MANDALA—Visual Exploration of Anomalies in Industrial Multivariate Time Series Data
The detection, description and understanding of anomalies in multivariate time series data is an important task in several industrial domains. Automated data analysis provides many tools and algorithms to detect anomalies, while visual interfaces enable domain experts to explore and analyze data int...
Saved in:
Published in | Computer graphics forum Vol. 44; no. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The detection, description and understanding of anomalies in multivariate time series data is an important task in several industrial domains. Automated data analysis provides many tools and algorithms to detect anomalies, while visual interfaces enable domain experts to explore and analyze data interactively to gain insights using their expertise. Anomalies in multivariate time series can be diverse with respect to the dimensions, temporal occurrence and length within a dataset. Their detection and description depend on the analyst's domain, task and background knowledge. Therefore, anomaly analysis is often an underspecified problem. We propose a visual analytics tool called MANDALA (Multivariate ANomaly Detection And expLorAtion), which uses kernel density estimation to detect anomalies and provides users with visual means to explore and explain them. To assess our algorithm's effectiveness, we evaluate its ability to identify different types of anomalies using a synthetic dataset generated with the GutenTAG anomaly and time series generator. Our approach allows users to define normal data interactively first. Next, they can explore anomaly candidates, their related dimensions and their temporal scope. Our carefully designed visual analytics components include a tailored scatterplot matrix with semantic zooming features that visualize normal data through hexagonal binning plots and overlay candidate anomaly data as scatterplots. In addition, the system supports the analysis on a broader scope involving all dimensions simultaneously or on a smaller scope involving dimension pairs only. We define a taxonomy of important types of anomaly patterns, which can guide the interactive analysis process. The effectiveness of our system is demonstrated through a use case scenario on industrial data conducted with domain experts from the automotive domain and a user study utilizing a public dataset from the aviation domain.
MANDALA is a visual analytics tool that integrates kernel density estimation with interactive visualizations, enabling domain experts to detect and explore anomalies in industrial multivariate time series. Its effectiveness is demonstrated through a user study and a real‐world automotive use case scenario. |
---|---|
AbstractList | The detection, description and understanding of anomalies in multivariate time series data is an important task in several industrial domains. Automated data analysis provides many tools and algorithms to detect anomalies, while visual interfaces enable domain experts to explore and analyze data interactively to gain insights using their expertise. Anomalies in multivariate time series can be diverse with respect to the dimensions, temporal occurrence and length within a dataset. Their detection and description depend on the analyst's domain, task and background knowledge. Therefore, anomaly analysis is often an underspecified problem. We propose a visual analytics tool called MANDALA (Multivariate ANomaly Detection And expLorAtion), which uses kernel density estimation to detect anomalies and provides users with visual means to explore and explain them. To assess our algorithm's effectiveness, we evaluate its ability to identify different types of anomalies using a synthetic dataset generated with the GutenTAG anomaly and time series generator. Our approach allows users to define normal data interactively first. Next, they can explore anomaly candidates, their related dimensions and their temporal scope. Our carefully designed visual analytics components include a tailored scatterplot matrix with semantic zooming features that visualize normal data through hexagonal binning plots and overlay candidate anomaly data as scatterplots. In addition, the system supports the analysis on a broader scope involving all dimensions simultaneously or on a smaller scope involving dimension pairs only. We define a taxonomy of important types of anomaly patterns, which can guide the interactive analysis process. The effectiveness of our system is demonstrated through a use case scenario on industrial data conducted with domain experts from the automotive domain and a user study utilizing a public dataset from the aviation domain. The detection, description and understanding of anomalies in multivariate time series data is an important task in several industrial domains. Automated data analysis provides many tools and algorithms to detect anomalies, while visual interfaces enable domain experts to explore and analyze data interactively to gain insights using their expertise. Anomalies in multivariate time series can be diverse with respect to the dimensions, temporal occurrence and length within a dataset. Their detection and description depend on the analyst's domain, task and background knowledge. Therefore, anomaly analysis is often an underspecified problem. We propose a visual analytics tool called MANDALA (Multivariate ANomaly Detection And expLorAtion), which uses kernel density estimation to detect anomalies and provides users with visual means to explore and explain them. To assess our algorithm's effectiveness, we evaluate its ability to identify different types of anomalies using a synthetic dataset generated with the GutenTAG anomaly and time series generator. Our approach allows users to define normal data interactively first. Next, they can explore anomaly candidates, their related dimensions and their temporal scope. Our carefully designed visual analytics components include a tailored scatterplot matrix with semantic zooming features that visualize normal data through hexagonal binning plots and overlay candidate anomaly data as scatterplots. In addition, the system supports the analysis on a broader scope involving all dimensions simultaneously or on a smaller scope involving dimension pairs only. We define a taxonomy of important types of anomaly patterns, which can guide the interactive analysis process. The effectiveness of our system is demonstrated through a use case scenario on industrial data conducted with domain experts from the automotive domain and a user study utilizing a public dataset from the aviation domain. MANDALA is a visual analytics tool that integrates kernel density estimation with interactive visualizations, enabling domain experts to detect and explore anomalies in industrial multivariate time series. Its effectiveness is demonstrated through a user study and a real‐world automotive use case scenario. The detection, description and understanding of anomalies in multivariate time series data is an important task in several industrial domains. Automated data analysis provides many tools and algorithms to detect anomalies, while visual interfaces enable domain experts to explore and analyze data interactively to gain insights using their expertise. Anomalies in multivariate time series can be diverse with respect to the dimensions, temporal occurrence and length within a dataset. Their detection and description depend on the analyst's domain, task and background knowledge. Therefore, anomaly analysis is often an underspecified problem. We propose a visual analytics tool called MANDALA ( M ultivariate AN omaly D etection A nd exp L or A tion), which uses kernel density estimation to detect anomalies and provides users with visual means to explore and explain them. To assess our algorithm's effectiveness, we evaluate its ability to identify different types of anomalies using a synthetic dataset generated with the GutenTAG anomaly and time series generator. Our approach allows users to define normal data interactively first. Next, they can explore anomaly candidates, their related dimensions and their temporal scope. Our carefully designed visual analytics components include a tailored scatterplot matrix with semantic zooming features that visualize normal data through hexagonal binning plots and overlay candidate anomaly data as scatterplots. In addition, the system supports the analysis on a broader scope involving all dimensions simultaneously or on a smaller scope involving dimension pairs only. We define a taxonomy of important types of anomaly patterns, which can guide the interactive analysis process. The effectiveness of our system is demonstrated through a use case scenario on industrial data conducted with domain experts from the automotive domain and a user study utilizing a public dataset from the aviation domain. |
Author | Koutroulis, G. Hussain, H. Schreck, T. Suschnigg, J. Mutlu, B. |
Author_xml | – sequence: 1 givenname: J. orcidid: 0000-0003-0854-2421 surname: Suschnigg fullname: Suschnigg, J. email: josef.suschnigg@pro2future.at organization: Graz University of Technology – sequence: 2 givenname: B. surname: Mutlu fullname: Mutlu, B. email: belgin.mutlu@pro2future.at organization: Pro2Future GmbH – sequence: 3 givenname: G. surname: Koutroulis fullname: Koutroulis, G. email: georgios.koutroulis@avl.com organization: AVL List GmbH – sequence: 4 givenname: H. surname: Hussain fullname: Hussain, H. email: hussain@tugraz.at organization: Graz University of Technology – sequence: 5 givenname: T. surname: Schreck fullname: Schreck, T. email: tobias.schreck@tugraz.at organization: Graz University of Technology |
BookMark | eNp10LFOwzAQBmALFYm2MPAGlpgY0tqJHSdj1NJSqYWBltVyExu5Su1iJ0A3HoIn5ElwCSu33A3f3Un_APSMNRKAa4xGONS4fFEjhkKdgT4mKYuylOY90Ec4zAxRegEG3u8CICylfbBZFQ_TYll8f349a9-KGt59HGrrRKOtgVbBwti9qLX0UBu4MFXrG6cDW7V1o99EmBsJ13ov4ZN0JzYVjbgE50rUXl799SHYzO7Wk_to-ThfTIplVMZxjCIqBS6rFGNEE0JURhKS5UkVC4QUYhmtCBJUKhyzNC5TyWRSkjytRJyrLaXlNhmCm-7uwdnXVvqG72zrTHjJE8xwRnBOk6BuO1U6672Tih-c3gt35BjxU2o8pMZ_Uwt23Nl3Xcvj_5BP5rNu4wcLVW8n |
Cites_doi | 10.1109/INFVIS.2005.1532142 10.1109/TBDATA.2020.2964169 10.1051/itmconf/20182300037 10.3390/data6010005 10.24251/HICSS.2020.163 10.1007/s12650‐018‐0530‐2 10.14778/3554821.3554873 10.1109/TKDE.2013.184 10.1145/3444690 10.1016/S0166-4115(08)62386-9 10.1109/BigData.2017.8258090 10.1007/978-3-540-73499-4_6 10.1145/3512950 10.1109/ACCESS.2019.2923736 10.1057/ivs.2010.2 10.1145/2379690.2379701 10.1111/cgf.14286 10.1111/cgf.12397 10.1145/1518701.1518947 10.1109/PacificVis.2018.00026 10.1109/BigData.Congress.2014.19 10.1109/TVCG.2022.3165348 10.1109/TVCG.2013.65 10.1145/1541880.1541882 10.24251/HICSS.2021.179 10.1007/978-3-662-65004-2_18 10.1080/01621459.1987.10478445 10.1111/cgf.13717 10.1109/ISIE45552.2021.9576348 10.1016/j.procir.2019.02.098 10.1057/ivs.2009.23 10.9734/BJAST/2015/14975 10.1145/3468784.3471606 10.1109/BigData47090.2019.9006559 10.14778/3538598.3538602 10.1080/10618600.2018.1473781 10.1109/PACIFICVIS.2008.4475479 10.1109/2945.981847 10.1109/JIOT.2019.2958185 10.1007/978-3-642-02806-9_12 10.1109/TVCG.2019.2934613 10.1007/978-3-030-73100-7_60 10.1109/VAST.2014.7042484 10.1214/aoms/1177704472 10.1109/TVCG.2020.3028889 10.4108/trans.sis.2013.01‐03.e2 10.1016/j.bdr.2021.100251 10.1109/DAAC49578.2019.00006 10.1145/1835804.1835813 10.1080/24709360.2017.1396742 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). published by Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd. 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The Author(s). published by Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd. – notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1111/cgf.70000 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1467-8659 |
EndPage | n/a |
ExternalDocumentID | 10_1111_cgf_70000 CGF70000 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Österreichische Forschungsförderungsgesellschaft funderid: 881844 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 24P 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2220-5ea1cd61105344f8434893d2a00f0785d40a5ef12762c6e7e3c496da29fb55cb3 |
IEDL.DBID | DR2 |
ISSN | 0167-7055 |
IngestDate | Sat Aug 23 12:53:14 EDT 2025 Thu Jul 03 08:25:14 EDT 2025 Fri Feb 28 09:44:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2220-5ea1cd61105344f8434893d2a00f0785d40a5ef12762c6e7e3c496da29fb55cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0854-2421 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.70000 |
PQID | 3171841953 |
PQPubID | 30877 |
PageCount | 17 |
ParticipantIDs | proquest_journals_3171841953 crossref_primary_10_1111_cgf_70000 wiley_primary_10_1111_cgf_70000_CGF70000 |
PublicationCentury | 2000 |
PublicationDate | February 2025 2025-02-00 20250201 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Computer graphics forum |
PublicationYear | 2025 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2019; 7 2021; 27 2021; 6 2021; 26 2009; 41 2017; 1 2013; 1 2012 2010 2019; 11 2019; 79 2002; 8 2009 2008 2014; 26 2019; 38 2007 2006 2005 2004 1988; 52 1962; 33 2018; 23 1996; 189 2015; 7 2018; 27 2022; 28 2013; 19 2020; 7 2021; 54 1987; 82 2023 2022 2021 2019; 22 2022; 6 2020 2022; 8 2019 2018 2020; 26 2009; 8 2017 2022; 15 2014 2021; 40 2014; 33 2010; 9 e_1_2_12_2_2 e_1_2_12_19_2 e_1_2_12_17_2 e_1_2_12_15_2 e_1_2_12_38_2 e_1_2_12_59_2 e_1_2_12_41_2 e_1_2_12_20_2 e_1_2_12_43_2 e_1_2_12_22_2 e_1_2_12_45_2 e_1_2_12_24_2 e_1_2_12_47_2 e_1_2_12_60_2 e_1_2_12_26_2 e_1_2_12_49_2 e_1_2_12_28_2 e_1_2_12_52_2 e_1_2_12_31_2 e_1_2_12_54_2 e_1_2_12_33_2 e_1_2_12_56_2 e_1_2_12_35_2 e_1_2_12_58_2 e_1_2_12_14_2 e_1_2_12_12_2 e_1_2_12_10_2 e_1_2_12_6_2 e_1_2_12_50_2 e_1_2_12_8_2 e_1_2_12_3_2 e_1_2_12_5_2 Brooke J. (e_1_2_12_4_2) 1996; 189 e_1_2_12_18_2 e_1_2_12_16_2 e_1_2_12_37_2 e_1_2_12_39_2 e_1_2_12_40_2 e_1_2_12_21_2 e_1_2_12_42_2 e_1_2_12_23_2 e_1_2_12_44_2 e_1_2_12_25_2 e_1_2_12_46_2 e_1_2_12_27_2 e_1_2_12_48_2 e_1_2_12_29_2 e_1_2_12_30_2 e_1_2_12_51_2 e_1_2_12_32_2 e_1_2_12_53_2 e_1_2_12_34_2 e_1_2_12_55_2 e_1_2_12_36_2 e_1_2_12_57_2 e_1_2_12_13_2 e_1_2_12_11_2 e_1_2_12_7_2 e_1_2_12_9_2 |
References_xml | – volume: 1 start-page: 161 issue: 1 year: 2017 end-page: 187 article-title: A tutorial on kernel density estimation and recent advances publication-title: Biostatistics & Epidemiology – volume: 27 start-page: 1601 issue: 02 year: 2021 end-page: 1611 article-title: A visual analytics framework for reviewing multivariate time‐series data with dimensionality reduction publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 26 year: 2021 article-title: Visual exploration of anomalies in cyclic time series data with matrix and glyph representations publication-title: Big Data Research – volume: 22 start-page: 419 year: 2019 end-page: 435 article-title: A survey of visualization for smart manufacturing publication-title: Journal of Visualization – start-page: 83 year: 2014 end-page: 92 article-title: Analyzing high‐dimensional multivariate network links with integrated anomaly detection, highlighting and exploration – start-page: 187 year: 2006 end-page: 198 article-title: Online outlier detection in sensor data using non‐parametric models – start-page: 1487 year: 2021 end-page: 1495 article-title: Visual data analysis of production quality data for aluminum casting – start-page: 215 year: 2008 end-page: 222 article-title: ZAME: Interactive large‐scale graph visualization – volume: 6 year: 2022 article-title: MTV: Visual analytics for detecting, investigating, and annotating anomalies in multivariate time series – start-page: 1 year: 2021 end-page: 6 article-title: Data‐driven thermal anomaly detection for batteries using unsupervised shape clustering – volume: 8 start-page: 247 year: 2009 end-page: 253 article-title: Scale and complexity in visual analytics publication-title: Information Visualization – start-page: 61 year: 2007 end-page: 75 article-title: Outlier detection with kernel density functions – volume: 15 start-page: 1779 issue: 9 year: 2022 end-page: 1797 article-title: Anomaly detection in time series: A comprehensive evaluation publication-title: Proceedings of the VLDB Endowment – volume: 33 start-page: 1065 issue: 3 year: 1962 end-page: 1076 article-title: On estimation of a probability density function and mode publication-title: The annals of mathematical statistics – volume: 38 start-page: 649 issue: 3 year: 2019 end-page: 661 article-title: Insideinsights: Integrating data‐driven reporting in collaborative visual analytics publication-title: Computer Graphics Forum – volume: 15 start-page: 3678 issue: 12 year: 2022 end-page: 3681 article-title: TimeEval: A benchmarking toolkit for time series anomaly detection algorithms publication-title: Proceedings of the VLDB Endowment – year: 2018 – start-page: 1609 year: 2009 end-page: 1618 article-title: Correlations among prototypical usability metrics: Evidence for the construct of usability – volume: 189 start-page: 4 issue: 194 year: 1996 end-page: 7 article-title: SUS‐A quick and dirty usability scale publication-title: Usability Evaluation in Industry – start-page: 47 year: 2010 end-page: 56 article-title: Multiple kernel learning for heterogeneous anomaly detection: Algorithm and aviation safety case study – start-page: 157 year: 2005 end-page: 164 article-title: Graph‐theoretic scagnostics – volume: 27 start-page: 923 issue: 4 year: 2018 end-page: 934 article-title: Multivariate functional data visualization and outlier detection publication-title: Journal of Computational and Graphical Statistics – volume: 7 start-page: 396 issue: 4 year: 2015 end-page: 403 article-title: Likert scale: Explored and explained publication-title: British Journal of Applied Science & Technology – volume: 23 year: 2018 article-title: Kernel density estimation and its application publication-title: ITM Web of Conferences – volume: 8 start-page: 377 issue: 2 year: 2022 end-page: 396 article-title: Visual analytics of anomalous user behaviors: A survey publication-title: IEEE Transactions on Big Data – volume: 11 start-page: 3 year: 2019 end-page: 9 article-title: Cognitive decision support for industrial product life cycles: A position paper – year: 2004 – start-page: 94 year: 2009 end-page: 103 article-title: The factor structure of the system usability scale – volume: 6 start-page: 1 year: 2021 end-page: 14 article-title: Aircraft engine run‐to‐failure dataset under real flight conditions for prognostics and diagnostics publication-title: MDPI Data – volume: 7 start-page: 6481 year: 2020 end-page: 6494 article-title: Anomaly detection for IOT time‐series data: A survey publication-title: IEEE Internet of Things – start-page: 447 year: 2023 end-page: 471 – volume: 41 start-page: 1 issue: 3 year: 2009 end-page: 58 article-title: Anomaly detection: A survey publication-title: ACM Computing Surveys (CSUR) – volume: 7 start-page: 81555 year: 2019 end-page: 81573 article-title: Visual analytics: A comprehensive overview publication-title: IEEE Access – volume: 52 start-page: 139 year: 1988 end-page: 183 article-title: Development of NASA‐TLX (task load index): Results of empirical and theoretical research publication-title: Advances in Psychology – start-page: 140 year: 2018 end-page: 149 article-title: A visual analytics approach for equipment condition monitoring in smart factories of process industry – volume: 54 issue: 3 year: 2021 article-title: A review on outlier/anomaly detection in time series data publication-title: ACM Computing Surveys – volume: 9 start-page: 181 issue: 3 year: 2010 end-page: 193 article-title: Techniques for precision‐based visual analysis of projected data publication-title: Information Visualization – volume: 82 start-page: 424 issue: 398 year: 1987 end-page: 436 article-title: Scatterplot matrix techniques for large n publication-title: Journal of the American Statistical Association – start-page: 64 year: 2014 end-page: 71 article-title: Contextual anomaly detection in big sensor data – volume: 1 start-page: 1 issue: 1 year: 2013 end-page: 26 article-title: Advancements of outlier detection: A survey publication-title: EAI Endorsed Transactions on Scalable Information Systems – volume: 26 start-page: 2250 issue: 9 year: 2014 end-page: 2267 article-title: Outlier detection for temporal data: A survey publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 1 year: 2019 end-page: 6 article-title: CloudTraceViz: A visualization tool for tracing dynamic usage of cloud computing resources – volume: 26 start-page: 1107 issue: 01 year: 2020 end-page: 1117 article-title: CloudDet: Interactive visual analysis of anomalous performances in cloud computing systems publication-title: IEEE Transactions on Visualization & Computer Graphics – volume: 33 start-page: 411 issue: 3 year: 2014 end-page: 420 article-title: Visual analysis of sets of heterogeneous matrices using projection‐based distance functions and semantic zoom publication-title: Computer Graphics Forum – year: 2022 article-title: A pipeline for tailored sampling for progressive visual analytics – volume: 79 start-page: 528 year: 2019 end-page: 533 article-title: Log‐based predictive maintenance in discrete parts manufacturing – volume: 41 start-page: 1 year: 2009 end-page: 58 article-title: Anomaly detection publication-title: ACM Computing Surveys – year: 2022 article-title: Honeycomb Plots: Visual Enhancements for Hexagonal Maps – volume: 19 start-page: 1526 issue: 9 year: 2013 end-page: 1538 article-title: Splatterplots: Overcoming overdraw in scatter plots publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 3267 year: 2019 end-page: 3276 article-title: MTSAD: Multivariate time series abnormality detection and visualization – start-page: 1320 year: 2020 end-page: 1329 article-title: Industrial production process improvement by a process engine visual analytics dashboard – start-page: 865 year: 2021 end-page: 877 article-title: A review of time‐series anomaly detection techniques: A step to future perspectives – start-page: 1560 year: 2017 end-page: 1569 article-title: A data‐driven approach for multivariate contextualized anomaly detection: Industry use case – volume: 8 start-page: 1 issue: 1 year: 2002 end-page: 8 article-title: Information visualization and visual data mining publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 8 year: 2020 article-title: Exploration of anomalies in cyclic multivariate industrial time series data for condition monitoring – volume: 40 start-page: 25 issue: 3 year: 2021 end-page: 36 article-title: CommAID: Visual analytics for communication analysis through interactive dynamics modeling publication-title: Computer Graphics Forum – start-page: 80 year: 2012 end-page: 87 article-title: VisTracer: A visual analytics tool to investigate routing anomalies in traceroutes – volume: 28 start-page: 2338 issue: 6 year: 2022 end-page: 2349 article-title: A visual analytics approach for hardware system monitoring with streaming functional data analysis publication-title: IEEE Transactions on Visualization and Computer Graphics – year: 2021 article-title: OutViz: Visualizing the outliers of multivariate time series – ident: e_1_2_12_53_2 doi: 10.1109/INFVIS.2005.1532142 – ident: e_1_2_12_43_2 doi: 10.1109/TBDATA.2020.2964169 – ident: e_1_2_12_54_2 doi: 10.1051/itmconf/20182300037 – ident: e_1_2_12_8_2 doi: 10.3390/data6010005 – ident: e_1_2_12_50_2 doi: 10.24251/HICSS.2020.163 – ident: e_1_2_12_60_2 doi: 10.1007/s12650‐018‐0530‐2 – ident: e_1_2_12_55_2 doi: 10.14778/3554821.3554873 – ident: e_1_2_12_20_2 doi: 10.1109/TKDE.2013.184 – ident: e_1_2_12_47_2 – ident: e_1_2_12_2_2 doi: 10.1145/3444690 – ident: e_1_2_12_24_2 doi: 10.1016/S0166-4115(08)62386-9 – ident: e_1_2_12_40_2 doi: 10.1109/BigData.2017.8258090 – ident: e_1_2_12_31_2 doi: 10.1007/978-3-540-73499-4_6 – ident: e_1_2_12_52_2 – ident: e_1_2_12_29_2 doi: 10.1145/3512950 – ident: e_1_2_12_11_2 doi: 10.1109/ACCESS.2019.2923736 – ident: e_1_2_12_48_2 doi: 10.1057/ivs.2010.2 – ident: e_1_2_12_23_2 – ident: e_1_2_12_15_2 doi: 10.1145/2379690.2379701 – ident: e_1_2_12_16_2 doi: 10.1111/cgf.14286 – ident: e_1_2_12_3_2 doi: 10.1111/cgf.12397 – ident: e_1_2_12_42_2 doi: 10.1145/1518701.1518947 – volume: 189 start-page: 4 issue: 194 year: 1996 ident: e_1_2_12_4_2 article-title: SUS‐A quick and dirty usability scale publication-title: Usability Evaluation in Industry – ident: e_1_2_12_56_2 doi: 10.1109/PacificVis.2018.00026 – ident: e_1_2_12_22_2 doi: 10.1109/BigData.Congress.2014.19 – ident: e_1_2_12_41_2 doi: 10.1109/TVCG.2022.3165348 – ident: e_1_2_12_33_2 doi: 10.1109/TVCG.2013.65 – ident: e_1_2_12_59_2 – ident: e_1_2_12_6_2 doi: 10.1145/1541880.1541882 – ident: e_1_2_12_26_2 doi: 10.24251/HICSS.2021.179 – ident: e_1_2_12_46_2 doi: 10.1007/978-3-662-65004-2_18 – ident: e_1_2_12_9_2 doi: 10.1080/01621459.1987.10478445 – ident: e_1_2_12_34_2 doi: 10.1111/cgf.13717 – ident: e_1_2_12_30_2 doi: 10.1109/ISIE45552.2021.9576348 – ident: e_1_2_12_19_2 doi: 10.1016/j.procir.2019.02.098 – ident: e_1_2_12_38_2 doi: 10.1057/ivs.2009.23 – ident: e_1_2_12_44_2 – ident: e_1_2_12_25_2 doi: 10.9734/BJAST/2015/14975 – ident: e_1_2_12_5_2 doi: 10.1145/1541880.1541882 – ident: e_1_2_12_18_2 doi: 10.1145/3468784.3471606 – ident: e_1_2_12_37_2 doi: 10.1109/BigData47090.2019.9006559 – ident: e_1_2_12_49_2 doi: 10.14778/3538598.3538602 – ident: e_1_2_12_12_2 doi: 10.1080/10618600.2018.1473781 – ident: e_1_2_12_14_2 doi: 10.1109/PACIFICVIS.2008.4475479 – ident: e_1_2_12_21_2 – ident: e_1_2_12_28_2 doi: 10.1109/2945.981847 – ident: e_1_2_12_10_2 doi: 10.1109/JIOT.2019.2958185 – ident: e_1_2_12_32_2 doi: 10.1007/978-3-642-02806-9_12 – ident: e_1_2_12_57_2 doi: 10.1109/TVCG.2019.2934613 – ident: e_1_2_12_39_2 doi: 10.1007/978-3-030-73100-7_60 – ident: e_1_2_12_51_2 – ident: e_1_2_12_27_2 doi: 10.1109/VAST.2014.7042484 – ident: e_1_2_12_36_2 doi: 10.1214/aoms/1177704472 – ident: e_1_2_12_17_2 doi: 10.1109/TVCG.2020.3028889 – ident: e_1_2_12_58_2 doi: 10.4108/trans.sis.2013.01‐03.e2 – ident: e_1_2_12_45_2 doi: 10.1016/j.bdr.2021.100251 – ident: e_1_2_12_35_2 doi: 10.1109/DAAC49578.2019.00006 – ident: e_1_2_12_13_2 doi: 10.1145/1835804.1835813 – ident: e_1_2_12_7_2 doi: 10.1080/24709360.2017.1396742 |
SSID | ssj0004765 |
Score | 2.425211 |
Snippet | The detection, description and understanding of anomalies in multivariate time series data is an important task in several industrial domains. Automated data... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Algorithms Anomalies anomaly detection Data analysis Datasets Effectiveness interactive data exploration kernel density estimation Multivariate analysis multivariate time series analysis Subject specialists Synthetic data Taxonomy Time series visual analytics Zooming |
Title | MANDALA—Visual Exploration of Anomalies in Industrial Multivariate Time Series Data |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.70000 https://www.proquest.com/docview/3171841953 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEB5qT3rwX6zWsogHLyn52d2keAqttYgtIlZ6EMJusitFTMWmHjz5ED6hT-LuJmmrIIi3HCYhmdmZ_WYz8w3ACXUFEz7nFiPcs7ArpBUkXFicBNyTkglimsL6A9ob4ssRGVXgrOyFyfkh5gdu2jNMvNYOzvh0ycnjB9n0dbhV8VfXamlAdLOgjsI-JSWvt2aMKViFdBXP_M7ve9ECYC7DVLPPdDfgvnzDvLzksTnLeDN--0He-M9P2IT1An-iMF8wW1AR6TasLbES7sCwHw464VX4-f5xN57OlHReqGdsiCYShenkScF3MUXjFC1mfyDTzPuqkm-FX5HuLUH67E2JdVjGdmHYPb9t96xi-oIVK8xgW0QwJ06oggfEw1gG2NM8NYnLbFsqXEESbDMipOOqcBpT4Qsvxi2aMLclOSEx9_agmk5SsQ8okNyxGY45cThm1AkCJlRi7GPGHSwpr8FxaYfoOSfZiMrkROkoMjqqQb20UFT42TRS6EelqPpXYA1Ojap_f0DUvuiai4O_ix7CqqsH_poy7TpUs5eZOFIoJOMNWHHxdcMsui9bodkH |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwED5BGYCBf0ShgIUYWFLlx05SiSVqKQXaDqhFXVBkJzaqECmiKQMTD8ET8iTYTtIWJCTEluESJT7f-bvL3XcAp67NKfcYMyhhjoFtLgw_ZtxgxGeOEJQT3RTW6bqtPr4ekMECnBe9MBk_xDThpixD-2tl4CohPWfl0YOoesrfLsKSmuitA6rbGXkU9lxSMHsrzpicV0jV8Uxv_X4azSDmPFDVJ01zHe6Ld8wKTB6rk5RVo7cf9I3__YgNWMshKAqyPbMJCzzZgtU5YsJt6HeCbiNoB5_vH3fD8URKZ7V6Wo1oJFCQjJ4kgudjNEzQbPwH0v28rzL-lhAWqfYSpNJvUqxBU7oD_eZFr94y8gEMRiRhg2kQTq0odiVCIA7GwseOoqqJbWqaQkILEmOTEi4sW3rUyOUedyJcc2Nq1wQjJGLOLpSSUcL3APmCWSbFESMWw9S1fJ9yGRt7mDILC5eV4aRQRPic8WyERXwi1yjUa1SGSqGiMDe1cSgBkIxS1d_AMpzptf79AWH9sqkv9v8uegzLrV6nHbavujcHsGKr-b-6arsCpfRlwg8lKEnZkd57X9a43Es |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gOjBt7i6ahAPXrr0kaQVT2Xruj52EXHFg1CSNhERu-J2PXjyR_gL_SUmaeuugiDeepiWNvPIN-nMNwB71BVM-JxbjHDPwq6QVpByYXEScE9KJohpCut0abuHT2_IzQQcVr0wBT_E14Gb9gwTr7WDP6VyzMmTO9nwdbidhGlM7UCbdHQ54o7CPiUVsbemjClphXQZz9et3zejEcIcx6lmo2ktwG31ikV9yUNjmPNG8vqDvfGf37AI8yUARWFhMUswIbJlmBujJVyBXifsRuF5-PH2fn0_GCrpolLPKBH1JQqz_qPC72KA7jM0Gv6BTDfvi8q-FYBFurkE6cM3JRaxnK1Cr3V01Wxb5fgFK1GgwbaIYE6SUoUPiIexDLCniWpSl9m2VMCCpNhmREjHVfE0ocIXXoIPaMrcA8kJSbi3BlNZPxPrgALJHZvhhBOHY0adIGBCZcY-ZtzBkvIa7FZ6iJ8Klo24yk7UGsVmjWpQrzQUl442iBX8UTmq_hdYg32z1L8_IG4et8zFxt9Fd2DmImrF5yfds02YdfXwX1OyXYep_HkothQiyfm2sbxPeY3bAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MANDALA%E2%80%94Visual+Exploration+of+Anomalies+in+Industrial+Multivariate+Time+Series+Data&rft.jtitle=Computer+graphics+forum&rft.au=Suschnigg%2C+J.&rft.au=Mutlu%2C+B.&rft.au=Koutroulis%2C+G.&rft.au=Hussain%2C+H.&rft.date=2025-02-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=44&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fcgf.70000&rft.externalDBID=10.1111%252Fcgf.70000&rft.externalDocID=CGF70000 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |