Application of redefined J-integral range ΔJ for ultra-low cycle fatigue problems with large magnitude of elastic-plastic deformation

•Redefined J-integral range ΔJ was applied to ultra-low cycle fatigue problems.•Redefined J-integral range ΔJ is independent of size and shape of its integral domain.•Redefined J-integral range ΔJ by a domain integral can be applied to any structures.•Redefined J-integral range ΔJ can be applied to...

Full description

Saved in:
Bibliographic Details
Published inTheoretical and applied fracture mechanics Vol. 126; p. 103938
Main Authors Shoda, Keigo, Arai, Koichiro, Nakamura, Sora, Okada, Hiroshi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2023
Subjects
Online AccessGet full text
ISSN0167-8442
1872-7638
DOI10.1016/j.tafmec.2023.103938

Cover

Abstract •Redefined J-integral range ΔJ was applied to ultra-low cycle fatigue problems.•Redefined J-integral range ΔJ is independent of size and shape of its integral domain.•Redefined J-integral range ΔJ by a domain integral can be applied to any structures.•Redefined J-integral range ΔJ can be applied to any finite strain problems.•Redefined J-integral range ΔJ does not pose any restrictions on constitutive models.•Subloading surface plasticity model reproduced load–displacement hystereses accurately. The redefined J-integral range ΔJ by a domain integral representation was applied to the ultra-low cycle fatigue problem of a 1 T compact tension (1TCT) specimen. The specimen was subject to large magnitude of cyclic deformation. The redefined J-integral range ΔJ is unconditionally independent of size and shape of its integral domain. The subloading surface plasticity model was adopted to appropriately reproduce the cyclic stress-strain behavior of the material. Finite element analyses on and evaluations of ΔJ were performed on the ultra-low cycle fatigue problem of a 1TCT specimen made of stainless steel SUS316. The outcomes of present study show the followings: (i) use of the redefined J-integral range ΔJ under the assumption of finite deformation theory, ductile crack propagations in ultra-low cycle fatigue problems can be characterized and (ii) deformation and load-displacement hystereses of the experiments can appropriately be reproduced by the use of the subloading surface plasticity model.
AbstractList •Redefined J-integral range ΔJ was applied to ultra-low cycle fatigue problems.•Redefined J-integral range ΔJ is independent of size and shape of its integral domain.•Redefined J-integral range ΔJ by a domain integral can be applied to any structures.•Redefined J-integral range ΔJ can be applied to any finite strain problems.•Redefined J-integral range ΔJ does not pose any restrictions on constitutive models.•Subloading surface plasticity model reproduced load–displacement hystereses accurately. The redefined J-integral range ΔJ by a domain integral representation was applied to the ultra-low cycle fatigue problem of a 1 T compact tension (1TCT) specimen. The specimen was subject to large magnitude of cyclic deformation. The redefined J-integral range ΔJ is unconditionally independent of size and shape of its integral domain. The subloading surface plasticity model was adopted to appropriately reproduce the cyclic stress-strain behavior of the material. Finite element analyses on and evaluations of ΔJ were performed on the ultra-low cycle fatigue problem of a 1TCT specimen made of stainless steel SUS316. The outcomes of present study show the followings: (i) use of the redefined J-integral range ΔJ under the assumption of finite deformation theory, ductile crack propagations in ultra-low cycle fatigue problems can be characterized and (ii) deformation and load-displacement hystereses of the experiments can appropriately be reproduced by the use of the subloading surface plasticity model.
ArticleNumber 103938
Author Shoda, Keigo
Nakamura, Sora
Arai, Koichiro
Okada, Hiroshi
Author_xml – sequence: 1
  givenname: Keigo
  surname: Shoda
  fullname: Shoda, Keigo
  organization: Department of Mechanical Engineering, Graduate School of Science and Technology, Tokyo University of Science, Japan
– sequence: 2
  givenname: Koichiro
  surname: Arai
  fullname: Arai, Koichiro
  organization: Hexagon, Japan
– sequence: 3
  givenname: Sora
  surname: Nakamura
  fullname: Nakamura, Sora
  organization: Department of Mechanical Engineering, Graduate School of Science and Technology, Tokyo University of Science, Japan
– sequence: 4
  givenname: Hiroshi
  surname: Okada
  fullname: Okada, Hiroshi
  email: hiroshi.okada@rs.tus.ac.jp
  organization: Department of Mechanical and Aerospace Engineering, Faculty of Science and Technology, Tokyo University of Science, Japan
BookMark eNqFkEtOwzAQhi1UJNrCDVj4Ail-pEnMAgkhnkJiA2vLdsbFlRNHjkvVC3ACzsWZSAkrFrAaaTTfPzPfDE3a0AJCp5QsKKHF2XqRlG3ALBhhfGhxwasDNKVVybKy4NUETYexMqvynB2hWd-vCaElFXyK3i-7zjujkgstDhZHqMG6Fmr8kLk2wSoqj6NqV4A_Px6wDRFvfIoq82GLzc54wHaAVxvAXQzaQ9PjrUuv2Ks4MI1atS5tathng1d9cibrxoqHTSE236uP0aFVvoeTnzpHLzfXz1d32ePT7f3V5WNmGKMpE0WuVKWtBlExzgUlFbHG1AQKrclyqUXBioLVlRalAFDW6pqXQizzXOfWcD5H-ZhrYuj7CFZ20TUq7iQlcu9SruXoUu5dytHlgJ3_woxL34cPKpz_D74YYRgee3MQZW8ctAZqF8EkWQf3d8AXLemYPg
CitedBy_id crossref_primary_10_1016_j_engfracmech_2024_110349
crossref_primary_10_1016_j_tafmec_2024_104310
crossref_primary_10_1051_e3sconf_202458101003
crossref_primary_10_3390_met14060613
crossref_primary_10_1007_s11831_023_10022_1
Cites_doi 10.1016/0013-7944(85)90046-3
10.1007/s10704-015-0064-8
10.1007/BF01183940
10.1098/rsta.1951.0016
10.1115/1.3601206
10.1016/0013-7944(85)90060-8
10.1016/j.engfracmech.2015.01.014
10.1007/BF00369780
10.1016/0013-7944(75)90025-9
10.1007/BF00942715
10.1016/j.engfracmech.2017.06.023
10.1109/JESTPE.2019.2914244
10.1016/j.engfracmech.2018.12.029
10.1016/0013-7944(84)90129-2
10.1002/nme.1620240914
10.1007/BF01141264
10.1016/j.engfracmech.2020.107212
10.1016/j.finel.2017.08.001
10.1016/0022-5096(68)90014-8
10.1016/0013-7944(89)90040-4
10.1016/S0013-7944(02)00125-X
10.1016/j.engfracmech.2014.07.017
10.1016/j.engfracmech.2017.03.041
10.1016/j.engfracmech.2017.02.006
10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
10.1016/S0749-6419(99)00016-9
10.1115/1.3153653
10.1111/j.1460-2695.2008.01315.x
10.1016/0013-7944(85)90029-3
10.1016/0013-7944(86)90161-X
10.1007/BF01177002
10.1007/978-3-642-35849-4
10.1016/0956-7151(92)90444-J
10.1007/s004660050414
10.1115/PVP2018-84241
10.1016/j.engfracmech.2013.06.009
10.1016/S0167-6636(97)00059-8
10.1016/0022-5096(68)90013-6
10.1016/S0142-1123(03)00111-7
10.1016/j.ijpvp.2021.104343
10.1023/A:1007536915336
10.1016/j.jmps.2015.08.011
10.1016/j.engfracmech.2018.11.031
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.tafmec.2023.103938
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7638
ExternalDocumentID 10_1016_j_tafmec_2023_103938
S016784422300201X
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UHS
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c221t-964aa8bfbe9823391080fccd0e6bb055b962662d8b979eeaffbd3799544b4fc33
IEDL.DBID AIKHN
ISSN 0167-8442
IngestDate Sun Jul 06 05:07:27 EDT 2025
Thu Apr 24 23:11:11 EDT 2025
Fri Feb 23 02:36:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords J-integral
Ultra-low cycle fatigue
J-integral range ΔJ
Subloading surface plasticity model
Cyclic plasticity
Crack propagation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c221t-964aa8bfbe9823391080fccd0e6bb055b962662d8b979eeaffbd3799544b4fc33
ParticipantIDs crossref_primary_10_1016_j_tafmec_2023_103938
crossref_citationtrail_10_1016_j_tafmec_2023_103938
elsevier_sciencedirect_doi_10_1016_j_tafmec_2023_103938
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Theoretical and applied fracture mechanics
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hashiguchi (b0240) 2017
Dowling (b0010) 1976; 601
JSME (Japan Society of Mechanical Engineers), Codes for nuclear power generation facilities -rules on fitness-for-service for nuclear power plants-, JSME S NA1- 2012, 2012.
Maugin (b0030) 1992; 94
Okada, Tamura, Ramakrishnan, Atluri, Epstein (b0080) 1992; 40–6
Shahani, Kashani, Rastegar, Dehkordi (b0115) 2009; 32
Shishido, Hayama, Morooka, Hagihara, Miyazaki (b0170) 2019; 7–3
Gasiak, G., Rozumek, D., ΔJ-integral range estimation for fatigue crack growth rate description, International Journal of Fatigue 26-2 (2004), Volume 26, 135-140, 10.1016/S0142-1123(03)00111-7.
Lamba (b0145) 1975; 7–4
ASTM International, Standard test method for measurement of fracture toughness, ASTM E1820-15a (2015).
Newman, ames, Zerbst (b0265) 2003; 70
Okada, Atluri (b0085) 1999; 23–4
Uomoto, Satoh, Okada, Yusa (b0295) 2017; 136
Wüthrich (b0150) 1982; 20–2
Carka, McMeeking, Landis (b0210) 2012; 79–4
Brust, McGowan, Atluri (b0065) 1986; 23
Brust, Nakagaki, Springfield (b0070) 1989; 33–4
Hashiguchi (b0235) 1980; 47–2
Kubo, Yafuso, Nohara, Ishimaru, Ohji (b0160) 1989; I
Hutchinson (b0025) 1968; 16–1
Omori, Kobayashi, Okada, Atluri, Tan (b0090) 1998; 28
Atluri (b0045) 1986
Delorenzi (b0175) 1985; 21–1
Koshima, Okada (b0215) 2015; 135
Wang, Jiang, Li, Wang, Xu (b0135) 2019; 205
Xiao, Wang, Liu, Hwang (b0100) 2015; 84
Belytschko, Black (b0280) 1999; 45
Okada, Ohata (b0255) 2013; 109
Sukumar, Dolbow, Moës (b0285) 2015; 196
Hashiguchi, K., Elastoplasticity theory, Second Edition, Lecture Notes in Applied and Computational Mechanics 69, Springer Heidelberg New York Dordrecht London, 2014, 10.1007/978-3-642-35849-4.
Okada, Ishizaka, Takahashi, Arai, Yusa (b0220) 2020; 236
Arai, K., Okada, H., Yusa, Y., Formulation of Three-Dimensional J-Integral for Finite Strain Elastic-Plastic Fracture Problems Under Any Load Histories (Monotonic and Cyclic Loads), Proceedings of the ASME 2018 Pressure Vessels and Piping Conference PVP2018 PVP2018-84241 (2018), 10.1115/PVP2018-84241.
Nagashima (b0290) 2020; 7–4
Atluri, Nishioka, Nakagaki (b0050) 1984; 20–2
Rice, Paris, Merkle (b0140) 1973; 536
Tanaka (b0155) 1983; 22–2
Li, Shih, Needleman (b0180) 1985; 21–2
Brust, Nishioka, Atluri, Nakagaki (b0055) 1985; 22–6
Rice (b0015) 1968; 35
MSC Software Corporation, Marc® 2019 Feature Pack 1, 2019.
Tchoffo Ngoula, Madia, Beier, Vormwald, Zerbst (b0130) 2018; 198
Hagihara, Shishido, Hayama, Miyazaki (b0165) 2021; 191
Japan Welding Engineering Society (JWES), Data base on fatigue and ductile fracture under multi-axial load, http://www-it.jw es.or.jp/fatigue_db/index.jsp, Accessed December 2022.
Pyo, Okada, Atluri (b0060) 1995; 16
Xiao, Wang, Liu, Hwang (b0105) 2017; 175
Nikishkov, Atluri (b0190) 1987; 24–9
Arai, Okada, Yusa (b0195) 2018; 84–863
Okada, Atluri, Omori, Kobayashi (b0095) 1999; 15–9
Dowling, Begley (b0005) 1976; 590
Carka, Landis (b0205) 2011; 78–1
Lee, Kokaly, Kobayashi (b0075) 1998; 93
Metzger, Seifert, Schweizer (b0120) 2015; 134
Rice, Rosengren (b0020) 1968; 16–1
Maugin (b0035) 1994; 105
Eshelby, J. D., The force on an elastic singularity, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 244 (951), 87-112, 10.1098/rsta.1951.0016.
Arai, Okada, Yusa (b0225) 2018; 84–864
Okada, Kadowaki, Suzuki, Yusa (b0275) 2019; 207
Azmi, Fujii, Tohgo, Shimamura (b0125) 2017; 176
Nikishkov, Atluri (b0185) 1988; 29–1
10.1016/j.tafmec.2023.103938_b0040
Hutchinson (10.1016/j.tafmec.2023.103938_b0025) 1968; 16–1
Arai (10.1016/j.tafmec.2023.103938_b0195) 2018; 84–863
Wüthrich (10.1016/j.tafmec.2023.103938_b0150) 1982; 20–2
Belytschko (10.1016/j.tafmec.2023.103938_b0280) 1999; 45
Wang (10.1016/j.tafmec.2023.103938_b0135) 2019; 205
Nagashima (10.1016/j.tafmec.2023.103938_b0290) 2020; 7–4
Atluri (10.1016/j.tafmec.2023.103938_b0045) 1986
Okada (10.1016/j.tafmec.2023.103938_b0255) 2013; 109
Li (10.1016/j.tafmec.2023.103938_b0180) 1985; 21–2
Uomoto (10.1016/j.tafmec.2023.103938_b0295) 2017; 136
Lee (10.1016/j.tafmec.2023.103938_b0075) 1998; 93
Okada (10.1016/j.tafmec.2023.103938_b0095) 1999; 15–9
Koshima (10.1016/j.tafmec.2023.103938_b0215) 2015; 135
10.1016/j.tafmec.2023.103938_b0110
Rice (10.1016/j.tafmec.2023.103938_b0020) 1968; 16–1
Metzger (10.1016/j.tafmec.2023.103938_b0120) 2015; 134
Nikishkov (10.1016/j.tafmec.2023.103938_b0190) 1987; 24–9
Okada (10.1016/j.tafmec.2023.103938_b0085) 1999; 23–4
Rice (10.1016/j.tafmec.2023.103938_b0140) 1973; 536
10.1016/j.tafmec.2023.103938_b0250
Pyo (10.1016/j.tafmec.2023.103938_b0060) 1995; 16
Maugin (10.1016/j.tafmec.2023.103938_b0030) 1992; 94
Hagihara (10.1016/j.tafmec.2023.103938_b0165) 2021; 191
Carka (10.1016/j.tafmec.2023.103938_b0210) 2012; 79–4
Hashiguchi (10.1016/j.tafmec.2023.103938_b0240) 2017
Brust (10.1016/j.tafmec.2023.103938_b0070) 1989; 33–4
Nikishkov (10.1016/j.tafmec.2023.103938_b0185) 1988; 29–1
Newman (10.1016/j.tafmec.2023.103938_b0265) 2003; 70
Sukumar (10.1016/j.tafmec.2023.103938_b0285) 2015; 196
10.1016/j.tafmec.2023.103938_b0200
10.1016/j.tafmec.2023.103938_b0245
Brust (10.1016/j.tafmec.2023.103938_b0055) 1985; 22–6
Omori (10.1016/j.tafmec.2023.103938_b0090) 1998; 28
Xiao (10.1016/j.tafmec.2023.103938_b0100) 2015; 84
Tanaka (10.1016/j.tafmec.2023.103938_b0155) 1983; 22–2
Okada (10.1016/j.tafmec.2023.103938_b0275) 2019; 207
Arai (10.1016/j.tafmec.2023.103938_b0225) 2018; 84–864
10.1016/j.tafmec.2023.103938_b0260
Xiao (10.1016/j.tafmec.2023.103938_b0105) 2017; 175
Shahani (10.1016/j.tafmec.2023.103938_b0115) 2009; 32
Hashiguchi (10.1016/j.tafmec.2023.103938_b0235) 1980; 47–2
Azmi (10.1016/j.tafmec.2023.103938_b0125) 2017; 176
Lamba (10.1016/j.tafmec.2023.103938_b0145) 1975; 7–4
Atluri (10.1016/j.tafmec.2023.103938_b0050) 1984; 20–2
Tchoffo Ngoula (10.1016/j.tafmec.2023.103938_b0130) 2018; 198
Delorenzi (10.1016/j.tafmec.2023.103938_b0175) 1985; 21–1
10.1016/j.tafmec.2023.103938_b0270
10.1016/j.tafmec.2023.103938_b0230
Kubo (10.1016/j.tafmec.2023.103938_b0160) 1989; I
Rice (10.1016/j.tafmec.2023.103938_b0015) 1968; 35
Shishido (10.1016/j.tafmec.2023.103938_b0170) 2019; 7–3
Dowling (10.1016/j.tafmec.2023.103938_b0010) 1976; 601
Okada (10.1016/j.tafmec.2023.103938_b0080) 1992; 40–6
Dowling (10.1016/j.tafmec.2023.103938_b0005) 1976; 590
Brust (10.1016/j.tafmec.2023.103938_b0065) 1986; 23
Maugin (10.1016/j.tafmec.2023.103938_b0035) 1994; 105
Carka (10.1016/j.tafmec.2023.103938_b0205) 2011; 78–1
Okada (10.1016/j.tafmec.2023.103938_b0220) 2020; 236
References_xml – volume: 16–1
  start-page: 1
  year: 1968
  end-page: 12
  ident: b0020
  article-title: Plane strain deformation near a crack tip in a power-law hardening material
  publication-title: J. Mech. Phys. Solids
– volume: 136
  start-page: 18
  year: 2017
  end-page: 36
  ident: b0295
  article-title: Mesh-independent data point finite element method (MDP-FEM) for large deformation elastic-plastic problems - An application to the problems of diffused necking
  publication-title: Finite Elem. Anal. Des.
– volume: 135
  start-page: 34
  year: 2015
  end-page: 63
  ident: b0215
  article-title: Three-dimensional J-integral evaluation for finite strain elastic-plastic solid using the quadratic tetrahedral finite element and automatic meshing methodology
  publication-title: Eng. Fract. Mech.
– year: 2017
  ident: b0240
  article-title: Foundations of Elastoplasticity: Subloading Surface Model, Springer
  publication-title: Tokyo
– volume: 176
  start-page: 300
  year: 2017
  end-page: 307
  ident: b0125
  article-title: On the ΔJ-integral to characterize elastic-plastic fatigue crack growth
  publication-title: Eng. Fract. Mech.
– volume: 29–1
  year: 1988
  ident: b0185
  article-title: Three-dimensional elastic-plastic j-integral calculations for semielliptical surface cracks in a tensile plate
  publication-title: Eng. Fract. Mech.
– volume: 105
  start-page: 33
  year: 1994
  end-page: 47
  ident: b0035
  article-title: A, On the J-integral and energy-release rates in dynamical fracture
  publication-title: Acta Mechanica
– volume: 84–864
  start-page: 18
  year: 2018
  end-page: 00309
  ident: b0225
  article-title: A new formulation of J-integral range ΔJ using three-dimensional equivalent domain integral for finite deformation elastic-plastic problem
  publication-title: Transaction of JSME (in Japanese)
– reference: Eshelby, J. D., The force on an elastic singularity, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 244 (951), 87-112, 10.1098/rsta.1951.0016.
– volume: 33–4
  start-page: 561
  year: 1989
  end-page: 579
  ident: b0070
  article-title: Integral parameters for thermal fracture
  publication-title: Eng. Fract. Mech.
– volume: 134
  start-page: 459
  year: 2015
  end-page: 473
  ident: b0120
  article-title: Does the cyclic J-integral ΔJ describe the crack-tip opening displacement in the presence of crack closure?
  publication-title: Eng. Fract. Mech.
– volume: 84
  start-page: 336
  year: 2015
  end-page: 357
  ident: b0100
  article-title: The surface-forming energy release rate based fracture criterion for elastic–plastic crack propagation
  publication-title: J. Mech. Phys. Solids
– volume: 196
  start-page: 189
  year: 2015
  end-page: 206
  ident: b0285
  article-title: Extended finite element method in computational fracture mechanics: a retrospective examination
  publication-title: Int. J. Fract.
– volume: 207
  start-page: 181
  year: 2019
  end-page: 202
  ident: b0275
  article-title: J-integral computation for elastic-plastic materials with spatially varying mechanical properties
  publication-title: Eng. Fract. Mech.
– volume: 78–1
  year: 2011
  ident: b0205
  article-title: On the path-dependence of the J-integral near a stationary crack in an elastic-plastic material
  publication-title: ASME Journal of Applied Mechanics
– volume: 20–2
  start-page: 209
  year: 1984
  end-page: 244
  ident: b0050
  article-title: Incremental path-independent integrals in inelastic and dynamic fracture mechanics
  publication-title: Eng. Fract. Mech.
– reference: Arai, K., Okada, H., Yusa, Y., Formulation of Three-Dimensional J-Integral for Finite Strain Elastic-Plastic Fracture Problems Under Any Load Histories (Monotonic and Cyclic Loads), Proceedings of the ASME 2018 Pressure Vessels and Piping Conference PVP2018 PVP2018-84241 (2018), 10.1115/PVP2018-84241.
– volume: 45
  start-page: 601
  year: 1999
  end-page: 620
  ident: b0280
  article-title: Elastic crack growth in finite elements with minimal remeshing
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 40–6
  start-page: 1421
  year: 1992
  end-page: 1432
  ident: b0080
  article-title: Analysis of toughening of magnesia partially stabilized zirconia, due to dilatational transformation (1992)
  publication-title: Acta Metall. Mater.
– volume: 70
  start-page: 371
  year: 2003
  end-page: 385
  ident: b0265
  article-title: A review of the CTOA/CTOD fracture criterion
  publication-title: Eng. Fract. Mech.
– volume: 22–6
  start-page: 1079
  year: 1985
  end-page: 1103
  ident: b0055
  article-title: Further studies on elastic-plastic stable fracture utilizing the T∗ integral
  publication-title: Eng. Fract. Mech.
– volume: 32
  start-page: 105
  year: 2009
  end-page: 118
  ident: b0115
  article-title: A unified model for the fatigue crack growth rate in variable stress ratio
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 93
  start-page: 39
  year: 1998
  end-page: 50
  ident: b0075
  article-title: S, Dynamic ductile fracture of aluminum SEN specimens an experimental-numerical analysis
  publication-title: Int. J. Fract.
– reference: Hashiguchi, K., Elastoplasticity theory, Second Edition, Lecture Notes in Applied and Computational Mechanics 69, Springer Heidelberg New York Dordrecht London, 2014, 10.1007/978-3-642-35849-4.
– volume: 175
  start-page: 86
  year: 2017
  end-page: 100
  ident: b0105
  article-title: The surface-forming energy release rate versus the local energy release rate
  publication-title: Eng. Fract. Mech.
– volume: 16
  start-page: 190
  year: 1995
  end-page: 196
  ident: b0060
  article-title: Residual strength prediction for aircraft panels with multiple site damage, using the “EPFEAM” for stable crack growth analysis
  publication-title: Comput. Mech.
– volume: 23–4
  start-page: 339
  year: 1999
  end-page: 352
  ident: b0085
  article-title: Further studies on the characteristics of the T*-ε integral: plane stress stable crack propagation in ductile materials
  publication-title: Comput. Mech.
– volume: 84–863
  start-page: 18
  year: 2018
  end-page: 00115
  ident: b0195
  article-title: A new three-dimensional J-integral formulation for arbitrary load history and finite deformation
  publication-title: Transaction of JSME (in Japanese)
– volume: 21–2
  start-page: 405
  year: 1985
  end-page: 421
  ident: b0180
  article-title: A comparison of methods for calculating energy release rates
  publication-title: Eng. Fract. Mech.
– volume: 109
  start-page: 58
  year: 2013
  end-page: 77
  ident: b0255
  article-title: Three-dimensional J-integral evaluation for cracks with arbitrary curvatures and kinks based on domain integral method for quadratic tetrahedral finite element
  publication-title: Eng. Fract. Mech.
– volume: 601
  start-page: 19
  year: 1976
  end-page: 32
  ident: b0010
  article-title: Geometry effects and the J-integral approach to elastic-plastic fatigue crack growth
  publication-title: American Society for Testing and Materials, ASTM STP
– volume: 205
  start-page: 455
  year: 2019
  end-page: 469
  ident: b0135
  article-title: Numerical assessment of cyclic J-integral △J for predicting fatigue crack growth rate
  publication-title: Eng. Fract. Mech.
– reference: ASTM International, Standard test method for measurement of fracture toughness, ASTM E1820-15a (2015).
– volume: 16–1
  start-page: 13
  year: 1968
  end-page: 31
  ident: b0025
  article-title: Singular behaviour at the end of a tensile crack in a hardening material
  publication-title: J. Mech. Phys. Solids
– reference: Gasiak, G., Rozumek, D., ΔJ-integral range estimation for fatigue crack growth rate description, International Journal of Fatigue 26-2 (2004), Volume 26, 135-140, 10.1016/S0142-1123(03)00111-7.
– volume: 15–9
  start-page: 869
  year: 1999
  end-page: 897
  ident: b0095
  article-title: Direct evaluation of T*-ε integral from experimentally measured near tip displacement field, for a plate with stably propagating crack
  publication-title: Int. J. Plast
– volume: 191
  year: 2021
  ident: b0165
  article-title: Methodology for calculating J-integral range ΔJ under cyclic loading
  publication-title: Int. J. Press. Vessel. Pip.
– volume: I
  start-page: 237
  year: 1989
  end-page: 244
  ident: b0160
  article-title: Investigation on path-integral expression of the J-Integral range using numerical simulations of fatigue crack growth
  publication-title: JSME International Journal, Series
– volume: 94
  start-page: 1
  year: 1992
  end-page: 28
  ident: b0030
  article-title: Trimarco, C, Pseudomomentum and material forces in nonlinear elasticity: variational formulations and application to brittle fracture
  publication-title: Acta Mechanica
– volume: 7–3
  start-page: 1604
  year: 2019
  end-page: 1614
  ident: b0170
  article-title: Application of nonlinear fracture mechanics parameter to predicting wire-liftoff lifetime of power module at elevated temperatures
  publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics
– volume: 7–4
  start-page: 20
  year: 2020
  end-page: 00098
  ident: b0290
  article-title: Three-dimensional crack analyses under thermal stress field by XFEM using only the Heaviside step function, Mechanical
  publication-title: Engineering Journal
– volume: 47–2
  start-page: 266
  year: 1980
  end-page: 272
  ident: b0235
  article-title: Constitutive equations of elastoplastic materials with elastic-plastic transition
  publication-title: ASME Journal of Applied Mechanics
– volume: 536
  start-page: 231
  year: 1973
  end-page: 245
  ident: b0140
  article-title: Some further results of J-integral analysis and estimates
  publication-title: Progress in Flaw Growth and Fracture Toughness Testing, American Society for Testing and Materials, ASTM STP
– volume: 236
  year: 2020
  ident: b0220
  article-title: 3D J-integral evaluation for solids undergoing large elastic-plastic deformations with residual stresses and spatially varying mechanical properties of a material
  publication-title: Eng. Fract. Mech.
– volume: 79–4
  year: 2012
  ident: b0210
  article-title: A note on the path-dependence of the J-integral near a stationary crack in an elastic-plastic material with finite deformation
  publication-title: ASME Journal of Applied Mechanics
– volume: 590
  start-page: 82
  year: 1976
  end-page: 103
  ident: b0005
  article-title: Fatigue crack growth during gross plasticity and J-integral
  publication-title: Am. Soc. Test. Mater., ASTM STP
– volume: 35
  start-page: 379
  year: 1968
  end-page: 386
  ident: b0015
  article-title: A path independent integral and the approximate analysis of strain concentration by notches and cracks
  publication-title: J. Appl. Mech.
– start-page: 122
  year: 1986
  end-page: 165
  ident: b0045
  article-title: Energetic approaches and path-independent integrals in fracture mechanics
  publication-title: Computational Methods in the Mechanics of Fracture
– reference: JSME (Japan Society of Mechanical Engineers), Codes for nuclear power generation facilities -rules on fitness-for-service for nuclear power plants-, JSME S NA1- 2012, 2012.
– reference: MSC Software Corporation, Marc® 2019 Feature Pack 1, 2019.
– volume: 7–4
  start-page: 693
  year: 1975
  end-page: 703
  ident: b0145
  article-title: The J-integral applied to cyclic loading
  publication-title: Eng. Fract. Mech.
– volume: 21–1
  start-page: 129
  year: 1985
  end-page: 143
  ident: b0175
  article-title: G, Energy release rate calculations by the finite element method
  publication-title: Eng. Fract. Mech.
– volume: 198
  start-page: 24
  year: 2018
  end-page: 44
  ident: b0130
  article-title: Cyclic J-integral: Numerical and analytical investigations for surface cracks in weldments
  publication-title: Eng. Fract. Mech.
– volume: 22–2
  start-page: 91
  year: 1983
  end-page: 104
  ident: b0155
  article-title: The cyclic J-integral as a criterion for fatigue crack growth
  publication-title: Int. J. Fract.
– reference: Japan Welding Engineering Society (JWES), Data base on fatigue and ductile fracture under multi-axial load, http://www-it.jw es.or.jp/fatigue_db/index.jsp, Accessed December 2022.
– volume: 28
  start-page: 147
  year: 1998
  end-page: 154
  ident: b0090
  article-title: T*-ε as a crack growth criterion
  publication-title: Mech. Mater.
– volume: 23
  start-page: 537
  year: 1986
  end-page: 550
  ident: b0065
  article-title: A combined numerical/experimental study of ductile crack growth after a large unloading, using T∗
  publication-title: J and CTOA criteria, Engineering Fracture Mechanics
– volume: 20–2
  start-page: R35
  year: 1982
  end-page: R37
  ident: b0150
  article-title: The extension of the J-integral concept to fatigue cracks
  publication-title: Int. J. Fract.
– volume: 24–9
  start-page: 1801
  year: 1987
  end-page: 1821
  ident: b0190
  article-title: Calculation of fracture mechanics parameters for an arbitrary three-dimensional crack, by the ‘equivalent domain integral’ method
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 22–6
  start-page: 1079
  year: 1985
  ident: 10.1016/j.tafmec.2023.103938_b0055
  article-title: Further studies on elastic-plastic stable fracture utilizing the T∗ integral
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/0013-7944(85)90046-3
– year: 2017
  ident: 10.1016/j.tafmec.2023.103938_b0240
  article-title: Foundations of Elastoplasticity: Subloading Surface Model, Springer
  publication-title: Tokyo
– ident: 10.1016/j.tafmec.2023.103938_b0270
– volume: 536
  start-page: 231
  year: 1973
  ident: 10.1016/j.tafmec.2023.103938_b0140
  article-title: Some further results of J-integral analysis and estimates
  publication-title: Progress in Flaw Growth and Fracture Toughness Testing, American Society for Testing and Materials, ASTM STP
– volume: 196
  start-page: 189
  year: 2015
  ident: 10.1016/j.tafmec.2023.103938_b0285
  article-title: Extended finite element method in computational fracture mechanics: a retrospective examination
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-015-0064-8
– volume: 105
  start-page: 33
  year: 1994
  ident: 10.1016/j.tafmec.2023.103938_b0035
  article-title: A, On the J-integral and energy-release rates in dynamical fracture
  publication-title: Acta Mechanica
  doi: 10.1007/BF01183940
– ident: 10.1016/j.tafmec.2023.103938_b0040
  doi: 10.1098/rsta.1951.0016
– volume: 35
  start-page: 379
  year: 1968
  ident: 10.1016/j.tafmec.2023.103938_b0015
  article-title: A path independent integral and the approximate analysis of strain concentration by notches and cracks
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3601206
– volume: 78–1
  year: 2011
  ident: 10.1016/j.tafmec.2023.103938_b0205
  article-title: On the path-dependence of the J-integral near a stationary crack in an elastic-plastic material
  publication-title: ASME Journal of Applied Mechanics
– volume: 21–1
  start-page: 129
  year: 1985
  ident: 10.1016/j.tafmec.2023.103938_b0175
  article-title: G, Energy release rate calculations by the finite element method
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/0013-7944(85)90060-8
– ident: 10.1016/j.tafmec.2023.103938_b0260
– volume: 135
  start-page: 34
  year: 2015
  ident: 10.1016/j.tafmec.2023.103938_b0215
  article-title: Three-dimensional J-integral evaluation for finite strain elastic-plastic solid using the quadratic tetrahedral finite element and automatic meshing methodology
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2015.01.014
– volume: 79–4
  year: 2012
  ident: 10.1016/j.tafmec.2023.103938_b0210
  article-title: A note on the path-dependence of the J-integral near a stationary crack in an elastic-plastic material with finite deformation
  publication-title: ASME Journal of Applied Mechanics
– volume: 16
  start-page: 190
  year: 1995
  ident: 10.1016/j.tafmec.2023.103938_b0060
  article-title: Residual strength prediction for aircraft panels with multiple site damage, using the “EPFEAM” for stable crack growth analysis
  publication-title: Comput. Mech.
  doi: 10.1007/BF00369780
– volume: 7–4
  start-page: 693
  year: 1975
  ident: 10.1016/j.tafmec.2023.103938_b0145
  article-title: The J-integral applied to cyclic loading
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/0013-7944(75)90025-9
– volume: 22–2
  start-page: 91
  year: 1983
  ident: 10.1016/j.tafmec.2023.103938_b0155
  article-title: The cyclic J-integral as a criterion for fatigue crack growth
  publication-title: Int. J. Fract.
  doi: 10.1007/BF00942715
– volume: 198
  start-page: 24
  year: 2018
  ident: 10.1016/j.tafmec.2023.103938_b0130
  article-title: Cyclic J-integral: Numerical and analytical investigations for surface cracks in weldments
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2017.06.023
– volume: 7–3
  start-page: 1604
  year: 2019
  ident: 10.1016/j.tafmec.2023.103938_b0170
  article-title: Application of nonlinear fracture mechanics parameter to predicting wire-liftoff lifetime of power module at elevated temperatures
  publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics
  doi: 10.1109/JESTPE.2019.2914244
– volume: 207
  start-page: 181
  year: 2019
  ident: 10.1016/j.tafmec.2023.103938_b0275
  article-title: J-integral computation for elastic-plastic materials with spatially varying mechanical properties
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2018.12.029
– volume: 84–864
  start-page: 18
  year: 2018
  ident: 10.1016/j.tafmec.2023.103938_b0225
  article-title: A new formulation of J-integral range ΔJ using three-dimensional equivalent domain integral for finite deformation elastic-plastic problem
  publication-title: Transaction of JSME (in Japanese)
– volume: 20–2
  start-page: 209
  year: 1984
  ident: 10.1016/j.tafmec.2023.103938_b0050
  article-title: Incremental path-independent integrals in inelastic and dynamic fracture mechanics
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/0013-7944(84)90129-2
– volume: 24–9
  start-page: 1801
  year: 1987
  ident: 10.1016/j.tafmec.2023.103938_b0190
  article-title: Calculation of fracture mechanics parameters for an arbitrary three-dimensional crack, by the ‘equivalent domain integral’ method
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.1620240914
– volume: 20–2
  start-page: R35
  year: 1982
  ident: 10.1016/j.tafmec.2023.103938_b0150
  article-title: The extension of the J-integral concept to fatigue cracks
  publication-title: Int. J. Fract.
  doi: 10.1007/BF01141264
– volume: 236
  year: 2020
  ident: 10.1016/j.tafmec.2023.103938_b0220
  article-title: 3D J-integral evaluation for solids undergoing large elastic-plastic deformations with residual stresses and spatially varying mechanical properties of a material
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2020.107212
– start-page: 122
  year: 1986
  ident: 10.1016/j.tafmec.2023.103938_b0045
  article-title: Energetic approaches and path-independent integrals in fracture mechanics
– volume: 136
  start-page: 18
  year: 2017
  ident: 10.1016/j.tafmec.2023.103938_b0295
  article-title: Mesh-independent data point finite element method (MDP-FEM) for large deformation elastic-plastic problems - An application to the problems of diffused necking
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2017.08.001
– volume: 16–1
  start-page: 13
  year: 1968
  ident: 10.1016/j.tafmec.2023.103938_b0025
  article-title: Singular behaviour at the end of a tensile crack in a hardening material
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(68)90014-8
– volume: 33–4
  start-page: 561
  year: 1989
  ident: 10.1016/j.tafmec.2023.103938_b0070
  article-title: Integral parameters for thermal fracture
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/0013-7944(89)90040-4
– volume: 70
  start-page: 371
  year: 2003
  ident: 10.1016/j.tafmec.2023.103938_b0265
  article-title: A review of the CTOA/CTOD fracture criterion
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/S0013-7944(02)00125-X
– volume: 134
  start-page: 459
  year: 2015
  ident: 10.1016/j.tafmec.2023.103938_b0120
  article-title: Does the cyclic J-integral ΔJ describe the crack-tip opening displacement in the presence of crack closure?
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2014.07.017
– volume: 176
  start-page: 300
  year: 2017
  ident: 10.1016/j.tafmec.2023.103938_b0125
  article-title: On the ΔJ-integral to characterize elastic-plastic fatigue crack growth
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2017.03.041
– volume: 175
  start-page: 86
  year: 2017
  ident: 10.1016/j.tafmec.2023.103938_b0105
  article-title: The surface-forming energy release rate versus the local energy release rate
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2017.02.006
– volume: 45
  start-page: 601
  year: 1999
  ident: 10.1016/j.tafmec.2023.103938_b0280
  article-title: Elastic crack growth in finite elements with minimal remeshing
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
– volume: 29–1
  year: 1988
  ident: 10.1016/j.tafmec.2023.103938_b0185
  article-title: Three-dimensional elastic-plastic j-integral calculations for semielliptical surface cracks in a tensile plate
  publication-title: Eng. Fract. Mech.
– volume: 590
  start-page: 82
  year: 1976
  ident: 10.1016/j.tafmec.2023.103938_b0005
  article-title: Fatigue crack growth during gross plasticity and J-integral
  publication-title: Am. Soc. Test. Mater., ASTM STP
– volume: 15–9
  start-page: 869
  year: 1999
  ident: 10.1016/j.tafmec.2023.103938_b0095
  article-title: Direct evaluation of T*-ε integral from experimentally measured near tip displacement field, for a plate with stably propagating crack
  publication-title: Int. J. Plast
  doi: 10.1016/S0749-6419(99)00016-9
– volume: 47–2
  start-page: 266
  year: 1980
  ident: 10.1016/j.tafmec.2023.103938_b0235
  article-title: Constitutive equations of elastoplastic materials with elastic-plastic transition
  publication-title: ASME Journal of Applied Mechanics
  doi: 10.1115/1.3153653
– volume: 32
  start-page: 105
  year: 2009
  ident: 10.1016/j.tafmec.2023.103938_b0115
  article-title: A unified model for the fatigue crack growth rate in variable stress ratio
  publication-title: Fatigue Fract. Eng. Mater. Struct.
  doi: 10.1111/j.1460-2695.2008.01315.x
– volume: 21–2
  start-page: 405
  year: 1985
  ident: 10.1016/j.tafmec.2023.103938_b0180
  article-title: A comparison of methods for calculating energy release rates
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/0013-7944(85)90029-3
– volume: 23
  start-page: 537
  issue: 3
  year: 1986
  ident: 10.1016/j.tafmec.2023.103938_b0065
  article-title: A combined numerical/experimental study of ductile crack growth after a large unloading, using T∗
  publication-title: J and CTOA criteria, Engineering Fracture Mechanics
  doi: 10.1016/0013-7944(86)90161-X
– volume: 601
  start-page: 19
  year: 1976
  ident: 10.1016/j.tafmec.2023.103938_b0010
  article-title: Geometry effects and the J-integral approach to elastic-plastic fatigue crack growth
  publication-title: American Society for Testing and Materials, ASTM STP
– volume: I
  start-page: 237
  issue: 32–2
  year: 1989
  ident: 10.1016/j.tafmec.2023.103938_b0160
  article-title: Investigation on path-integral expression of the J-Integral range using numerical simulations of fatigue crack growth
  publication-title: JSME International Journal, Series
– volume: 94
  start-page: 1
  year: 1992
  ident: 10.1016/j.tafmec.2023.103938_b0030
  article-title: Trimarco, C, Pseudomomentum and material forces in nonlinear elasticity: variational formulations and application to brittle fracture
  publication-title: Acta Mechanica
  doi: 10.1007/BF01177002
– ident: 10.1016/j.tafmec.2023.103938_b0245
  doi: 10.1007/978-3-642-35849-4
– volume: 40–6
  start-page: 1421
  year: 1992
  ident: 10.1016/j.tafmec.2023.103938_b0080
  article-title: Analysis of toughening of magnesia partially stabilized zirconia, due to dilatational transformation (1992)
  publication-title: Acta Metall. Mater.
  doi: 10.1016/0956-7151(92)90444-J
– volume: 23–4
  start-page: 339
  year: 1999
  ident: 10.1016/j.tafmec.2023.103938_b0085
  article-title: Further studies on the characteristics of the T*-ε integral: plane stress stable crack propagation in ductile materials
  publication-title: Comput. Mech.
  doi: 10.1007/s004660050414
– ident: 10.1016/j.tafmec.2023.103938_b0200
  doi: 10.1115/PVP2018-84241
– volume: 109
  start-page: 58
  year: 2013
  ident: 10.1016/j.tafmec.2023.103938_b0255
  article-title: Three-dimensional J-integral evaluation for cracks with arbitrary curvatures and kinks based on domain integral method for quadratic tetrahedral finite element
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2013.06.009
– volume: 28
  start-page: 147
  year: 1998
  ident: 10.1016/j.tafmec.2023.103938_b0090
  article-title: T*-ε as a crack growth criterion
  publication-title: Mech. Mater.
  doi: 10.1016/S0167-6636(97)00059-8
– ident: 10.1016/j.tafmec.2023.103938_b0230
– volume: 16–1
  start-page: 1
  year: 1968
  ident: 10.1016/j.tafmec.2023.103938_b0020
  article-title: Plane strain deformation near a crack tip in a power-law hardening material
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(68)90013-6
– ident: 10.1016/j.tafmec.2023.103938_b0110
  doi: 10.1016/S0142-1123(03)00111-7
– ident: 10.1016/j.tafmec.2023.103938_b0250
– volume: 191
  year: 2021
  ident: 10.1016/j.tafmec.2023.103938_b0165
  article-title: Methodology for calculating J-integral range ΔJ under cyclic loading
  publication-title: Int. J. Press. Vessel. Pip.
  doi: 10.1016/j.ijpvp.2021.104343
– volume: 7–4
  start-page: 20
  year: 2020
  ident: 10.1016/j.tafmec.2023.103938_b0290
  article-title: Three-dimensional crack analyses under thermal stress field by XFEM using only the Heaviside step function, Mechanical
  publication-title: Engineering Journal
– volume: 93
  start-page: 39
  year: 1998
  ident: 10.1016/j.tafmec.2023.103938_b0075
  article-title: S, Dynamic ductile fracture of aluminum SEN specimens an experimental-numerical analysis
  publication-title: Int. J. Fract.
  doi: 10.1023/A:1007536915336
– volume: 84–863
  start-page: 18
  year: 2018
  ident: 10.1016/j.tafmec.2023.103938_b0195
  article-title: A new three-dimensional J-integral formulation for arbitrary load history and finite deformation
  publication-title: Transaction of JSME (in Japanese)
– volume: 84
  start-page: 336
  year: 2015
  ident: 10.1016/j.tafmec.2023.103938_b0100
  article-title: The surface-forming energy release rate based fracture criterion for elastic–plastic crack propagation
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2015.08.011
– volume: 205
  start-page: 455
  year: 2019
  ident: 10.1016/j.tafmec.2023.103938_b0135
  article-title: Numerical assessment of cyclic J-integral △J for predicting fatigue crack growth rate
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2018.11.031
SSID ssj0017193
Score 2.3222313
Snippet •Redefined J-integral range ΔJ was applied to ultra-low cycle fatigue problems.•Redefined J-integral range ΔJ is independent of size and shape of its integral...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103938
SubjectTerms Crack propagation
Cyclic plasticity
J-integral
J-integral range ΔJ
Subloading surface plasticity model
Ultra-low cycle fatigue
Title Application of redefined J-integral range ΔJ for ultra-low cycle fatigue problems with large magnitude of elastic-plastic deformation
URI https://dx.doi.org/10.1016/j.tafmec.2023.103938
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTuMwEB5BueweELssWv4qH_ZqSmw3iY8Vouq2Wg7sInqLYsdGoNBWJRXiwpEn4Ll4JmYahwVpxUpIUaz8jGN5oplJ_M03AD_0YbcrTGy5ihTunCq4yVXEHdVESdIozpclWX6dxIMzNRx3xytw1OTCEKwy2P7api-tdTjTCbPZmV1edn4TgD5VCv0bxTzReBXWhNRxtwVrvZ-jwcnLYkIS1dy7RPFNAk0G3RLmVeX-2hGXoZCUgK4pUeVfHuqV1-lvwHoIF1mvHtEXWHGTr_D5FYngJjz0_q5Bs6lnc1c4j5cLNuSBDKJkc8ohYE-PQ4ZBKluU1Tzn5fSW2TvslnkUvlg4FqrL3DD6O8tKAomz65zwRYvCUd8OY20cCZ_VLcMnNcmP3-Csf_znaMBDdQVuhYgqrmOV56nxxulUSKkJbOitLQ5dbAxq0Gj81olFkRqdaOdy700hl_RxyihvpdyC1mQ6cd-BWZt4QcRrOPsYXmHj0W553IQqjEy2QTYzmtlAPU4VMMqswZhdZbUeMtJDVuthG_iL1Kym3vjP_UmjrOzNK5Shd3hXcufDkrvwiY5qROAetKr5wu1jlFKZNqwe3Eft8C5SOzo9Hz0DTuLqXg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOQAHxCrK6gNX0yZ2k_hYVVSltL3QSr1FsWMjULooJEJcOPIFfBffhCdLKRICCSlKpNjjWB5rZpK8eYPQJW80m7ZwJGEWMyfFQiICZhEFNVFcz3KCrCTLYOh0x6w3aU4qqF3mwgCssrD9uU3PrHVxp16sZn3x8FC_AwC9x5jxbxDzWJM1tM6a1AVc39XrEudhuVbOvAsE39C9zJ_LQF5JoKcKmAxtCunnHNJUfvJPKz6ns4O2i2ARt_L57KKKmu2hrRUKwX301vr6A43nGscqVNo0h7hHCiqICMeQQYA_3nvYhKg4jZI4INH8GcsXMyzWRvg-VbioLfOE4dssjgAijqcBoIvSUMHYykTaZiZkkV-xeVKZ-niAxp3rUbtLitoKRNq2lRDusCDwhBaKezalHKCGWsqwoRwhjP4EN286jh16grtcqUBrEdKMPI4JpiWlh6g6m8_UEcJSutoG2jXuQEEzc9HGamlz2CwU1K0hWq6oLwvicah_EfklwuzRz_Xggx78XA81RJZSi5x444_-bqks_9sG8o1v-FXy-N-SF2ijOxr0_f7N8PYEbUJLjg08RdUkTtWZiVcScZ7tx0_96-mG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+redefined+J-integral+range+%CE%94J+for+ultra-low+cycle+fatigue+problems+with+large+magnitude+of+elastic-plastic+deformation&rft.jtitle=Theoretical+and+applied+fracture+mechanics&rft.au=Shoda%2C+Keigo&rft.au=Arai%2C+Koichiro&rft.au=Nakamura%2C+Sora&rft.au=Okada%2C+Hiroshi&rft.date=2023-08-01&rft.issn=0167-8442&rft.volume=126&rft.spage=103938&rft_id=info:doi/10.1016%2Fj.tafmec.2023.103938&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tafmec_2023_103938
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8442&client=summon