Synthesis and Characterization of La(Ce, Ba)NiO3 Perovskite-Type Oxides
In this paper, an attempt was made to synthesize LaNiO 3 , CeNiO 3 , and BaNiO 3 , and Ce 3+ and Ba 2+ co-substituted LaNiO 3 . These samples were further subjected to various material characterization techniques in order to evaluate their physio-chemical properties. Scanning electron microscope (SE...
Saved in:
Published in | Journal of superconductivity and novel magnetism Vol. 35; no. 7; pp. 2107 - 2118 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, an attempt was made to synthesize LaNiO
3
, CeNiO
3
, and BaNiO
3
, and Ce
3+
and Ba
2+
co-substituted LaNiO
3
. These samples were further subjected to various material characterization techniques in order to evaluate their physio-chemical properties. Scanning electron microscope (SEM) images showed large chunks of aggregated nanoparticles with minute voids. The EDX-derived atomic composition deviated from the nominal composition suggesting the occurrence of multiple phases. In addition, transmission electron microscope (TEM) images revealed that the samples exhibit uneven spherical shape with a high degree of aggregation. The Fourier transformed-infrared (FT-IR) spectra of the synthesized samples show vibrations of the BO
6
octahedral indicating the presence of Ni–O bonds. In addition, metal-carboxyl vibrations were identified from the peaks at 1400 and 860 cm
−1
. Optical diffuse reflectance spectra (DRS) showed certain peaks originating from the O
2−
(2
p
)
→
Ni
2+
(3
d
) charge transfer. The X-ray powder diffraction (XRPD) analysis revealed the existence of multiple phases for the samples CeNiO
3
, BaNiO
3
, and La(Ce, Ba)NiO
3
. Moreover, La(Ce, Ba)NiO
3
contained four phases showing that the co-substitution of Ba
2+
and Ce
3+
into LaNiO
3
may require more sophisticated methodologies. The sample BaNiO
3
showed maximum weight loss, due to the existence of carbonate phase. The dielectric properties decreased with increasing frequency, while the ac electrical conductivity enhanced with increasing frequencies obeying the Maxwell–Wagner two-layer model in accordance with Koop’s phenomenological theory. |
---|---|
AbstractList | In this paper, an attempt was made to synthesize LaNiO
3
, CeNiO
3
, and BaNiO
3
, and Ce
3+
and Ba
2+
co-substituted LaNiO
3
. These samples were further subjected to various material characterization techniques in order to evaluate their physio-chemical properties. Scanning electron microscope (SEM) images showed large chunks of aggregated nanoparticles with minute voids. The EDX-derived atomic composition deviated from the nominal composition suggesting the occurrence of multiple phases. In addition, transmission electron microscope (TEM) images revealed that the samples exhibit uneven spherical shape with a high degree of aggregation. The Fourier transformed-infrared (FT-IR) spectra of the synthesized samples show vibrations of the BO
6
octahedral indicating the presence of Ni–O bonds. In addition, metal-carboxyl vibrations were identified from the peaks at 1400 and 860 cm
−1
. Optical diffuse reflectance spectra (DRS) showed certain peaks originating from the O
2−
(2
p
)
→
Ni
2+
(3
d
) charge transfer. The X-ray powder diffraction (XRPD) analysis revealed the existence of multiple phases for the samples CeNiO
3
, BaNiO
3
, and La(Ce, Ba)NiO
3
. Moreover, La(Ce, Ba)NiO
3
contained four phases showing that the co-substitution of Ba
2+
and Ce
3+
into LaNiO
3
may require more sophisticated methodologies. The sample BaNiO
3
showed maximum weight loss, due to the existence of carbonate phase. The dielectric properties decreased with increasing frequency, while the ac electrical conductivity enhanced with increasing frequencies obeying the Maxwell–Wagner two-layer model in accordance with Koop’s phenomenological theory. |
Author | Madhu, G. M. Kashyap, Shreyas J. Sankannavar, Ravi |
Author_xml | – sequence: 1 givenname: Shreyas J. orcidid: 0000-0002-0074-1226 surname: Kashyap fullname: Kashyap, Shreyas J. email: s.j.kashyap98@gmail.com organization: Centre for Advanced Materials Technology, M. S. Ramaiah Institute of Technology, MSR Nagar, MSRIT Post – sequence: 2 givenname: Ravi surname: Sankannavar fullname: Sankannavar, Ravi organization: Centre for Advanced Materials Technology, M. S. Ramaiah Institute of Technology, MSR Nagar, MSRIT Post, Department of Chemical Engineering, M. S. Ramaiah Institute of Technology, MSR Nagar, MSRIT Post – sequence: 3 givenname: G. M. surname: Madhu fullname: Madhu, G. M. organization: Centre for Advanced Materials Technology, M. S. Ramaiah Institute of Technology, MSR Nagar, MSRIT Post, Department of Chemical Engineering, M. S. Ramaiah Institute of Technology, MSR Nagar, MSRIT Post |
BookMark | eNp9kD1PwzAQhi0EEm3hDzB5BAmDvxInI0RQkCqKRJktx75Ql5JUtkGUX09oEQNDp7vhnvf0PkO033YtIHTC6AWjVF1GRktZEMo5oTlnJRF7aMCyTBFWSrX_t4vyEA1jXFAqM0HzARo_rds0h-gjNq3D1dwEYxME_2WS71rcNXhiTis4x9fm7MFPBX6E0H3EV5-AzNYrwNNP7yAeoYPGLCMc_84Rer69mVV3ZDId31dXE2I5Z4kYxUXhakEbVitbqNpIWpost4UFkGXOlKtB5K52jeH9oXVOgeRQCGutrI0YIb7NtaGLMUCjV8G_mbDWjOofFXqrQvcq9EaFFj1U_IOsT5t-KRi_3I2KLRr7P-0LBL3o3kPbV9xFfQMi9nXt |
CitedBy_id | crossref_primary_10_1007_s10854_023_11193_0 crossref_primary_10_1080_10667857_2024_2330279 crossref_primary_10_1016_j_ceramint_2023_03_224 crossref_primary_10_1134_S1063782624602267 crossref_primary_10_1149_2162_8777_ad57f2 crossref_primary_10_1007_s12648_023_02906_6 crossref_primary_10_1021_acsanm_3c01443 crossref_primary_10_1016_j_jre_2023_03_003 crossref_primary_10_1016_j_apt_2024_104383 crossref_primary_10_1016_j_nxnano_2024_100050 crossref_primary_10_1039_D3DT03280A crossref_primary_10_1007_s10562_024_04864_y crossref_primary_10_1002_est2_630 crossref_primary_10_1016_j_inoche_2022_110200 |
Cites_doi | 10.1016/j.jpowsour.2019.05.007 10.1107/S0021889891010804 10.1002/andp.19133450502 10.1039/c6ta00603e 10.1016/j.jallcom.2019.01.325 10.1107/S0021889869006558 10.1154/1.2179804 10.1016/j.apcata.2016.05.013 10.1016/j.ceramint.2017.03.061 10.1038/267673a0 10.1007/s43207-019-00003-1 10.1002/jctb.5317 10.1021/acscatal.9b02408 10.1016/j.ceramint.2018.11.102 10.1039/d0ee00092b 10.1021/acsami.6b00650 10.1021/acs.nanolett.0c00553 10.1016/j.ijhydene.2017.08.092 10.1021/jp512722x 10.1107/S0021889898006876 10.1016/j.materresbull.2006.02.026 10.1021/acs.chemmater.5b04457 10.1109/LED.2018.2865776 10.1016/j.ceramint.2019.05.075 10.1021/jacs.5b11713 10.1038/nature17653 10.1107/S0021889898009856 10.1021/acscatal.5b01667 10.1021/jacs.0c04643 10.1021/acsami.1c04903 10.1016/j.jallcom.2018.01.022 10.1016/j.apcatb.2017.02.066 10.1016/j.memsci.2016.07.043 10.1021/acsami.9b01851 10.1016/j.ceramint.2020.11.033 10.1021/acs.jpclett.8b02892 10.1016/j.jpcs.2018.09.011 10.1021/cr980129f 10.1021/acs.energyfuels.0c01038 10.1016/j.jallcom.2014.12.137 10.1021/acs.chemmater.8b04380 10.1002/pssb.19660150224 10.1039/c9nj02282a 10.1016/j.ijhydene.2020.01.164 10.1021/cs500880w 10.1016/j.ijhydene.2018.02.128 10.1149/2.0301815jes 10.1007/s10971-011-2582-9 10.1016/j.jssc.2021.122085 10.1002/celc.202000451 10.3390/en13010036 10.1016/j.apcatb.2020.119046 10.3390/ma12030511 10.1016/j.cej.2020.125516 10.1016/j.apcatb.2019.117817 10.1039/c7ta03001k 10.1016/j.molcata.2005.02.015 10.1016/j.physe.2020.114503 10.1088/0022-3727/49/44/44LT02 10.1016/j.physe.2019.113871 10.1016/j.solidstatesciences.2019.06.011 10.1088/2053-1591/ab4629 10.1016/j.cej.2019.03.066 10.1016/j.matlet.2019.05.090 10.1002/aenm.202000459 10.1080/14786437008221061 10.1016/j.electacta.2017.02.155 10.1126/sciadv.1603206 10.1016/j.ijhydene.2020.08.105 10.1016/j.physe.2021.114873 10.1016/j.surfin.2021.101259 10.1039/d0cs00639d 10.3390/catal10040409 10.1038/srep26491 10.1002/adfm.201803712 10.1107/S0021889898006888 10.1016/j.spmi.2021.106852 10.1088/2053-1591/aaecf7 10.1126/science.aam7092 10.1016/j.jallcom.2020.157002 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10948-022-06219-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1557-1947 |
EndPage | 2118 |
ExternalDocumentID | 10_1007_s10948_022_06219_3 |
GroupedDBID | -5F -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 2.D 203 29L 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCSS ARMRJ AXYYD AYJHY AZFZN B-. BA0 BDATZ BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L8X LAK LLZTM MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS O9- O93 O9G O9I O9J OAM P19 P9T PF0 PT4 PT5 QF4 QM1 QN7 QO4 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WIP WK8 YLTOR Z45 Z7R Z7V Z7X Z7Y Z83 Z88 Z8M Z8N Z8P Z8R Z8S Z8W Z92 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c221t-a7238db30f1b7c87ba409a56c8cee49617dbe36dbdfa28dbcdd7e42e83ccc4ba3 |
IEDL.DBID | U2A |
ISSN | 1557-1939 |
IngestDate | Tue Jul 01 01:54:10 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 Fri Feb 21 02:46:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Combustion synthesis Nickelates Dielectric constant Rietveld refinement AC conductivity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c221t-a7238db30f1b7c87ba409a56c8cee49617dbe36dbdfa28dbcdd7e42e83ccc4ba3 |
ORCID | 0000-0002-0074-1226 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1007_s10948_022_06219_3 crossref_citationtrail_10_1007_s10948_022_06219_3 springer_journals_10_1007_s10948_022_06219_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220700 2022-07-00 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 7 year: 2022 text: 20220700 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of superconductivity and novel magnetism |
PublicationTitleAbbrev | J Supercond Nov Magn |
PublicationYear | 2022 |
Publisher | Springer US |
Publisher_xml | – name: Springer US |
References | Petrie, Cooper, Freeland, Meyer, Zhang, Lutterman, Lee (CR21) 2016; 138 López, Gómez (CR74) 2012; 61 Kubelka, Munk (CR73) 1931; 12 Li, Jiang, Tang, Zhang, Zheng (CR83) 2018; 43 Ramadoss, Zuo, Sun, Zhang, Lin, Bhaskar, Shin, Alam, Guha, Weinstein, Ramanathan (CR59) 2018; 39 CR39 CR37 CR36 CR78 CR77 CR32 CR76 CR30 Chen, He, Li, An, Shi, Li (CR1) 2017; 209 CR71 Jiang, Cao, Liu, Zhang, Hong, Jin (CR16) 2020; 34 CR70 Zhang, Pei, Chang, Chen, Liu, Zhao, Mu, Gong (CR33) 2020; 142 Yang, Hu, Fang, Hoang, Li, Yang, Liang, Wu, Hu, Xiao, Pan, Luo, Ding, Zhang, Guo (CR38) 2019; 9 Zhou, Guan, Zhou, Ramadoss, Adam, Liu, Lee, Shi, Tsuchiya, Fong, Ramanathan (CR56) 2016; 534 Wang, Liu, Chen, Mao, Shangguan (CR53) 2019; 786 Yan, Fan, Chen, Sun, Yin, Li, Pan, Yu (CR25) 2015; 628 Exner, Nazarenus, Kita, Moos (CR2) 2020; 45 Coşkun, Polat, Coşkun, Durmuş, Çağlar, Türüt (CR31) 2018; 740 Guo, Huang, Zhou, Zuo, Jiang, Zhang, Fu, Bu, Cheng, Sun (CR57) 2021 CR5 CR8 Cheary, Coelho (CR67) 1998; 31 Mccusker, Von Dreele, Cox, Louër, Scardi (CR82) 1999; 32 CR9 CR49 CR46 Mudu, Olsbye, Arstad, Diplas, Li, Fjellvåg (CR12) 2016; 523 CR45 Machado, Scigaj, Gazquez, Rueda, Sánchez-Díaz, Fina, Gibert-Roca, Puig, Obradors, Campoy-Quiles, Coll (CR7) 2019; 31 Sankannavar, Sandeep, Kamath, Suresh, Sarkar (CR43) 2018; 165 CR42 CR41 Rietveld (CR64) 1969; 2 CR40 CR84 Bulemo, Kim (CR4) 2020; 57 Sharma, Mahapatra, Krishnan, Thatcher, Huey, Singh, Ramprasad (CR17) 2016; 4 Malkhandi, Trinh, Manohar, Manivannan, Balasubramanian, Prakash, Narayanan (CR6) 2015; 119 Wagner (CR85) 1913; 345 Cao, Shang, Li, Wang, Liu, Wang, Zhou, Zeng (CR58) 2020; 20 CR80 Toby (CR81) 2006; 21 Zhu, Zhang, Dai (CR11) 2015; 5 Cheary, Coelho (CR66) 1992; 25 Zhang, Chen, Dong, Xu, Hao, Shao (CR35) 2016; 519 CR18 Makuła, Pacia, Macyk (CR79) 2018; 9 CR15 CR14 CR13 Durai, Badhulika (CR47) 2019; 43 Peng, Liu, Dai, Xiao, Song (CR26) 2006; 41 CR55 Peña, Fierro (CR63) 2001; 101 CR10 CR52 Chang, Wang, You, Yang, Abdelsamie, Zhang, Zhou, Gu, Chambers, Wang (CR61) 2019; 11 Zhu, Zhou, Yu, Chen, Liu, Shao (CR27) 2016; 28 CR51 Megarajan, Rayalu, Nishibori, Teraoka, Labhsetwar (CR34) 2015; 5 Jonscher (CR86) 1977; 267 Sankannavar, Sarkar (CR44) 2018; 43 Tauc, Grigorovici, Vancu (CR75) 1966; 15 Bibi, Maqbool, Iqbal, Majid, Kamal, Alwadai, Iqbal (CR48) 2021; 47 Kolisetty, Fu, Koc (CR19) 2017; 43 CR28 Balzar (CR69) 1999; 10 CR24 CR68 CR23 Wu, Xiong (CR72) 2018; 93 CR22 Hossain, Roy, Sakthipandi (CR29) 2019; 45 Jouannaux, Haeussler, Drobek, Ayral, Abanades, Julbe (CR50) 2019; 45 CR65 CR62 Rehman, Shaur, Song, Lim, Hong, Park, Lee (CR20) 2019; 429 Ji, Bi, Zhang, Cao, Zhao (CR3) 2020; 13 Wang, Dash, Chang, You, Feng, He, Jin, Zhou, Ong, Ren, Wang, Chen, Wang (CR60) 2016; 8 Wang, Lin, Zhang, Sun, Zhang, Yang (CR54) 2019; 124 R Sankannavar (6219_CR43) 2018; 165 KW Wagner (6219_CR85) 1913; 345 D Balzar (6219_CR69) 1999; 10 6219_CR39 JR Petrie (6219_CR21) 2016; 138 6219_CR77 6219_CR78 M Coşkun (6219_CR31) 2018; 740 6219_CR32 6219_CR76 P Makuła (6219_CR79) 2018; 9 6219_CR37 SU Rehman (6219_CR20) 2019; 429 6219_CR36 Q Ji (6219_CR3) 2020; 13 K Ramadoss (6219_CR59) 2018; 39 Z Zhang (6219_CR35) 2016; 519 6219_CR70 P Machado (6219_CR7) 2019; 31 6219_CR30 L Li (6219_CR83) 2018; 43 6219_CR71 H Zhu (6219_CR11) 2015; 5 X Zhang (6219_CR33) 2020; 142 6219_CR5 RW Cheary (6219_CR67) 1998; 31 6219_CR9 6219_CR8 J Jouannaux (6219_CR50) 2019; 45 K-L Yan (6219_CR25) 2015; 628 6219_CR45 C Cao (6219_CR58) 2020; 20 6219_CR42 L Durai (6219_CR47) 2019; 43 MA Peña (6219_CR63) 2001; 101 J Exner (6219_CR2) 2020; 45 F Mudu (6219_CR12) 2016; 523 6219_CR49 6219_CR46 6219_CR80 6219_CR40 6219_CR84 6219_CR41 S Malkhandi (6219_CR6) 2015; 119 A Kolisetty (6219_CR19) 2017; 43 HM Rietveld (6219_CR64) 1969; 2 BH Toby (6219_CR81) 2006; 21 PM Bulemo (6219_CR4) 2020; 57 L Chang (6219_CR61) 2019; 11 B Wu (6219_CR72) 2018; 93 LB Mccusker (6219_CR82) 1999; 32 J Chen (6219_CR1) 2017; 209 H Guo (6219_CR57) 2021 6219_CR18 L Wang (6219_CR60) 2016; 8 J Tauc (6219_CR75) 1966; 15 W Wang (6219_CR54) 2019; 124 6219_CR55 P Kubelka (6219_CR73) 1931; 12 6219_CR10 I Bibi (6219_CR48) 2021; 47 6219_CR15 6219_CR13 6219_CR14 R Sankannavar (6219_CR44) 2018; 43 Q Jiang (6219_CR16) 2020; 34 6219_CR51 6219_CR52 A Hossain (6219_CR29) 2019; 45 Y Zhou (6219_CR56) 2016; 534 Y Zhu (6219_CR27) 2016; 28 R López (6219_CR74) 2012; 61 T Peng (6219_CR26) 2006; 41 J Yang (6219_CR38) 2019; 9 6219_CR28 RW Cheary (6219_CR66) 1992; 25 6219_CR22 6219_CR23 6219_CR65 6219_CR24 6219_CR68 AK Jonscher (6219_CR86) 1977; 267 V Sharma (6219_CR17) 2016; 4 6219_CR62 SK Megarajan (6219_CR34) 2015; 5 Y Wang (6219_CR53) 2019; 786 |
References_xml | – volume: 429 start-page: 97 year: 2019 end-page: 104 ident: CR20 article-title: Nano-fabrication of a high-performance LaNiO cathode for solid oxide fuel cells using an electrochemical route publication-title: J. Power Sources. doi: 10.1016/j.jpowsour.2019.05.007 – ident: CR45 – volume: 25 start-page: 109 year: 1992 end-page: 121 ident: CR66 article-title: A fundamental parameters approach to X-ray line-profile fitting publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889891010804 – ident: CR70 – ident: CR22 – volume: 345 start-page: 817 year: 1913 end-page: 855 ident: CR85 article-title: Zur Theorie der unvollkommenen Dielektrika publication-title: Ann. Phys. doi: 10.1002/andp.19133450502 – ident: CR49 – ident: CR68 – volume: 4 start-page: 5605 year: 2016 end-page: 5615 ident: CR17 article-title: Effects of moisture on (La, A)MnO (A = Ca, Sr, and Ba) solid oxide fuel cell cathodes: a first-principles and experimental study publication-title: J. Mater. Chem. A. doi: 10.1039/c6ta00603e – ident: CR39 – ident: CR51 – volume: 786 start-page: 149 year: 2019 end-page: 154 ident: CR53 article-title: Ag loaded on layered perovskite H SrTa O to enhance the selectivity of photocatalytic CO reduction with H O publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.01.325 – volume: 2 start-page: 65 year: 1969 end-page: 71 ident: CR64 article-title: A profile refinement method for nuclear and magnetic structures publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889869006558 – ident: CR80 – volume: 21 start-page: 67 year: 2006 end-page: 70 ident: CR81 article-title: R factors in Rietveld analysis: how good is good enough? publication-title: Powder Diffr. doi: 10.1154/1.2179804 – ident: CR77 – ident: CR8 – volume: 523 start-page: 171 year: 2016 end-page: 181 ident: CR12 article-title: Aluminium substituted lanthanum based perovskite type oxides, non-stoichiometry and performance in methane partial oxidation by framework oxygen publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2016.05.013 – volume: 43 start-page: 7647 year: 2017 end-page: 7652 ident: CR19 article-title: Development of La(CrCoFeNi)O system perovskites as interconnect and cathode materials for solid oxide fuel cells publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.03.061 – ident: CR84 – volume: 267 start-page: 673 year: 1977 end-page: 679 ident: CR86 article-title: The “universal” dielectric response publication-title: Nature doi: 10.1038/267673a0 – volume: 57 start-page: 24 year: 2020 end-page: 39 ident: CR4 article-title: Recent advances in ABO perovskites: their gas-sensing performance as resistive-type gas sensors publication-title: J. Korean Ceram. Soc. doi: 10.1007/s43207-019-00003-1 – volume: 93 start-page: 43 year: 2018 end-page: 53 ident: CR72 article-title: A novel low-temperature NO removal approach with •OH from catalytic decomposition of H2O2 over La Ca FeO oxides publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.5317 – volume: 9 start-page: 9751 year: 2019 end-page: 9763 ident: CR38 article-title: Oxygen vacancy promoted o2 activation over perovskite oxide for low-temperature co oxidation publication-title: ACS Catal. doi: 10.1021/acscatal.9b02408 – ident: CR42 – ident: CR46 – ident: CR71 – volume: 45 start-page: 4152 year: 2019 end-page: 4166 ident: CR29 article-title: The external and internal influences on the tuning of the properties of perovskites: an overview publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.11.102 – volume: 13 start-page: 1408 year: 2020 end-page: 1428 ident: CR3 article-title: The role of oxygen vacancies of ABO perovskite oxides in the oxygen reduction reaction publication-title: Energy Environ. Sci. doi: 10.1039/d0ee00092b – volume: 8 start-page: 9769 year: 2016 end-page: 9776 ident: CR60 article-title: Oxygen vacancy induced room-temperature metal-insulator transition in nickelate films and its potential application in photovoltaics publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.6b00650 – ident: CR15 – volume: 20 start-page: 2837 year: 2020 end-page: 2842 ident: CR58 article-title: Dimensionality control of electrocatalytic activity in perovskite nickelates publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00553 – volume: 43 start-page: 4682 year: 2018 end-page: 4690 ident: CR44 article-title: The electrocatalysis of oxygen evolution reaction on La Ca FeO perovskites in alkaline solution publication-title: Int. J. Hydrogen Energy. doi: 10.1016/j.ijhydene.2017.08.092 – ident: CR9 – ident: CR32 – volume: 119 start-page: 8004 year: 2015 end-page: 8013 ident: CR6 article-title: Design insights for tuning the electrocatalytic activity of perovskite oxides for the oxygen evolution reaction publication-title: J. Phys. Chem. C. doi: 10.1021/jp512722x – ident: CR36 – volume: 31 start-page: 851 year: 1998 end-page: 861 ident: CR67 article-title: Axial divergence in a conventional X-ray powder diffractometer publication-title: I. Theoretical foundations. J. Appl. Crystallogr. doi: 10.1107/S0021889898006876 – ident: CR78 – ident: CR5 – volume: 41 start-page: 1638 year: 2006 end-page: 1645 ident: CR26 article-title: Effect of acidity on the glycine-nitrate combustion synthesis of nanocrystalline alumina powder publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2006.02.026 – ident: CR18 – volume: 28 start-page: 1691 year: 2016 end-page: 1697 ident: CR27 article-title: Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04457 – volume: 39 start-page: 1500 year: 2018 end-page: 1503 ident: CR59 article-title: Proton-doped strongly correlated perovskite nickelate memory devices publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2018.2865776 – ident: CR14 – volume: 45 start-page: 15636 year: 2019 end-page: 15648 ident: CR50 article-title: Lanthanum manganite perovskite ceramic powders for CO splitting: influence of Pechini synthesis parameters on sinterability and reactivity publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.05.075 – volume: 138 start-page: 2488 year: 2016 end-page: 2491 ident: CR21 article-title: Enhanced bifunctional oxygen catalysis in strained LaNiO perovskites publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11713 – ident: CR37 – volume: 534 start-page: 231 year: 2016 end-page: 234 ident: CR56 article-title: Strongly correlated perovskite fuel cells publication-title: Nature doi: 10.1038/nature17653 – ident: CR30 – volume: 32 start-page: 36 year: 1999 end-page: 50 ident: CR82 article-title: Rietveld refinement guidelines publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889898009856 – volume: 5 start-page: 6370 year: 2015 end-page: 6385 ident: CR11 article-title: Recent advances of lanthanum-based perovskite oxides for catalysis publication-title: ACS Catal. doi: 10.1021/acscatal.5b01667 – ident: CR10 – volume: 142 start-page: 11540 year: 2020 end-page: 11549 ident: CR33 article-title: FeO6 octahedral distortion activates lattice oxygen in perovskite ferrite for methane partial oxidation coupled with CO splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c04643 – year: 2021 ident: CR57 article-title: Unusual role of point defects in perovskite nickelate electrocatalysts publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.1c04903 – volume: 740 start-page: 1012 year: 2018 end-page: 1023 ident: CR31 article-title: Frequency and temperature dependent electrical and dielectric properties of LaCrO and Ir doped LaCrO perovskite compounds publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.01.022 – ident: CR40 – volume: 10 start-page: 94 year: 1999 end-page: 126 ident: CR69 article-title: Voigt-function model in diffraction line-broadening analysis publication-title: Int. union Crystallogr. Monogr. Crystallogr. – volume: 209 start-page: 146 year: 2017 end-page: 154 ident: CR1 article-title: Visible-light-enhanced photothermocatalytic activity of ABO -type perovskites for the decontamination of gaseous styrene publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.02.066 – ident: CR23 – volume: 12 start-page: 593 year: 1931 end-page: 601 ident: CR73 article-title: Ein Beitrag zur Optik der Farbanstriche publication-title: Z. Tech. Phys. – volume: 519 start-page: 11 year: 2016 end-page: 21 ident: CR35 article-title: Understanding the doping effect toward the design of CO -tolerant perovskite membranes with enhanced oxygen permeability publication-title: J. Memb. Sci. doi: 10.1016/j.memsci.2016.07.043 – volume: 11 start-page: 16191 year: 2019 end-page: 16197 ident: CR61 article-title: Tuning photovoltaic performance of perovskite nickelates heterostructures by changing the A-site rare-earth element publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.9b01851 – volume: 47 start-page: 5822 year: 2021 end-page: 5831 ident: CR48 article-title: La Gd Cr Ni O perovskite nanoparticles synthesis by micro-emulsion route: dielectric, magnetic and photocatalytic properties evaluation publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.11.033 – volume: 9 start-page: 6814 year: 2018 end-page: 6817 ident: CR79 article-title: How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b02892 – ident: CR65 – volume: 124 start-page: 144 year: 2019 end-page: 150 ident: CR54 article-title: Synthesis, morphology and electrochemical performances of perovskite-type oxide LaxSr FeO nanofibers prepared by electrospinning publication-title: J. Phys. Chem. Solids. doi: 10.1016/j.jpcs.2018.09.011 – volume: 101 start-page: 1981 year: 2001 end-page: 2017 ident: CR63 article-title: Chemical structures and performance of perovskite oxides publication-title: Chem. Rev. doi: 10.1021/cr980129f – volume: 34 start-page: 8732 year: 2020 end-page: 8739 ident: CR16 article-title: Chemical looping combustion over a lanthanum nickel perovskite-type oxygen carrier with facilitated O -transport publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c01038 – volume: 628 start-page: 429 year: 2015 end-page: 432 ident: CR25 article-title: Perovskite (La, Sr)MnO3 with tunable electrical properties by the Sr-doping effect publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.12.137 – ident: CR52 – ident: CR13 – volume: 31 start-page: 947 year: 2019 end-page: 954 ident: CR7 article-title: Band gap tuning of solution-processed ferroelectric perovskite BiFe Co O thin films publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b04380 – volume: 15 start-page: 627 year: 1966 end-page: 637 ident: CR75 article-title: Optical properties and electronic structure of amorphous germanium publication-title: Phys. status solidi. doi: 10.1002/pssb.19660150224 – volume: 43 start-page: 11994 year: 2019 end-page: 12003 ident: CR47 article-title: A facile, solid-state reaction assisted synthesis of a berry-like NaNbO perovskite structure for binder-free, highly selective sensing of dopamine in blood samples publication-title: New J. Chem. doi: 10.1039/c9nj02282a – ident: CR55 – volume: 45 start-page: 10000 year: 2020 end-page: 10016 ident: CR2 article-title: Dense Y-doped ion conducting perovskite films of BaZrO , BaSnO , and BaCeO for SOFC applications produced by powder aerosol deposition at room temperature publication-title: Int. J. Hydrogen Energy. doi: 10.1016/j.ijhydene.2020.01.164 – ident: CR76 – volume: 5 start-page: 301 year: 2015 end-page: 309 ident: CR34 article-title: Effects of surface and bulk silver on PrMnO perovskite for CO and soot oxidation: experimental evidence for the chemical state of silver publication-title: ACS Catal. doi: 10.1021/cs500880w – volume: 43 start-page: 6795 year: 2018 end-page: 6803 ident: CR83 article-title: Hydrogen generation by acetic acid steam reforming over Ni-based catalysts derived from La Ce NiO perovskite publication-title: Int. J. Hydrogen Energy. doi: 10.1016/j.ijhydene.2018.02.128 – ident: CR28 – ident: CR41 – ident: CR62 – ident: CR24 – volume: 165 start-page: J3236 year: 2018 end-page: J3245 ident: CR43 article-title: Impact of strontium-substitution on oxygen evolution reaction of lanthanum nickelates in alkaline solution publication-title: J. Electrochem. Soc. doi: 10.1149/2.0301815jes – volume: 61 start-page: 1 year: 2012 end-page: 7 ident: CR74 article-title: Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO : a comparative study publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-011-2582-9 – volume: 45 start-page: 10000 year: 2020 ident: 6219_CR2 publication-title: Int. J. Hydrogen Energy. doi: 10.1016/j.ijhydene.2020.01.164 – ident: 6219_CR52 doi: 10.1016/j.jssc.2021.122085 – ident: 6219_CR15 doi: 10.1002/celc.202000451 – ident: 6219_CR45 doi: 10.3390/en13010036 – volume: 61 start-page: 1 year: 2012 ident: 6219_CR74 publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-011-2582-9 – volume: 57 start-page: 24 year: 2020 ident: 6219_CR4 publication-title: J. Korean Ceram. Soc. doi: 10.1007/s43207-019-00003-1 – volume: 31 start-page: 947 year: 2019 ident: 6219_CR7 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b04380 – ident: 6219_CR51 doi: 10.1016/j.apcatb.2020.119046 – volume: 209 start-page: 146 year: 2017 ident: 6219_CR1 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.02.066 – volume: 9 start-page: 6814 year: 2018 ident: 6219_CR79 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b02892 – ident: 6219_CR70 doi: 10.3390/ma12030511 – volume: 43 start-page: 6795 year: 2018 ident: 6219_CR83 publication-title: Int. J. Hydrogen Energy. doi: 10.1016/j.ijhydene.2018.02.128 – volume: 39 start-page: 1500 year: 2018 ident: 6219_CR59 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2018.2865776 – volume: 45 start-page: 15636 year: 2019 ident: 6219_CR50 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.05.075 – volume: 43 start-page: 7647 year: 2017 ident: 6219_CR19 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.03.061 – volume: 47 start-page: 5822 year: 2021 ident: 6219_CR48 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.11.033 – volume: 101 start-page: 1981 year: 2001 ident: 6219_CR63 publication-title: Chem. Rev. doi: 10.1021/cr980129f – volume: 119 start-page: 8004 year: 2015 ident: 6219_CR6 publication-title: J. Phys. Chem. C. doi: 10.1021/jp512722x – volume: 21 start-page: 67 year: 2006 ident: 6219_CR81 publication-title: Powder Diffr. doi: 10.1154/1.2179804 – volume: 13 start-page: 1408 year: 2020 ident: 6219_CR3 publication-title: Energy Environ. Sci. doi: 10.1039/d0ee00092b – volume: 28 start-page: 1691 year: 2016 ident: 6219_CR27 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04457 – volume: 10 start-page: 94 year: 1999 ident: 6219_CR69 publication-title: Int. union Crystallogr. Monogr. Crystallogr. – volume: 12 start-page: 593 year: 1931 ident: 6219_CR73 publication-title: Z. Tech. Phys. – ident: 6219_CR23 doi: 10.1016/j.cej.2020.125516 – volume: 93 start-page: 43 year: 2018 ident: 6219_CR72 publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.5317 – ident: 6219_CR65 – volume: 740 start-page: 1012 year: 2018 ident: 6219_CR31 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.01.022 – ident: 6219_CR37 doi: 10.1016/j.apcatb.2019.117817 – volume: 4 start-page: 5605 year: 2016 ident: 6219_CR17 publication-title: J. Mater. Chem. A. doi: 10.1039/c6ta00603e – ident: 6219_CR18 doi: 10.1039/c7ta03001k – volume: 628 start-page: 429 year: 2015 ident: 6219_CR25 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.12.137 – volume: 345 start-page: 817 year: 1913 ident: 6219_CR85 publication-title: Ann. Phys. doi: 10.1002/andp.19133450502 – ident: 6219_CR71 doi: 10.1016/j.molcata.2005.02.015 – volume: 45 start-page: 4152 year: 2019 ident: 6219_CR29 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.11.102 – volume: 8 start-page: 9769 year: 2016 ident: 6219_CR60 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.6b00650 – volume: 2 start-page: 65 year: 1969 ident: 6219_CR64 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889869006558 – ident: 6219_CR39 doi: 10.1016/j.physe.2020.114503 – year: 2021 ident: 6219_CR57 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.1c04903 – volume: 142 start-page: 11540 year: 2020 ident: 6219_CR33 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c04643 – ident: 6219_CR62 doi: 10.1088/0022-3727/49/44/44LT02 – ident: 6219_CR41 doi: 10.1016/j.physe.2019.113871 – ident: 6219_CR46 doi: 10.1016/j.solidstatesciences.2019.06.011 – ident: 6219_CR14 doi: 10.1088/2053-1591/ab4629 – volume: 5 start-page: 301 year: 2015 ident: 6219_CR34 publication-title: ACS Catal. doi: 10.1021/cs500880w – volume: 124 start-page: 144 year: 2019 ident: 6219_CR54 publication-title: J. Phys. Chem. Solids. doi: 10.1016/j.jpcs.2018.09.011 – volume: 786 start-page: 149 year: 2019 ident: 6219_CR53 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.01.325 – volume: 25 start-page: 109 year: 1992 ident: 6219_CR66 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889891010804 – volume: 43 start-page: 4682 year: 2018 ident: 6219_CR44 publication-title: Int. J. Hydrogen Energy. doi: 10.1016/j.ijhydene.2017.08.092 – ident: 6219_CR8 doi: 10.1016/j.cej.2019.03.066 – volume: 43 start-page: 11994 year: 2019 ident: 6219_CR47 publication-title: New J. Chem. doi: 10.1039/c9nj02282a – volume: 20 start-page: 2837 year: 2020 ident: 6219_CR58 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00553 – volume: 267 start-page: 673 year: 1977 ident: 6219_CR86 publication-title: Nature doi: 10.1038/267673a0 – volume: 534 start-page: 231 year: 2016 ident: 6219_CR56 publication-title: Nature doi: 10.1038/nature17653 – ident: 6219_CR32 doi: 10.1016/j.matlet.2019.05.090 – ident: 6219_CR5 doi: 10.1002/aenm.202000459 – volume: 11 start-page: 16191 year: 2019 ident: 6219_CR61 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.9b01851 – ident: 6219_CR76 doi: 10.1080/14786437008221061 – ident: 6219_CR22 doi: 10.1016/j.electacta.2017.02.155 – ident: 6219_CR78 – ident: 6219_CR36 doi: 10.1126/sciadv.1603206 – ident: 6219_CR49 doi: 10.1016/j.ijhydene.2020.08.105 – volume: 9 start-page: 9751 year: 2019 ident: 6219_CR38 publication-title: ACS Catal. doi: 10.1021/acscatal.9b02408 – volume: 138 start-page: 2488 year: 2016 ident: 6219_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11713 – volume: 429 start-page: 97 year: 2019 ident: 6219_CR20 publication-title: J. Power Sources. doi: 10.1016/j.jpowsour.2019.05.007 – ident: 6219_CR40 doi: 10.1016/j.physe.2021.114873 – ident: 6219_CR55 doi: 10.1016/j.surfin.2021.101259 – volume: 34 start-page: 8732 year: 2020 ident: 6219_CR16 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c01038 – volume: 15 start-page: 627 year: 1966 ident: 6219_CR75 publication-title: Phys. status solidi. doi: 10.1002/pssb.19660150224 – volume: 523 start-page: 171 year: 2016 ident: 6219_CR12 publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2016.05.013 – ident: 6219_CR10 doi: 10.1039/d0cs00639d – ident: 6219_CR84 – volume: 32 start-page: 36 year: 1999 ident: 6219_CR82 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889898009856 – ident: 6219_CR9 doi: 10.3390/catal10040409 – volume: 41 start-page: 1638 year: 2006 ident: 6219_CR26 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2006.02.026 – volume: 5 start-page: 6370 year: 2015 ident: 6219_CR11 publication-title: ACS Catal. doi: 10.1021/acscatal.5b01667 – ident: 6219_CR30 doi: 10.1038/srep26491 – ident: 6219_CR77 – volume: 165 start-page: J3236 year: 2018 ident: 6219_CR43 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0301815jes – volume: 31 start-page: 851 year: 1998 ident: 6219_CR67 publication-title: I. Theoretical foundations. J. Appl. Crystallogr. doi: 10.1107/S0021889898006876 – ident: 6219_CR28 doi: 10.1002/adfm.201803712 – ident: 6219_CR68 doi: 10.1107/S0021889898006888 – volume: 519 start-page: 11 year: 2016 ident: 6219_CR35 publication-title: J. Memb. Sci. doi: 10.1016/j.memsci.2016.07.043 – ident: 6219_CR42 doi: 10.1016/j.spmi.2021.106852 – ident: 6219_CR80 doi: 10.1088/2053-1591/aaecf7 – ident: 6219_CR13 doi: 10.1126/science.aam7092 – ident: 6219_CR24 doi: 10.1016/j.jallcom.2020.157002 |
SSID | ssj0045306 |
Score | 2.3674119 |
Snippet | In this paper, an attempt was made to synthesize LaNiO
3
, CeNiO
3
, and BaNiO
3
, and Ce
3+
and Ba
2+
co-substituted LaNiO
3
. These samples were further... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2107 |
SubjectTerms | Characterization and Evaluation of Materials Condensed Matter Physics Magnetic Materials Magnetism Original Paper Physics Physics and Astronomy Strongly Correlated Systems Superconductivity |
Title | Synthesis and Characterization of La(Ce, Ba)NiO3 Perovskite-Type Oxides |
URI | https://link.springer.com/article/10.1007/s10948-022-06219-3 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA7aIngRV6xLycGDYgOdSWbJsdYuaBehFuppSDIJFGQqnSr6732ZzlQLUvCUy0sOX_Lyvpe8BaErzYWUgebE-HVGmO-AShkTEikl11xyKrNE4f7A747Zw8Sb5ElhaRHtXnxJZjf1r2Q3zkJio8_rPugZoduo7FnfHU7x2G0U9y_zaNZREwxlQICe8DxV5u811s3R-l9oZmLa-2gv54a4sdzMA7Slk0O0k8VoqvQIdUZfCdC1dJpicP9xc1VqeZlJiWcG98R1U9fwnbgZTIcUP-n57CO177PE-pt4-DmNdXqMxu3Wc7NL8j4IRLmusyDCNgaLJa0bRwYqDKQAp0x4vgrBwjEOHCSWmvqxjI1wQVDFcaCZq0OqlGJS0BNUSmaJPkXY58wAQXTCGIAwruCSKXBRYSkR1GFmBTkFHJHKi4TbXhWv0U95YwthBBBGGYQRraDb1Zy3ZYmMjdK1AuUoV5d0g_jZ_8TP0a6b7a6Np71ApcX8XV8Ca1jIKio37vu9kR07L4-tanZovgHAe7rB |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60InoRn1ife_Cg2IUku02yx1rUqn0IttBb2CcUJJWmiv57Z9OkWpCC99k9fJvZ-SY73wxCF4YLKSPDiQ09Rljog0tZGxMpJTdccipzoXCnG7YG7HFYHxaisKysdi-fJPOb-pfYjbOYuOpzLwQ_I3QVrQEZiF0h1yBolPcvq9N8oiYEyogAPeGFVObvPRbD0eJbaB5i7rbRVsENcWN2mDtoxaS7aD2v0VTZHrp_-UqBrmWjDEP6j5vzVsszJSUeW9wWl01TwzfiqjvqUfxsJuOPzP2fJS7fxL3PkTbZPhrc3fabLVLMQSAqCPwpEW4wmJbUs76MVBxJAUmZqIcqhgjHOHAQLQ0NtdRWBGCotI4MC0xMlVJMCnqAKuk4NYcIh5xZIIh-rAEIGwgumYIUFbYSkQcrq8gv4UhU0STczap4TX7aGzsIE4AwySFMaBVdz9e8zVpkLLWulSgnhbtkS8yP_md-jjZa_U47aT90n47RZpCftKutPUGV6eTdnAKDmMqz_IP5Bvw6uow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4Uo_FifEZ89uBBI43stuxuj4giKgKJknDb9JmQmIWwaPTfO10WhMSQeJ_28PUx37TzzSB0YbiQMjSc2KDMCAs8OFLWRkRKyQ2XnMpMKPzSChpd9tSr9OZU_Fm2-_RLcqJpcFWakvHNUNubOeEbZxFxmejlAM4coatoDa5jz-3rrl-d3sWsQrPumuA0QwJUheeymb_nWHRNi_-imbupb6OtnCfi6mRhd9CKSXbRepavqdI99PD6nQB1S_spFonGtVnZ5YmqEg8sborLminhW3HV6rcp7pjR4DN1b7XExZ64_dXXJt1H3fr9W61B8p4IRPm-NybCNQnTkpatJ0MVhVJAgCYqgYrA2zEOfERLQwMttRU-GCqtQ8N8E1GlFJOCHqBCMkjMIcIBZxbIohdpAML6gkumIFyFqURYhpFF5E3hiFVeMNz1rXiPf0sdOwhjgDDOIIxpEV3Pxgwn5TKWWpemKMf50UmXmB_9z_wcbXTu6nHzsfV8jDb9bKFdmu0JKoxHH-YUyMRYnmX75Qc3b77I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+Characterization+of+La%28Ce%2C+Ba%29NiO3+Perovskite-Type+Oxides&rft.jtitle=Journal+of+superconductivity+and+novel+magnetism&rft.au=Kashyap%2C+Shreyas+J.&rft.au=Sankannavar%2C+Ravi&rft.au=Madhu%2C+G.+M.&rft.date=2022-07-01&rft.pub=Springer+US&rft.issn=1557-1939&rft.eissn=1557-1947&rft.volume=35&rft.issue=7&rft.spage=2107&rft.epage=2118&rft_id=info:doi/10.1007%2Fs10948-022-06219-3&rft.externalDocID=10_1007_s10948_022_06219_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-1939&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-1939&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-1939&client=summon |