify different types of anomalies using a synthetic dataset generated with the GutenTAG anomaly and time series generator. Our approach allows users to define normal data interactively first. Next, they can explore anomaly candidates, their related dimensions and their temporal scope. Our carefully designed visual analytics components include a tailored scatterplot matrix with semantic zooming features that visualize normal data through hexagonal binning plots and overlay candidate anomaly data as scatterplots. In addition, the system supports the analysis on a broader scope involving all dimensions simultaneously or on a smaller scope involving dimension pairs only. We define a taxonomy of important types of anomaly patterns, which can guide the interactive analysis process. The effectiveness of our system is demonstrated through a use case scenario on industrial data conducted with domain experts from the automotive domain and a user study utilizing a public dataset from the aviation domain. MANDALA is a visual analytics tool that integrates kernel density estimation with interactive visualizations, enabling domain experts to detect and explore anomalies in industrial multivariate time series. Its effectiveness is demonstrated through a user study and a real‐world automotive use case scenario.
AbstractList The detection, description and understanding of anomalies in multivariate time series data is an important task in several industrial domains. Automated data analysis provides many tools and algorithms to detect anomalies, while visual interfaces enable domain experts to explore and analyze data interactively to gain insights using their expertise. Anomalies in multivariate time series can be diverse with respect to the dimensions, temporal occurrence and length within a dataset. Their detection and description depend on the analyst's domain, task and background knowledge. Therefore, anomaly analysis is often an underspecified problem. We propose a visual analytics tool called MANDALA (Multivariate ANomaly Detection And expLorAtion), which uses kernel density estimation to detect anomalies and provides users with visual means to explore and explain them. To assess our algorithm's effectiveness, we evaluate its ability to identify different types of anomalies using a synthetic dataset generated with the GutenTAG anomaly and time series generator. Our approach allows users to define normal data interactively first. Next, they can explore anomaly candidates, their related dimensions and their temporal scope. Our carefully designed visual analytics components include a tailored scatterplot matrix with semantic zooming features that visualize normal data through hexagonal binning plots and overlay candidate anomaly data as scatterplots. In addition, the system supports the analysis on a broader scope involving all dimensions simultaneously or on a smaller scope involving dimension pairs only. We define a taxonomy of important types of anomaly patterns, which can guide the interactive analysis process. The effectiveness of our system is demonstrated through a use case scenario on industrial data conducted with domain experts from the automotive domain and a user study utilizing a public dataset from the aviation domain.
The detection, description and understanding of anomalies in multivariate time series data is an important task in several industrial domains. Automated data analysis provides many tools and algorithms to detect anomalies, while visual interfaces enable domain experts to explore and analyze data interactively to gain insights using their expertise. Anomalies in multivariate time series can be diverse with respect to the dimensions, temporal occurrence and length within a dataset. Their detection and description depend on the analyst's domain, task and background knowledge. Therefore, anomaly analysis is often an underspecified problem. We propose a visual analytics tool called MANDALA (Multivariate ANomaly Detection And expLorAtion), which uses kernel density estimation to detect anomalies and provides users with visual means to explore and explain them. To assess our algorithm's effectiveness, we evaluate its ability to identify different types of anomalies using a synthetic dataset generated with the GutenTAG anomaly and time series generator. Our approach allows users to define normal data interactively first. Next, they can explore anomaly candidates, their related dimensions and their temporal scope. Our carefully designed visual analytics components include a tailored scatterplot matrix with semantic zooming features that visualize normal data through hexagonal binning plots and overlay candidate anomaly data as scatterplots. In addition, the system supports the analysis on a broader scope involving all dimensions simultaneously or on a smaller scope involving dimension pairs only. We define a taxonomy of important types of anomaly patterns, which can guide the interactive analysis process. The effectiveness of our system is demonstrated through a use case scenario on industrial data conducted with domain experts from the automotive domain and a user study utilizing a public dataset from the aviation domain. MANDALA is a visual analytics tool that integrates kernel density estimation with interactive visualizations, enabling domain experts to detect and explore anomalies in industrial multivariate time series. Its effectiveness is demonstrated through a user study and a real‐world automotive use case scenario.
The detection, description and understanding of anomalies in multivariate time series data is an important task in several industrial domains. Automated data analysis provides many tools and algorithms to detect anomalies, while visual interfaces enable domain experts to explore and analyze data interactively to gain insights using their expertise. Anomalies in multivariate time series can be diverse with respect to the dimensions, temporal occurrence and length within a dataset. Their detection and description depend on the analyst's domain, task and background knowledge. Therefore, anomaly analysis is often an underspecified problem. We propose a visual analytics tool called MANDALA ( M ultivariate AN omaly D etection A nd exp L or A tion), which uses kernel density estimation to detect anomalies and provides users with visual means to explore and explain them. To assess our algorithm's effectiveness, we evaluate its ability to identify different types of anomalies using a synthetic dataset generated with the GutenTAG anomaly and time series generator. Our approach allows users to define normal data interactively first. Next, they can explore anomaly candidates, their related dimensions and their temporal scope. Our carefully designed visual analytics components include a tailored scatterplot matrix with semantic zooming features that visualize normal data through hexagonal binning plots and overlay candidate anomaly data as scatterplots. In addition, the system supports the analysis on a broader scope involving all dimensions simultaneously or on a smaller scope involving dimension pairs only. We define a taxonomy of important types of anomaly patterns, which can guide the interactive analysis process. The effectiveness of our system is demonstrated through a use case scenario on industrial data conducted with domain experts from the automotive domain and a user study utilizing a public dataset from the aviation domain.
Author Koutroulis, G.
Hussain, H.
Schreck, T.
Suschnigg, J.
Mutlu, B.
Author_xml – sequence: 1
  givenname: J.
  orcidid: 0000-0003-0854-2421
  surname: Suschnigg
  fullname: Suschnigg, J.
  email: josef.suschnigg@pro2future.at
  organization: Graz University of Technology
– sequence: 2
  givenname: B.
  surname: Mutlu
  fullname: Mutlu, B.
  email: belgin.mutlu@pro2future.at
  organization: Pro2Future GmbH
– sequence: 3
  givenname: G.
  surname: Koutroulis
  fullname: Koutroulis, G.
  email: georgios.koutroulis@avl.com
  organization: AVL List GmbH
– sequence: 4
  givenname: H.
  surname: Hussain
  fullname: Hussain, H.
  email: hussain@tugraz.at
  organization: Graz University of Technology
– sequence: 5
  givenname: T.
  surname: Schreck
  fullname: Schreck, T.
  email: tobias.schreck@tugraz.at
  organization: Graz University of Technology
BookMark eNp10LFOwzAQBmALFYm2MPAGlpgY0tqJHSdj1NJSqYWBltVyExu5Su1iJ0A3HoIn5ElwCSu33A3f3Un_APSMNRKAa4xGONS4fFEjhkKdgT4mKYuylOY90Ec4zAxRegEG3u8CICylfbBZFQ_TYll8f349a9-KGt59HGrrRKOtgVbBwti9qLX0UBu4MFXrG6cDW7V1o99EmBsJ13ov4ZN0JzYVjbgE50rUXl799SHYzO7Wk_to-ThfTIplVMZxjCIqBS6rFGNEE0JURhKS5UkVC4QUYhmtCBJUKhyzNC5TyWRSkjytRJyrLaXlNhmCm-7uwdnXVvqG72zrTHjJE8xwRnBOk6BuO1U6672Tih-c3gt35BjxU2o8pMZ_Uwt23Nl3Xcvj_5BP5rNu4wcLVW8n
Cites_doi 10.1109/INFVIS.2005.1532142
10.1109/TBDATA.2020.2964169
10.1051/itmconf/20182300037
10.3390/data6010005
10.24251/HICSS.2020.163
10.1007/s12650‐018‐0530‐2
10.14778/3554821.3554873
10.1109/TKDE.2013.184
10.1145/3444690
10.1016/S0166-4115(08)62386-9
10.1109/BigData.2017.8258090
10.1007/978-3-540-73499-4_6
10.1145/3512950
10.1109/ACCESS.2019.2923736
10.1057/ivs.2010.2
10.1145/2379690.2379701
10.1111/cgf.14286
10.1111/cgf.12397
10.1145/1518701.1518947
10.1109/PacificVis.2018.00026
10.1109/BigData.Congress.2014.19
10.1109/TVCG.2022.3165348
10.1109/TVCG.2013.65
10.1145/1541880.1541882
10.24251/HICSS.2021.179
10.1007/978-3-662-65004-2_18
10.1080/01621459.1987.10478445
10.1111/cgf.13717
10.1109/ISIE45552.2021.9576348
10.1016/j.procir.2019.02.098
10.1057/ivs.2009.23
10.9734/BJAST/2015/14975
10.1145/3468784.3471606
10.1109/BigData47090.2019.9006559
10.14778/3538598.3538602
10.1080/10618600.2018.1473781
10.1109/PACIFICVIS.2008.4475479
10.1109/2945.981847
10.1109/JIOT.2019.2958185
10.1007/978-3-642-02806-9_12
10.1109/TVCG.2019.2934613
10.1007/978-3-030-73100-7_60
10.1109/VAST.2014.7042484
10.1214/aoms/1177704472
10.1109/TVCG.2020.3028889
10.4108/trans.sis.2013.01‐03.e2
10.1016/j.bdr.2021.100251
10.1109/DAAC49578.2019.00006
10.1145/1835804.1835813
10.1080/24709360.2017.1396742
ContentType Journal Article
Copyright 2025 The Author(s). published by Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.
2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.
– notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.70000
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage n/a
ExternalDocumentID 10_1111_cgf_70000
CGF70000
Genre researchArticle
GrantInformation_xml – fundername: Österreichische Forschungsförderungsgesellschaft
  funderid: 881844
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
24P
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2220-5ea1cd61105344f8434893d2a00f0785d40a5ef12762c6e7e3c496da29fb55cb3
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Sat Aug 23 12:53:14 EDT 2025
Thu Jul 03 08:25:14 EDT 2025
Fri Feb 28 09:44:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2220-5ea1cd61105344f8434893d2a00f0785d40a5ef12762c6e7e3c496da29fb55cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0854-2421
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.70000
PQID 3171841953
PQPubID 30877
PageCount 17
ParticipantIDs proquest_journals_3171841953
crossref_primary_10_1111_cgf_70000
wiley_primary_10_1111_cgf_70000_CGF70000
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2025
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2019; 7
2021; 27
2021; 6
2021; 26
2009; 41
2017; 1
2013; 1
2012
2010
2019; 11
2019; 79
2002; 8
2009
2008
2014; 26
2019; 38
2007
2006
2005
2004
1988; 52
1962; 33
2018; 23
1996; 189
2015; 7
2018; 27
2022; 28
2013; 19
2020; 7
2021; 54
1987; 82
2023
2022
2021
2019; 22
2022; 6
2020
2022; 8
2019
2018
2020; 26
2009; 8
2017
2022; 15
2014
2021; 40
2014; 33
2010; 9
e_1_2_12_2_2
e_1_2_12_19_2
e_1_2_12_17_2
e_1_2_12_15_2
e_1_2_12_38_2
e_1_2_12_59_2
e_1_2_12_41_2
e_1_2_12_20_2
e_1_2_12_43_2
e_1_2_12_22_2
e_1_2_12_45_2
e_1_2_12_24_2
e_1_2_12_47_2
e_1_2_12_60_2
e_1_2_12_26_2
e_1_2_12_49_2
e_1_2_12_28_2
e_1_2_12_52_2
e_1_2_12_31_2
e_1_2_12_54_2
e_1_2_12_33_2
e_1_2_12_56_2
e_1_2_12_35_2
e_1_2_12_58_2
e_1_2_12_14_2
e_1_2_12_12_2
e_1_2_12_10_2
e_1_2_12_6_2
e_1_2_12_50_2
e_1_2_12_8_2
e_1_2_12_3_2
e_1_2_12_5_2
Brooke J. (e_1_2_12_4_2) 1996; 189
e_1_2_12_18_2
e_1_2_12_16_2
e_1_2_12_37_2
e_1_2_12_39_2
e_1_2_12_40_2
e_1_2_12_21_2
e_1_2_12_42_2
e_1_2_12_23_2
e_1_2_12_44_2
e_1_2_12_25_2
e_1_2_12_46_2
e_1_2_12_27_2
e_1_2_12_48_2
e_1_2_12_29_2
e_1_2_12_30_2
e_1_2_12_51_2
e_1_2_12_32_2
e_1_2_12_53_2
e_1_2_12_34_2
e_1_2_12_55_2
e_1_2_12_36_2
e_1_2_12_57_2
e_1_2_12_13_2
e_1_2_12_11_2
e_1_2_12_7_2
e_1_2_12_9_2
References_xml – volume: 1
  start-page: 161
  issue: 1
  year: 2017
  end-page: 187
  article-title: A tutorial on kernel density estimation and recent advances
  publication-title: Biostatistics & Epidemiology
– volume: 27
  start-page: 1601
  issue: 02
  year: 2021
  end-page: 1611
  article-title: A visual analytics framework for reviewing multivariate time‐series data with dimensionality reduction
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 26
  year: 2021
  article-title: Visual exploration of anomalies in cyclic time series data with matrix and glyph representations
  publication-title: Big Data Research
– volume: 22
  start-page: 419
  year: 2019
  end-page: 435
  article-title: A survey of visualization for smart manufacturing
  publication-title: Journal of Visualization
– start-page: 83
  year: 2014
  end-page: 92
  article-title: Analyzing high‐dimensional multivariate network links with integrated anomaly detection, highlighting and exploration
– start-page: 187
  year: 2006
  end-page: 198
  article-title: Online outlier detection in sensor data using non‐parametric models
– start-page: 1487
  year: 2021
  end-page: 1495
  article-title: Visual data analysis of production quality data for aluminum casting
– start-page: 215
  year: 2008
  end-page: 222
  article-title: ZAME: Interactive large‐scale graph visualization
– volume: 6
  year: 2022
  article-title: MTV: Visual analytics for detecting, investigating, and annotating anomalies in multivariate time series
– start-page: 1
  year: 2021
  end-page: 6
  article-title: Data‐driven thermal anomaly detection for batteries using unsupervised shape clustering
– volume: 8
  start-page: 247
  year: 2009
  end-page: 253
  article-title: Scale and complexity in visual analytics
  publication-title: Information Visualization
– start-page: 61
  year: 2007
  end-page: 75
  article-title: Outlier detection with kernel density functions
– volume: 15
  start-page: 1779
  issue: 9
  year: 2022
  end-page: 1797
  article-title: Anomaly detection in time series: A comprehensive evaluation
  publication-title: Proceedings of the VLDB Endowment
– volume: 33
  start-page: 1065
  issue: 3
  year: 1962
  end-page: 1076
  article-title: On estimation of a probability density function and mode
  publication-title: The annals of mathematical statistics
– volume: 38
  start-page: 649
  issue: 3
  year: 2019
  end-page: 661
  article-title: Insideinsights: Integrating data‐driven reporting in collaborative visual analytics
  publication-title: Computer Graphics Forum
– volume: 15
  start-page: 3678
  issue: 12
  year: 2022
  end-page: 3681
  article-title: TimeEval: A benchmarking toolkit for time series anomaly detection algorithms
  publication-title: Proceedings of the VLDB Endowment
– year: 2018
– start-page: 1609
  year: 2009
  end-page: 1618
  article-title: Correlations among prototypical usability metrics: Evidence for the construct of usability
– volume: 189
  start-page: 4
  issue: 194
  year: 1996
  end-page: 7
  article-title: SUS‐A quick and dirty usability scale
  publication-title: Usability Evaluation in Industry
– start-page: 47
  year: 2010
  end-page: 56
  article-title: Multiple kernel learning for heterogeneous anomaly detection: Algorithm and aviation safety case study
– start-page: 157
  year: 2005
  end-page: 164
  article-title: Graph‐theoretic scagnostics
– volume: 27
  start-page: 923
  issue: 4
  year: 2018
  end-page: 934
  article-title: Multivariate functional data visualization and outlier detection
  publication-title: Journal of Computational and Graphical Statistics
– volume: 7
  start-page: 396
  issue: 4
  year: 2015
  end-page: 403
  article-title: Likert scale: Explored and explained
  publication-title: British Journal of Applied Science & Technology
– volume: 23
  year: 2018
  article-title: Kernel density estimation and its application
  publication-title: ITM Web of Conferences
– volume: 8
  start-page: 377
  issue: 2
  year: 2022
  end-page: 396
  article-title: Visual analytics of anomalous user behaviors: A survey
  publication-title: IEEE Transactions on Big Data
– volume: 11
  start-page: 3
  year: 2019
  end-page: 9
  article-title: Cognitive decision support for industrial product life cycles: A position paper
– year: 2004
– start-page: 94
  year: 2009
  end-page: 103
  article-title: The factor structure of the system usability scale
– volume: 6
  start-page: 1
  year: 2021
  end-page: 14
  article-title: Aircraft engine run‐to‐failure dataset under real flight conditions for prognostics and diagnostics
  publication-title: MDPI Data
– volume: 7
  start-page: 6481
  year: 2020
  end-page: 6494
  article-title: Anomaly detection for IOT time‐series data: A survey
  publication-title: IEEE Internet of Things
– start-page: 447
  year: 2023
  end-page: 471
– volume: 41
  start-page: 1
  issue: 3
  year: 2009
  end-page: 58
  article-title: Anomaly detection: A survey
  publication-title: ACM Computing Surveys (CSUR)
– volume: 7
  start-page: 81555
  year: 2019
  end-page: 81573
  article-title: Visual analytics: A comprehensive overview
  publication-title: IEEE Access
– volume: 52
  start-page: 139
  year: 1988
  end-page: 183
  article-title: Development of NASA‐TLX (task load index): Results of empirical and theoretical research
  publication-title: Advances in Psychology
– start-page: 140
  year: 2018
  end-page: 149
  article-title: A visual analytics approach for equipment condition monitoring in smart factories of process industry
– volume: 54
  issue: 3
  year: 2021
  article-title: A review on outlier/anomaly detection in time series data
  publication-title: ACM Computing Surveys
– volume: 9
  start-page: 181
  issue: 3
  year: 2010
  end-page: 193
  article-title: Techniques for precision‐based visual analysis of projected data
  publication-title: Information Visualization
– volume: 82
  start-page: 424
  issue: 398
  year: 1987
  end-page: 436
  article-title: Scatterplot matrix techniques for large n
  publication-title: Journal of the American Statistical Association
– start-page: 64
  year: 2014
  end-page: 71
  article-title: Contextual anomaly detection in big sensor data
– volume: 1
  start-page: 1
  issue: 1
  year: 2013
  end-page: 26
  article-title: Advancements of outlier detection: A survey
  publication-title: EAI Endorsed Transactions on Scalable Information Systems
– volume: 26
  start-page: 2250
  issue: 9
  year: 2014
  end-page: 2267
  article-title: Outlier detection for temporal data: A survey
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 1
  year: 2019
  end-page: 6
  article-title: CloudTraceViz: A visualization tool for tracing dynamic usage of cloud computing resources
– volume: 26
  start-page: 1107
  issue: 01
  year: 2020
  end-page: 1117
  article-title: CloudDet: Interactive visual analysis of anomalous performances in cloud computing systems
  publication-title: IEEE Transactions on Visualization & Computer Graphics
– volume: 33
  start-page: 411
  issue: 3
  year: 2014
  end-page: 420
  article-title: Visual analysis of sets of heterogeneous matrices using projection‐based distance functions and semantic zoom
  publication-title: Computer Graphics Forum
– year: 2022
  article-title: A pipeline for tailored sampling for progressive visual analytics
– volume: 79
  start-page: 528
  year: 2019
  end-page: 533
  article-title: Log‐based predictive maintenance in discrete parts manufacturing
– volume: 41
  start-page: 1
  year: 2009
  end-page: 58
  article-title: Anomaly detection
  publication-title: ACM Computing Surveys
– year: 2022
  article-title: Honeycomb Plots: Visual Enhancements for Hexagonal Maps
– volume: 19
  start-page: 1526
  issue: 9
  year: 2013
  end-page: 1538
  article-title: Splatterplots: Overcoming overdraw in scatter plots
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 3267
  year: 2019
  end-page: 3276
  article-title: MTSAD: Multivariate time series abnormality detection and visualization
– start-page: 1320
  year: 2020
  end-page: 1329
  article-title: Industrial production process improvement by a process engine visual analytics dashboard
– start-page: 865
  year: 2021
  end-page: 877
  article-title: A review of time‐series anomaly detection techniques: A step to future perspectives
– start-page: 1560
  year: 2017
  end-page: 1569
  article-title: A data‐driven approach for multivariate contextualized anomaly detection: Industry use case
– volume: 8
  start-page: 1
  issue: 1
  year: 2002
  end-page: 8
  article-title: Information visualization and visual data mining
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 8
  year: 2020
  article-title: Exploration of anomalies in cyclic multivariate industrial time series data for condition monitoring
– volume: 40
  start-page: 25
  issue: 3
  year: 2021
  end-page: 36
  article-title: CommAID: Visual analytics for communication analysis through interactive dynamics modeling
  publication-title: Computer Graphics Forum
– start-page: 80
  year: 2012
  end-page: 87
  article-title: VisTracer: A visual analytics tool to investigate routing anomalies in traceroutes
– volume: 28
  start-page: 2338
  issue: 6
  year: 2022
  end-page: 2349
  article-title: A visual analytics approach for hardware system monitoring with streaming functional data analysis
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– year: 2021
  article-title: OutViz: Visualizing the outliers of multivariate time series
– ident: e_1_2_12_53_2
  doi: 10.1109/INFVIS.2005.1532142
– ident: e_1_2_12_43_2
  doi: 10.1109/TBDATA.2020.2964169
– ident: e_1_2_12_54_2
  doi: 10.1051/itmconf/20182300037
– ident: e_1_2_12_8_2
  doi: 10.3390/data6010005
– ident: e_1_2_12_50_2
  doi: 10.24251/HICSS.2020.163
– ident: e_1_2_12_60_2
  doi: 10.1007/s12650‐018‐0530‐2
– ident: e_1_2_12_55_2
  doi: 10.14778/3554821.3554873
– ident: e_1_2_12_20_2
  doi: 10.1109/TKDE.2013.184
– ident: e_1_2_12_47_2
– ident: e_1_2_12_2_2
  doi: 10.1145/3444690
– ident: e_1_2_12_24_2
  doi: 10.1016/S0166-4115(08)62386-9
– ident: e_1_2_12_40_2
  doi: 10.1109/BigData.2017.8258090
– ident: e_1_2_12_31_2
  doi: 10.1007/978-3-540-73499-4_6
– ident: e_1_2_12_52_2
– ident: e_1_2_12_29_2
  doi: 10.1145/3512950
– ident: e_1_2_12_11_2
  doi: 10.1109/ACCESS.2019.2923736
– ident: e_1_2_12_48_2
  doi: 10.1057/ivs.2010.2
– ident: e_1_2_12_23_2
– ident: e_1_2_12_15_2
  doi: 10.1145/2379690.2379701
– ident: e_1_2_12_16_2
  doi: 10.1111/cgf.14286
– ident: e_1_2_12_3_2
  doi: 10.1111/cgf.12397
– ident: e_1_2_12_42_2
  doi: 10.1145/1518701.1518947
– volume: 189
  start-page: 4
  issue: 194
  year: 1996
  ident: e_1_2_12_4_2
  article-title: SUS‐A quick and dirty usability scale
  publication-title: Usability Evaluation in Industry
– ident: e_1_2_12_56_2
  doi: 10.1109/PacificVis.2018.00026
– ident: e_1_2_12_22_2
  doi: 10.1109/BigData.Congress.2014.19
– ident: e_1_2_12_41_2
  doi: 10.1109/TVCG.2022.3165348
– ident: e_1_2_12_33_2
  doi: 10.1109/TVCG.2013.65
– ident: e_1_2_12_59_2
– ident: e_1_2_12_6_2
  doi: 10.1145/1541880.1541882
– ident: e_1_2_12_26_2
  doi: 10.24251/HICSS.2021.179
– ident: e_1_2_12_46_2
  doi: 10.1007/978-3-662-65004-2_18
– ident: e_1_2_12_9_2
  doi: 10.1080/01621459.1987.10478445
– ident: e_1_2_12_34_2
  doi: 10.1111/cgf.13717
– ident: e_1_2_12_30_2
  doi: 10.1109/ISIE45552.2021.9576348
– ident: e_1_2_12_19_2
  doi: 10.1016/j.procir.2019.02.098
– ident: e_1_2_12_38_2
  doi: 10.1057/ivs.2009.23
– ident: e_1_2_12_44_2
– ident: e_1_2_12_25_2
  doi: 10.9734/BJAST/2015/14975
– ident: e_1_2_12_5_2
  doi: 10.1145/1541880.1541882
– ident: e_1_2_12_18_2
  doi: 10.1145/3468784.3471606
– ident: e_1_2_12_37_2
  doi: 10.1109/BigData47090.2019.9006559
– ident: e_1_2_12_49_2
  doi: 10.14778/3538598.3538602
– ident: e_1_2_12_12_2
  doi: 10.1080/10618600.2018.1473781
– ident: e_1_2_12_14_2
  doi: 10.1109/PACIFICVIS.2008.4475479
– ident: e_1_2_12_21_2
– ident: e_1_2_12_28_2
  doi: 10.1109/2945.981847
– ident: e_1_2_12_10_2
  doi: 10.1109/JIOT.2019.2958185
– ident: e_1_2_12_32_2
  doi: 10.1007/978-3-642-02806-9_12
– ident: e_1_2_12_57_2
  doi: 10.1109/TVCG.2019.2934613
– ident: e_1_2_12_39_2
  doi: 10.1007/978-3-030-73100-7_60
– ident: e_1_2_12_51_2
– ident: e_1_2_12_27_2
  doi: 10.1109/VAST.2014.7042484
– ident: e_1_2_12_36_2
  doi: 10.1214/aoms/1177704472
– ident: e_1_2_12_17_2
  doi: 10.1109/TVCG.2020.3028889
– ident: e_1_2_12_58_2
  doi: 10.4108/trans.sis.2013.01‐03.e2
– ident: e_1_2_12_45_2
  doi: 10.1016/j.bdr.2021.100251
– ident: e_1_2_12_35_2
  doi: 10.1109/DAAC49578.2019.00006
– ident: e_1_2_12_13_2
  doi: 10.1145/1835804.1835813
– ident: e_1_2_12_7_2
  doi: 10.1080/24709360.2017.1396742
SSID ssj0004765
Score 2.425211
Snippet The detection, description and understanding of anomalies in multivariate time series data is an important task in several industrial domains. Automated data...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Anomalies
anomaly detection
Data analysis
Datasets
Effectiveness
interactive data exploration
kernel density estimation
Multivariate analysis
multivariate time series analysis
Subject specialists
Synthetic data
Taxonomy
Time series
visual analytics
Zooming
Title MANDALA—Visual Exploration of Anomalies in Industrial Multivariate Time Series Data
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.70000
https://www.proquest.com/docview/3171841953
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEB5qT3rwX6zWsogHLyn52d2keAqttYgtIlZ6EMJusitFTMWmHjz5ED6hT-LuJmmrIIi3HCYhmdmZ_WYz8w3ACXUFEz7nFiPcs7ArpBUkXFicBNyTkglimsL6A9ob4ssRGVXgrOyFyfkh5gdu2jNMvNYOzvh0ycnjB9n0dbhV8VfXamlAdLOgjsI-JSWvt2aMKViFdBXP_M7ve9ECYC7DVLPPdDfgvnzDvLzksTnLeDN--0He-M9P2IT1An-iMF8wW1AR6TasLbES7sCwHw464VX4-f5xN57OlHReqGdsiCYShenkScF3MUXjFC1mfyDTzPuqkm-FX5HuLUH67E2JdVjGdmHYPb9t96xi-oIVK8xgW0QwJ06oggfEw1gG2NM8NYnLbFsqXEESbDMipOOqcBpT4Qsvxi2aMLclOSEx9_agmk5SsQ8okNyxGY45cThm1AkCJlRi7GPGHSwpr8FxaYfoOSfZiMrkROkoMjqqQb20UFT42TRS6EelqPpXYA1Ojap_f0DUvuiai4O_ix7CqqsH_poy7TpUs5eZOFIoJOMNWHHxdcMsui9bodkH
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwED5BGYCBf0ShgIUYWFLlx05SiSVqKQXaDqhFXVBkJzaqECmiKQMTD8ET8iTYTtIWJCTEluESJT7f-bvL3XcAp67NKfcYMyhhjoFtLgw_ZtxgxGeOEJQT3RTW6bqtPr4ekMECnBe9MBk_xDThpixD-2tl4CohPWfl0YOoesrfLsKSmuitA6rbGXkU9lxSMHsrzpicV0jV8Uxv_X4azSDmPFDVJ01zHe6Ld8wKTB6rk5RVo7cf9I3__YgNWMshKAqyPbMJCzzZgtU5YsJt6HeCbiNoB5_vH3fD8URKZ7V6Wo1oJFCQjJ4kgudjNEzQbPwH0v28rzL-lhAWqfYSpNJvUqxBU7oD_eZFr94y8gEMRiRhg2kQTq0odiVCIA7GwseOoqqJbWqaQkILEmOTEi4sW3rUyOUedyJcc2Nq1wQjJGLOLpSSUcL3APmCWSbFESMWw9S1fJ9yGRt7mDILC5eV4aRQRPic8WyERXwi1yjUa1SGSqGiMDe1cSgBkIxS1d_AMpzptf79AWH9sqkv9v8uegzLrV6nHbavujcHsGKr-b-6arsCpfRlwg8lKEnZkd57X9a43Es
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gOjBt7i6ahAPXrr0kaQVT2Xruj52EXHFg1CSNhERu-J2PXjyR_gL_SUmaeuugiDeepiWNvPIN-nMNwB71BVM-JxbjHDPwq6QVpByYXEScE9KJohpCut0abuHT2_IzQQcVr0wBT_E14Gb9gwTr7WDP6VyzMmTO9nwdbidhGlM7UCbdHQ54o7CPiUVsbemjClphXQZz9et3zejEcIcx6lmo2ktwG31ikV9yUNjmPNG8vqDvfGf37AI8yUARWFhMUswIbJlmBujJVyBXifsRuF5-PH2fn0_GCrpolLPKBH1JQqz_qPC72KA7jM0Gv6BTDfvi8q-FYBFurkE6cM3JRaxnK1Cr3V01Wxb5fgFK1GgwbaIYE6SUoUPiIexDLCniWpSl9m2VMCCpNhmREjHVfE0ocIXXoIPaMrcA8kJSbi3BlNZPxPrgALJHZvhhBOHY0adIGBCZcY-ZtzBkvIa7FZ6iJ8Klo24yk7UGsVmjWpQrzQUl442iBX8UTmq_hdYg32z1L8_IG4et8zFxt9Fd2DmImrF5yfds02YdfXwX1OyXYep_HkothQiyfm2sbxPeY3bAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MANDALA%E2%80%94Visual+Exploration+of+Anomalies+in+Industrial+Multivariate+Time+Series+Data&rft.jtitle=Computer+graphics+forum&rft.au=Suschnigg%2C+J.&rft.au=Mutlu%2C+B.&rft.au=Koutroulis%2C+G.&rft.au=Hussain%2C+H.&rft.date=2025-02-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=44&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fcgf.70000&rft.externalDBID=10.1111%252Fcgf.70000&rft.externalDocID=CGF70000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon