Improved rolling contact fatigue performance of selective electron beam melted Ti6Al4V with the as-built surface using induction-heating assisted ultrasonic surface rolling process
[Display omitted] •IH-USRP can further improve the surface integrity of samples.•Different kinds of oxides were induced by IH-USRP.•The RCF performance was greatly promoted by 196% using IH-USRP. In this paper, the effects of induction-heating assisted surface ultrasonic rolling processing (IH-USRP)...
Saved in:
Published in | Applied surface science Vol. 617; p. 155467 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
30.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0169-4332 |
DOI | 10.1016/j.apsusc.2022.155467 |
Cover
Abstract | [Display omitted]
•IH-USRP can further improve the surface integrity of samples.•Different kinds of oxides were induced by IH-USRP.•The RCF performance was greatly promoted by 196% using IH-USRP.
In this paper, the effects of induction-heating assisted surface ultrasonic rolling processing (IH-USRP) on the rolling contact fatigue (RCF) performance of selective electron beam melting (SEBM) built Ti6Al4V was evaluated with respect to surface integrity, chemical composition, and microstructure were investigated. At the room temperature (RT), the surface roughness and line roughness (Ra and Rz) of the USRP treated sample are reduced by 92 % and 95 %, 78 %, and 66 % compared to the untreated sample, respectively, and the surface hardness is also increased by 17 %. The surface quality and hardness are further improved when samples treated by IH-USRP, and the oxide mixture could be found on the sample surface. The surface roughness and line roughness (Ra and Rz) of the IH-USRP treated sample at 650 °C were reduced by 96 % and 98 %, 85 %, and 83 %, respectively, while the surface hardness was 33 % higher than that of the untreated one. The surface quality improvement reduces the stress concentration, and the increased surface hardness means higher critical shear stress, which promotes the average RCF life by 196 %. |
---|---|
AbstractList | [Display omitted]
•IH-USRP can further improve the surface integrity of samples.•Different kinds of oxides were induced by IH-USRP.•The RCF performance was greatly promoted by 196% using IH-USRP.
In this paper, the effects of induction-heating assisted surface ultrasonic rolling processing (IH-USRP) on the rolling contact fatigue (RCF) performance of selective electron beam melting (SEBM) built Ti6Al4V was evaluated with respect to surface integrity, chemical composition, and microstructure were investigated. At the room temperature (RT), the surface roughness and line roughness (Ra and Rz) of the USRP treated sample are reduced by 92 % and 95 %, 78 %, and 66 % compared to the untreated sample, respectively, and the surface hardness is also increased by 17 %. The surface quality and hardness are further improved when samples treated by IH-USRP, and the oxide mixture could be found on the sample surface. The surface roughness and line roughness (Ra and Rz) of the IH-USRP treated sample at 650 °C were reduced by 96 % and 98 %, 85 %, and 83 %, respectively, while the surface hardness was 33 % higher than that of the untreated one. The surface quality improvement reduces the stress concentration, and the increased surface hardness means higher critical shear stress, which promotes the average RCF life by 196 %. |
ArticleNumber | 155467 |
Author | Liu, Ruiping Liu, Zhongqiang Xiao, Zhiyu Sanderson, Joseph Liu, Xiao |
Author_xml | – sequence: 1 givenname: Zhongqiang surname: Liu fullname: Liu, Zhongqiang organization: National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology, Guangdong, Guangzhou 510640, China – sequence: 2 givenname: Xiao surname: Liu fullname: Liu, Xiao organization: School of Science, Henan Institute of Technology, Henan, Xinxiang 453003, China – sequence: 3 givenname: Ruiping surname: Liu fullname: Liu, Ruiping organization: Shenzhen YuanMeng Precision Technology Institute, Guangdong, Shenzhen 518055, China – sequence: 4 givenname: Zhiyu surname: Xiao fullname: Xiao, Zhiyu email: zhyxiao@scut.edu.cn organization: National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology, Guangdong, Guangzhou 510640, China – sequence: 5 givenname: Joseph surname: Sanderson fullname: Sanderson, Joseph organization: Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada |
BookMark | eNqFkMtuGyEUhlmkUnN7gy54gXG5jBm7i0pRlLaRImWTZIswHGIsBiwO4yrv1QcsU6dZdNGsQKD_O__5zshJygkI-cTZgjOuPu8WZo8T2oVgQiz4ctmr4YSctq9110spPpIzxB1jXKwGeUp-3Y77kg_gaMkxhvRMbU7V2Eq9qeF5ArqH4nMZTbJAs6cIEWwNB6B_LiUnugEz0hFibZSHoK5i_0R_hrqldQvUYLeZQqwUp-JNY0w4TwnJTQ2TU7eFNqi9GMSAM2KKtRjMKdi3zN9uraoFxAvywZuIcPl6npPHbzcP1z-6u_vvt9dXd50Vgtdu7cB4GAblODgpuARQfhhW6w1ja8_BgjRqORihlJOm3zDVM7fqe96UKSOVPCdfjlxbMmIBr22oZm7dGoaoOdOzc73TR-d6dq6Pzlu4_ye8L2E05eW92NdjDNpihwBFow3Q5LtQmm_tcvg_4Dc_o6e3 |
CitedBy_id | crossref_primary_10_1002_adem_202401100 crossref_primary_10_1007_s00170_024_14608_2 crossref_primary_10_1007_s11665_024_09173_4 crossref_primary_10_1016_j_jmatprotec_2024_118353 crossref_primary_10_1007_s00170_023_12301_4 crossref_primary_10_1016_j_surfcoat_2024_130908 crossref_primary_10_1088_1361_651X_ad0068 crossref_primary_10_1016_j_jmatprotec_2025_118775 crossref_primary_10_1080_10426914_2023_2244033 crossref_primary_10_1016_j_ceramint_2024_08_250 crossref_primary_10_3390_coatings15020183 crossref_primary_10_1111_ffe_14460 |
Cites_doi | 10.1016/S0043-1648(96)07454-6 10.1016/j.surfcoat.2017.01.099 10.1016/j.actamat.2015.10.041 10.1088/0031-8949/28/1/013 10.1016/j.optlastec.2018.11.014 10.1016/j.jmatprotec.2021.117264 10.1016/j.jnucmat.2021.153239 10.1007/s11661-014-2570-0 10.1016/j.msea.2011.08.061 10.1016/j.jmatprotec.2011.07.009 10.1016/j.apsusc.2008.06.034 10.1116/1.580233 10.1007/s11665-021-06021-7 10.1016/j.precisioneng.2016.06.001 10.1146/annurev-matsci-070115-032024 10.1016/S0142-1123(02)00012-9 10.1016/j.ijmachtools.2018.09.005 10.2298/JMMB190319056Y 10.1016/j.ijfatigue.2016.12.004 10.1080/21663831.2018.1560370 10.1016/j.jallcom.2016.04.067 10.1016/j.actamat.2016.07.019 10.1007/s00170-021-06810-3 10.1016/j.actamat.2021.117261 10.1016/j.ijfatigue.2017.05.019 10.1016/j.jmst.2019.03.036 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apsusc.2022.155467 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_apsusc_2022_155467 S0169433222029956 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATTM AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXRA ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCB SDF SDG SDP SES SMS SPC SPCBC SPD SPG SSH SSK SSM SSQ SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- AAQXK AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BBWZM CITATION EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- RIG SEW WUQ |
ID | FETCH-LOGICAL-c221t-9deafe776d1ed3213ee6f7789b009f1ece3a657a266d3a4b0640d84414676a363 |
IEDL.DBID | AIKHN |
ISSN | 0169-4332 |
IngestDate | Thu Apr 24 23:07:38 EDT 2025 Tue Jul 01 02:18:43 EDT 2025 Sun Apr 06 06:56:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Selective electron beam melting Ultrasonic surface rolling process Rolling contact fatigue Ti6Al4V Induction heating |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c221t-9deafe776d1ed3213ee6f7789b009f1ece3a657a266d3a4b0640d84414676a363 |
ParticipantIDs | crossref_citationtrail_10_1016_j_apsusc_2022_155467 crossref_primary_10_1016_j_apsusc_2022_155467 elsevier_sciencedirect_doi_10_1016_j_apsusc_2022_155467 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-30 |
PublicationDateYYYYMMDD | 2023-04-30 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Applied surface science |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liu, Suslov, Ren, Dong, Ye (b0065) 2019; 136 Dang, Zhang, An, Lian, Li, Wang, Chen (b0060) 2021 Vasylyev, Chenakin, Yatsenko (b0135) 2016; 103 Wang, Song, Tang (b0105) 2016; 681 Popov (b0120) 2010 Ye, Zhang, Zhao, Dong (b0150) 2021; 30 Liu, Liu, Zhang, Liu, Ma, Ao, Xu (b0080) 2019; 35 D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann. Additive manufacturing of metals. Acta Materialia. 2016; 117: 371-392. X.S. Luo, H.T. Duan, J. Li, S.P. Zhan, D. Jia, J.S. Tu, Y.H. Li, Y.P. Chen. Effect of Ultrasonic Surface Rolling on Dry Sliding Tribological Behavior of Ductile Iron Under Different Normal Loads. Met. Mater.-Int. 10. P. Rycerz, A. Olver, A. Kadiric. Propagation of surface initiated rolling contact fatigue cracks in bearing steel. Int. J. Fatigue. 2017; 97: 29-38. Yan, Gao, Chang, Huang, Khanlari, Dong, Ma, Fenineche, Liao, Liu (b0025) 2021 Liu, Chen, Su, Chen, Ren, Zou, Liu (b0085) 2021; 556 Liu, Wang, Gao, Liu, Liu, Xiao, Sanderson (b0165) 2022 Ting, Dongpo, Gang, Baoming, Ningxia (b0055) 2008; 255 H. Zhang, R. Chiang, H. Qin, Z. Ren, X. Hou, D. Lin, G.L. Doll, V.K. Vasudevan, Y. Dong, C. Ye. The effects of ultrasonic nanocrystal surface modification on the fatigue performance of 3D-printed Ti64. Int. J. Fatigue. 2017; 103: 136-146. A. Townsend, N. Senin, L. Blunt, R.K. Leach, J.S. Taylor. Surface texture metrology for metal additive manufacturing: a review, Precision Eng.-J. Int. Societies for Precision Eng. Nanotechnol. 2016; 46: 34-47. Jia, Sun, Wang, Wu, Wang (b0035) 2021; 113 Lu, Ma, Cai, Luo, Wang, Song, Yin, Yang (b0010) 2021 R. Yamanoglu, F. Khoshnaw, I. Daoud, E. Efendi. Effect of silver content on the wear and mechanical properties of powder metallurgical Ti-5Al-2.5Fe-xAg alloys. J. Min. Metall. Sect. B-Metall. 2020; 56: 119-125.https://doi.org/:10.2298/jmmb190319056y. Li, Qu, Xie, Li (b0110) 2017; 316 Werfel, Brummer (b0130) 1983; 28 Leinen, Lassaletta, Fernandez, Caballero, GonzalezElipe, Martin, Vacher (b0125) 1996; 14 Moon, Baek, Lee, Seong, Amanov, Lee, Kim (b0070) 2019; 7 Z. Wang, Z.Y. Xiao, Y. Tse, C.S. Huang, W.W. Zhang, Optimization of processing parameters and establishment of a relationship between microstructure and mechanical properties of SLM titanium alloy, Opt. Laser Technol. 2019; 112: 159-167. Wang, Liu, Gao, Wong, Ye, Xiao (b0100) 2020 . Keist, Palmer (b0160) 2017; 693 Z.Q. Liu, C.F. Gao, X. Liu, R.P. Liu, Z.Y. Xiao. Improved surface integrity of Ti6Al4V fabricated by selective electron beam melting using ultrasonic surface rolling processing, J. Mater. Process. Technol. 2021; 297: 10. M. Hierro-Oliva, A.M. Gallardo-Moreno, M.L. Gonzalez-Martin. XPS Analysis of Ti6Al4V Oxidation Under UHV Conditions, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2014; 45A: 6285-6290. Arola, Williams (b0145) 2002; 24: 923–930.https://doi.org/:10.1016/s0142-1123(02)00012-9 J.J. Lewandowski, M. Seifi, Metal Additive Manufacturing: A Review of Mechanical Properties, in: D.R. Clarke (Ed.) Annual Review of Materials Research, Vol 46, 2016, pp. 151-186. Zhang, Li, Zhang (b0155) 2011; 529 Molinari, Straffelini, Tesi, Bacci (b0045) 1997; 208 Liu, Wang, Wang (b0050) 2011; 211 Liu (10.1016/j.apsusc.2022.155467_b0165) 2022 10.1016/j.apsusc.2022.155467_b0040 10.1016/j.apsusc.2022.155467_b0140 Leinen (10.1016/j.apsusc.2022.155467_b0125) 1996; 14 Liu (10.1016/j.apsusc.2022.155467_b0065) 2019; 136 10.1016/j.apsusc.2022.155467_b0005 Ting (10.1016/j.apsusc.2022.155467_b0055) 2008; 255 10.1016/j.apsusc.2022.155467_b0020 Vasylyev (10.1016/j.apsusc.2022.155467_b0135) 2016; 103 Liu (10.1016/j.apsusc.2022.155467_b0085) 2021; 556 Keist (10.1016/j.apsusc.2022.155467_b0160) 2017; 693 Ye (10.1016/j.apsusc.2022.155467_b0150) 2021; 30 Popov (10.1016/j.apsusc.2022.155467_b0120) 2010 Werfel (10.1016/j.apsusc.2022.155467_b0130) 1983; 28 Lu (10.1016/j.apsusc.2022.155467_b0010) 2021 Arola (10.1016/j.apsusc.2022.155467_b0145) 2002 Liu (10.1016/j.apsusc.2022.155467_b0080) 2019; 35 Dang (10.1016/j.apsusc.2022.155467_b0060) 2021 10.1016/j.apsusc.2022.155467_b0095 10.1016/j.apsusc.2022.155467_b0030 10.1016/j.apsusc.2022.155467_b0090 Zhang (10.1016/j.apsusc.2022.155467_b0155) 2011; 529 Molinari (10.1016/j.apsusc.2022.155467_b0045) 1997; 208 10.1016/j.apsusc.2022.155467_b0015 Jia (10.1016/j.apsusc.2022.155467_b0035) 2021; 113 10.1016/j.apsusc.2022.155467_b0115 10.1016/j.apsusc.2022.155467_b0075 Liu (10.1016/j.apsusc.2022.155467_b0050) 2011; 211 Wang (10.1016/j.apsusc.2022.155467_b0105) 2016; 681 Li (10.1016/j.apsusc.2022.155467_b0110) 2017; 316 Moon (10.1016/j.apsusc.2022.155467_b0070) 2019; 7 Wang (10.1016/j.apsusc.2022.155467_b0100) 2020 Yan (10.1016/j.apsusc.2022.155467_b0025) 2021 |
References_xml | – volume: 208 year: 1997 ident: b0045 article-title: Dry sliding wear mechanisms of the Ti6Al4V alloy publication-title: Wear – start-page: 381 year: 2020 ident: b0100 article-title: Modified wear behavior of selective laser melted Ti6Al4V alloy by direct current assisted ultrasonic surface rolling process publication-title: Surf. Coat. Technol. – reference: A. Townsend, N. Senin, L. Blunt, R.K. Leach, J.S. Taylor. Surface texture metrology for metal additive manufacturing: a review, Precision Eng.-J. Int. Societies for Precision Eng. Nanotechnol. 2016; 46: 34-47. – volume: 28 year: 1983 ident: b0130 article-title: Corundum Structure Oxides Studied by XPS publication-title: Phys. Scr. – volume: 24: 923–930.https://doi.org/:10.1016/s0142-1123(02)00012-9 year: 2002 ident: b0145 article-title: Estimating the fatigue stress concentration factor of machined surfaces publication-title: Int. J. Fatigue. – volume: 103 year: 2016 ident: b0135 article-title: Ultrasonic impact treatment induced oxidation of Ti6Al4V alloy publication-title: Acta Mater. – volume: 693 year: 2017 ident: b0160 article-title: Development of strength-hardness relationships in additively manufactured titanium alloys publication-title: Mater. Sci. Eng. A-Struct. Mater. Properties Microstruct. Process. – volume: 211 year: 2011 ident: b0050 article-title: Finite element modeling of ultrasonic surface rolling process publication-title: J. Mater. Process. Technol. – start-page: 833 year: 2022 ident: b0165 article-title: Enhanced rolling contact fatigue behavior of selective electron beam melted Ti6Al4V using the ultrasonic surface rolling process publication-title: Mater. Sci. Eng. A-Struct. Mater. Properties Microstruct. Process. – volume: 255 start-page: 1824 year: 2008 end-page: 1829 ident: b0055 article-title: Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing publication-title: Appl. Surf. Sci. – year: 2010 ident: b0120 article-title: Contact mechanics and friction – reference: R. Yamanoglu, F. Khoshnaw, I. Daoud, E. Efendi. Effect of silver content on the wear and mechanical properties of powder metallurgical Ti-5Al-2.5Fe-xAg alloys. J. Min. Metall. Sect. B-Metall. 2020; 56: 119-125.https://doi.org/:10.2298/jmmb190319056y. – reference: Z. Wang, Z.Y. Xiao, Y. Tse, C.S. Huang, W.W. Zhang, Optimization of processing parameters and establishment of a relationship between microstructure and mechanical properties of SLM titanium alloy, Opt. Laser Technol. 2019; 112: 159-167. – reference: H. Zhang, R. Chiang, H. Qin, Z. Ren, X. Hou, D. Lin, G.L. Doll, V.K. Vasudevan, Y. Dong, C. Ye. The effects of ultrasonic nanocrystal surface modification on the fatigue performance of 3D-printed Ti64. Int. J. Fatigue. 2017; 103: 136-146. – volume: 136 start-page: 19 year: 2019 end-page: 33 ident: b0065 article-title: Microstructure evolution in Ti64 subjected to laser-assisted ultrasonic nanocrystal surface modification publication-title: Int. J. Mach. Tools Manuf. – volume: 529 start-page: 62 year: 2011 end-page: 73 ident: b0155 article-title: General relationship between strength and hardness publication-title: Mater. Sci. Eng. A-Struct. Mater. Properties Microstructure Process. – volume: 14 year: 1996 ident: b0125 article-title: Ion beam induced chemical vapor deposition procedure for the preparation of oxide thin films.2. Preparation and characterization of AlxTiyOz thin films publication-title: J. Vacuum Sci. Technol. A-Vacuum Surf. Films. – volume: 556 year: 2021 ident: b0085 article-title: Effects of ultrasonic surface rolling processing on the corrosion properties of uranium metal publication-title: J. Nucl. Mater. – volume: 30 year: 2021 ident: b0150 article-title: Effects of Post-processing on the Surface Finish, Porosity, Residual Stresses, and Fatigue Performance of Additive Manufactured Metals: A Review publication-title: J. Mater. Eng. Perform. – reference: X.S. Luo, H.T. Duan, J. Li, S.P. Zhan, D. Jia, J.S. Tu, Y.H. Li, Y.P. Chen. Effect of Ultrasonic Surface Rolling on Dry Sliding Tribological Behavior of Ductile Iron Under Different Normal Loads. Met. Mater.-Int. 10. – volume: 35 start-page: 1555 year: 2019 end-page: 1562 ident: b0080 article-title: Improving fatigue performance of Ti-6Al-4V alloy via ultrasonic surface rolling process publication-title: J. Mater. Sci. Technol. – year: 2021 ident: b0010 article-title: Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49.6 shape memory alloy fabricated via selective laser melting publication-title: Acta Mater. – volume: 113 start-page: 2413 year: 2021 end-page: 2435 ident: b0035 article-title: Scanning strategy in selective laser melting (SLM): a review publication-title: Int. J. Adv. Manuf. Technol. – reference: P. Rycerz, A. Olver, A. Kadiric. Propagation of surface initiated rolling contact fatigue cracks in bearing steel. Int. J. Fatigue. 2017; 97: 29-38. – reference: D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann. Additive manufacturing of metals. Acta Materialia. 2016; 117: 371-392. – start-page: 421 year: 2021 ident: b0060 article-title: Surface integrity and wear behavior of 300M steel subjected to ultrasonic surface rolling process publication-title: Surf. Coat. Technol. – reference: . – volume: 681 start-page: 146 year: 2016 end-page: 156 ident: b0105 article-title: Evolution of surface mechanical properties and microstructure of Ti-6Al-4V alloy induced by electropulsing-assisted ultrasonic surface rolling process publication-title: J. Alloy. Compd. – volume: 7 year: 2019 ident: b0070 article-title: Effects of residual stress on the mechanical properties of copper processed using ultrasonic-nanocrystalline surface modification publication-title: Mater. Res. Lett. – start-page: 288 year: 2021 ident: b0025 article-title: Effect of building directions on the surface roughness, microstructure, and tribological properties of selective laser melted Inconel 625 publication-title: J. Mater. Process. Technol. – reference: Z.Q. Liu, C.F. Gao, X. Liu, R.P. Liu, Z.Y. Xiao. Improved surface integrity of Ti6Al4V fabricated by selective electron beam melting using ultrasonic surface rolling processing, J. Mater. Process. Technol. 2021; 297: 10. – volume: 316 start-page: 75 year: 2017 end-page: 84 ident: b0110 article-title: Effect of ultrasonic surface rolling at low temperatures on surface layer microstructure and properties of HIP Ti-6Al-4V alloy publication-title: Surf. Coat. Technol. – reference: J.J. Lewandowski, M. Seifi, Metal Additive Manufacturing: A Review of Mechanical Properties, in: D.R. Clarke (Ed.) Annual Review of Materials Research, Vol 46, 2016, pp. 151-186. – reference: M. Hierro-Oliva, A.M. Gallardo-Moreno, M.L. Gonzalez-Martin. XPS Analysis of Ti6Al4V Oxidation Under UHV Conditions, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2014; 45A: 6285-6290. – volume: 208 year: 1997 ident: 10.1016/j.apsusc.2022.155467_b0045 article-title: Dry sliding wear mechanisms of the Ti6Al4V alloy publication-title: Wear doi: 10.1016/S0043-1648(96)07454-6 – start-page: 833 year: 2022 ident: 10.1016/j.apsusc.2022.155467_b0165 article-title: Enhanced rolling contact fatigue behavior of selective electron beam melted Ti6Al4V using the ultrasonic surface rolling process publication-title: Mater. Sci. Eng. A-Struct. Mater. Properties Microstruct. Process. – volume: 316 start-page: 75 year: 2017 ident: 10.1016/j.apsusc.2022.155467_b0110 article-title: Effect of ultrasonic surface rolling at low temperatures on surface layer microstructure and properties of HIP Ti-6Al-4V alloy publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2017.01.099 – volume: 103 year: 2016 ident: 10.1016/j.apsusc.2022.155467_b0135 article-title: Ultrasonic impact treatment induced oxidation of Ti6Al4V alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.10.041 – volume: 28 year: 1983 ident: 10.1016/j.apsusc.2022.155467_b0130 article-title: Corundum Structure Oxides Studied by XPS publication-title: Phys. Scr. doi: 10.1088/0031-8949/28/1/013 – ident: 10.1016/j.apsusc.2022.155467_b0030 doi: 10.1016/j.optlastec.2018.11.014 – ident: 10.1016/j.apsusc.2022.155467_b0095 doi: 10.1016/j.jmatprotec.2021.117264 – volume: 556 year: 2021 ident: 10.1016/j.apsusc.2022.155467_b0085 article-title: Effects of ultrasonic surface rolling processing on the corrosion properties of uranium metal publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2021.153239 – ident: 10.1016/j.apsusc.2022.155467_b0115 doi: 10.1007/s11661-014-2570-0 – volume: 529 start-page: 62 year: 2011 ident: 10.1016/j.apsusc.2022.155467_b0155 article-title: General relationship between strength and hardness publication-title: Mater. Sci. Eng. A-Struct. Mater. Properties Microstructure Process. doi: 10.1016/j.msea.2011.08.061 – volume: 211 year: 2011 ident: 10.1016/j.apsusc.2022.155467_b0050 article-title: Finite element modeling of ultrasonic surface rolling process publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2011.07.009 – volume: 255 start-page: 1824 year: 2008 ident: 10.1016/j.apsusc.2022.155467_b0055 article-title: Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2008.06.034 – volume: 14 year: 1996 ident: 10.1016/j.apsusc.2022.155467_b0125 article-title: Ion beam induced chemical vapor deposition procedure for the preparation of oxide thin films.2. Preparation and characterization of AlxTiyOz thin films publication-title: J. Vacuum Sci. Technol. A-Vacuum Surf. Films. doi: 10.1116/1.580233 – volume: 693 year: 2017 ident: 10.1016/j.apsusc.2022.155467_b0160 article-title: Development of strength-hardness relationships in additively manufactured titanium alloys publication-title: Mater. Sci. Eng. A-Struct. Mater. Properties Microstruct. Process. – year: 2010 ident: 10.1016/j.apsusc.2022.155467_b0120 – volume: 30 year: 2021 ident: 10.1016/j.apsusc.2022.155467_b0150 article-title: Effects of Post-processing on the Surface Finish, Porosity, Residual Stresses, and Fatigue Performance of Additive Manufactured Metals: A Review publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-021-06021-7 – ident: 10.1016/j.apsusc.2022.155467_b0015 doi: 10.1016/j.precisioneng.2016.06.001 – ident: 10.1016/j.apsusc.2022.155467_b0020 doi: 10.1146/annurev-matsci-070115-032024 – start-page: 381 year: 2020 ident: 10.1016/j.apsusc.2022.155467_b0100 article-title: Modified wear behavior of selective laser melted Ti6Al4V alloy by direct current assisted ultrasonic surface rolling process publication-title: Surf. Coat. Technol. – year: 2002 ident: 10.1016/j.apsusc.2022.155467_b0145 article-title: Estimating the fatigue stress concentration factor of machined surfaces publication-title: Int. J. Fatigue. doi: 10.1016/S0142-1123(02)00012-9 – volume: 136 start-page: 19 year: 2019 ident: 10.1016/j.apsusc.2022.155467_b0065 article-title: Microstructure evolution in Ti64 subjected to laser-assisted ultrasonic nanocrystal surface modification publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2018.09.005 – ident: 10.1016/j.apsusc.2022.155467_b0040 doi: 10.2298/JMMB190319056Y – ident: 10.1016/j.apsusc.2022.155467_b0140 doi: 10.1016/j.ijfatigue.2016.12.004 – ident: 10.1016/j.apsusc.2022.155467_b0075 – volume: 7 year: 2019 ident: 10.1016/j.apsusc.2022.155467_b0070 article-title: Effects of residual stress on the mechanical properties of copper processed using ultrasonic-nanocrystalline surface modification publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2018.1560370 – start-page: 421 year: 2021 ident: 10.1016/j.apsusc.2022.155467_b0060 article-title: Surface integrity and wear behavior of 300M steel subjected to ultrasonic surface rolling process publication-title: Surf. Coat. Technol. – volume: 681 start-page: 146 year: 2016 ident: 10.1016/j.apsusc.2022.155467_b0105 article-title: Evolution of surface mechanical properties and microstructure of Ti-6Al-4V alloy induced by electropulsing-assisted ultrasonic surface rolling process publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.04.067 – ident: 10.1016/j.apsusc.2022.155467_b0005 doi: 10.1016/j.actamat.2016.07.019 – volume: 113 start-page: 2413 year: 2021 ident: 10.1016/j.apsusc.2022.155467_b0035 article-title: Scanning strategy in selective laser melting (SLM): a review publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-021-06810-3 – year: 2021 ident: 10.1016/j.apsusc.2022.155467_b0010 article-title: Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49.6 shape memory alloy fabricated via selective laser melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117261 – ident: 10.1016/j.apsusc.2022.155467_b0090 doi: 10.1016/j.ijfatigue.2017.05.019 – volume: 35 start-page: 1555 year: 2019 ident: 10.1016/j.apsusc.2022.155467_b0080 article-title: Improving fatigue performance of Ti-6Al-4V alloy via ultrasonic surface rolling process publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.03.036 – start-page: 288 year: 2021 ident: 10.1016/j.apsusc.2022.155467_b0025 article-title: Effect of building directions on the surface roughness, microstructure, and tribological properties of selective laser melted Inconel 625 publication-title: J. Mater. Process. Technol. |
SSID | ssj0012873 |
Score | 2.4516604 |
Snippet | [Display omitted]
•IH-USRP can further improve the surface integrity of samples.•Different kinds of oxides were induced by IH-USRP.•The RCF performance was... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 155467 |
SubjectTerms | Induction heating Rolling contact fatigue Selective electron beam melting Ti6Al4V Ultrasonic surface rolling process |
Title | Improved rolling contact fatigue performance of selective electron beam melted Ti6Al4V with the as-built surface using induction-heating assisted ultrasonic surface rolling process |
URI | https://dx.doi.org/10.1016/j.apsusc.2022.155467 |
Volume | 617 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9xADB7BcqGHqi9U-kA-cB02mUkmmeMKFW2L4AJU3KJJxkFbhWW1Sa79Vf2BtXeSLZUQlXodxdHItvwY25-FOFY5Y_b6VFYmRS4zxtKSl5eZsXWU6MrZkp8GLi7N_Cb5dpve7ojTcRaG2yoH2x9s-sZaDyfTgZvT1WIxvWIcEUbfUpS_83zmrthT2pp0IvZmX8_nl9tiAiUFOkB8Wx4QUuME3abNy1Ey2jKWoVIn7Fs3C-ef8FCPvM7ZK_FyCBdhFm70Wuzg8o148QhE8K34Fd4F0MM6AGwDt5-7qoOauH7XI6z-DAfAQw3tZvUNWTkYd-BAie4e7rGh8BOuF2bWJN-BX2iBwkNwrSz7RdNB269rR__gXvk7oGQ-IM9Ktud8QnE4K42HvunWrmXQ3S3NeLdVGEx4J27OvlyfzuWwi0FWSsWdtB5djVlmfIxeq1gjmjrLcoZUtHWMFWpn0syRv_faJSUXCH1OsRYx1Dht9IGYLB-W-F5AFGHkcqett0niIszJjugUMY9R50R4KPTI_6IagMp5X0ZTjB1pP4ogtYKlVgSpHQq5pVoFoI5_fJ-Noi3-UriCfMmzlB_-m_Kj2Odt9aEY9UlMunWPnymm6cojsXvyMz4aNPc3Pu76lA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9xADB1ReigcKlqKoHzUh16HTTLJJDkiVLRQ4NKl4hZNMg5aFJbVJrnyq_oDsTPJAhICqddoHI3s0bNnbD8L8TNImLPXRrLQEXKa0ZcpeXkZ67T0QlWYNOengYtLPb4Kz66j6xVxPPTCcFllj_0O0zu07r-Mem2O5tPp6A_ziDD7VkD3d-7P_CA-hpGKua7v8GFZ50H469LMtJrbg4Khf64r8jJ0Fa2ZyTAIDtmzduPmX_FPz3zOyYb43AeLcOT280Ws4OyrWH9GIbgp_rlXAbSwcPTawMXnpmigJJ3ftAjzp9YAuC-h7gbfEMbBMAEHcjR3cIcVBZ8wmeqjKvwL_D4LFByCqWXeTqsG6nZRGvoHV8rfAF3lHe-sZDTnLxSF85Gx0FbNwtRMubuUGfY2d20J38TVya_J8Vj2kxhkEQR-I1OLpsQ41tZHqwJfIeoyjhMmVExLHwtURkexIW9vlQlzTg_ahCItUqg2SqstsTq7n-G2AM9DzyRGpTYNQ-NhQiiiIsTER5WQ4I5Qg_6zoqcp52kZVTbUo91mzmoZWy1zVtsRcik1dzQd76yPB9NmL45bRp7kTcnv_y35Q3waTy7Os_PTy9-7Yo3n1ru01J5YbRYt7lN00-QH3el9BGbP-18 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+rolling+contact+fatigue+performance+of+selective+electron+beam+melted+Ti6Al4V+with+the+as-built+surface+using+induction-heating+assisted+ultrasonic+surface+rolling+process&rft.jtitle=Applied+surface+science&rft.au=Liu%2C+Zhongqiang&rft.au=Liu%2C+Xiao&rft.au=Liu%2C+Ruiping&rft.au=Xiao%2C+Zhiyu&rft.date=2023-04-30&rft.pub=Elsevier+B.V&rft.issn=0169-4332&rft.volume=617&rft_id=info:doi/10.1016%2Fj.apsusc.2022.155467&rft.externalDocID=S0169433222029956 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon |