Application of redefined J-integral range ΔJ for ultra-low cycle fatigue problems with large magnitude of elastic-plastic deformation
•Redefined J-integral range ΔJ was applied to ultra-low cycle fatigue problems.•Redefined J-integral range ΔJ is independent of size and shape of its integral domain.•Redefined J-integral range ΔJ by a domain integral can be applied to any structures.•Redefined J-integral range ΔJ can be applied to...
Saved in:
Published in | Theoretical and applied fracture mechanics Vol. 126; p. 103938 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-8442 1872-7638 |
DOI | 10.1016/j.tafmec.2023.103938 |
Cover
Abstract | •Redefined J-integral range ΔJ was applied to ultra-low cycle fatigue problems.•Redefined J-integral range ΔJ is independent of size and shape of its integral domain.•Redefined J-integral range ΔJ by a domain integral can be applied to any structures.•Redefined J-integral range ΔJ can be applied to any finite strain problems.•Redefined J-integral range ΔJ does not pose any restrictions on constitutive models.•Subloading surface plasticity model reproduced load–displacement hystereses accurately.
The redefined J-integral range ΔJ by a domain integral representation was applied to the ultra-low cycle fatigue problem of a 1 T compact tension (1TCT) specimen. The specimen was subject to large magnitude of cyclic deformation. The redefined J-integral range ΔJ is unconditionally independent of size and shape of its integral domain. The subloading surface plasticity model was adopted to appropriately reproduce the cyclic stress-strain behavior of the material. Finite element analyses on and evaluations of ΔJ were performed on the ultra-low cycle fatigue problem of a 1TCT specimen made of stainless steel SUS316. The outcomes of present study show the followings: (i) use of the redefined J-integral range ΔJ under the assumption of finite deformation theory, ductile crack propagations in ultra-low cycle fatigue problems can be characterized and (ii) deformation and load-displacement hystereses of the experiments can appropriately be reproduced by the use of the subloading surface plasticity model. |
---|---|
AbstractList | •Redefined J-integral range ΔJ was applied to ultra-low cycle fatigue problems.•Redefined J-integral range ΔJ is independent of size and shape of its integral domain.•Redefined J-integral range ΔJ by a domain integral can be applied to any structures.•Redefined J-integral range ΔJ can be applied to any finite strain problems.•Redefined J-integral range ΔJ does not pose any restrictions on constitutive models.•Subloading surface plasticity model reproduced load–displacement hystereses accurately.
The redefined J-integral range ΔJ by a domain integral representation was applied to the ultra-low cycle fatigue problem of a 1 T compact tension (1TCT) specimen. The specimen was subject to large magnitude of cyclic deformation. The redefined J-integral range ΔJ is unconditionally independent of size and shape of its integral domain. The subloading surface plasticity model was adopted to appropriately reproduce the cyclic stress-strain behavior of the material. Finite element analyses on and evaluations of ΔJ were performed on the ultra-low cycle fatigue problem of a 1TCT specimen made of stainless steel SUS316. The outcomes of present study show the followings: (i) use of the redefined J-integral range ΔJ under the assumption of finite deformation theory, ductile crack propagations in ultra-low cycle fatigue problems can be characterized and (ii) deformation and load-displacement hystereses of the experiments can appropriately be reproduced by the use of the subloading surface plasticity model. |
ArticleNumber | 103938 |
Author | Shoda, Keigo Nakamura, Sora Arai, Koichiro Okada, Hiroshi |
Author_xml | – sequence: 1 givenname: Keigo surname: Shoda fullname: Shoda, Keigo organization: Department of Mechanical Engineering, Graduate School of Science and Technology, Tokyo University of Science, Japan – sequence: 2 givenname: Koichiro surname: Arai fullname: Arai, Koichiro organization: Hexagon, Japan – sequence: 3 givenname: Sora surname: Nakamura fullname: Nakamura, Sora organization: Department of Mechanical Engineering, Graduate School of Science and Technology, Tokyo University of Science, Japan – sequence: 4 givenname: Hiroshi surname: Okada fullname: Okada, Hiroshi email: hiroshi.okada@rs.tus.ac.jp organization: Department of Mechanical and Aerospace Engineering, Faculty of Science and Technology, Tokyo University of Science, Japan |
BookMark | eNqFkEtOwzAQhi1UJNrCDVj4Ail-pEnMAgkhnkJiA2vLdsbFlRNHjkvVC3ACzsWZSAkrFrAaaTTfPzPfDE3a0AJCp5QsKKHF2XqRlG3ALBhhfGhxwasDNKVVybKy4NUETYexMqvynB2hWd-vCaElFXyK3i-7zjujkgstDhZHqMG6Fmr8kLk2wSoqj6NqV4A_Px6wDRFvfIoq82GLzc54wHaAVxvAXQzaQ9PjrUuv2Ks4MI1atS5tathng1d9cibrxoqHTSE236uP0aFVvoeTnzpHLzfXz1d32ePT7f3V5WNmGKMpE0WuVKWtBlExzgUlFbHG1AQKrclyqUXBioLVlRalAFDW6pqXQizzXOfWcD5H-ZhrYuj7CFZ20TUq7iQlcu9SruXoUu5dytHlgJ3_woxL34cPKpz_D74YYRgee3MQZW8ctAZqF8EkWQf3d8AXLemYPg |
CitedBy_id | crossref_primary_10_1016_j_engfracmech_2024_110349 crossref_primary_10_1016_j_tafmec_2024_104310 crossref_primary_10_1051_e3sconf_202458101003 crossref_primary_10_3390_met14060613 crossref_primary_10_1007_s11831_023_10022_1 |
Cites_doi | 10.1016/0013-7944(85)90046-3 10.1007/s10704-015-0064-8 10.1007/BF01183940 10.1098/rsta.1951.0016 10.1115/1.3601206 10.1016/0013-7944(85)90060-8 10.1016/j.engfracmech.2015.01.014 10.1007/BF00369780 10.1016/0013-7944(75)90025-9 10.1007/BF00942715 10.1016/j.engfracmech.2017.06.023 10.1109/JESTPE.2019.2914244 10.1016/j.engfracmech.2018.12.029 10.1016/0013-7944(84)90129-2 10.1002/nme.1620240914 10.1007/BF01141264 10.1016/j.engfracmech.2020.107212 10.1016/j.finel.2017.08.001 10.1016/0022-5096(68)90014-8 10.1016/0013-7944(89)90040-4 10.1016/S0013-7944(02)00125-X 10.1016/j.engfracmech.2014.07.017 10.1016/j.engfracmech.2017.03.041 10.1016/j.engfracmech.2017.02.006 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S 10.1016/S0749-6419(99)00016-9 10.1115/1.3153653 10.1111/j.1460-2695.2008.01315.x 10.1016/0013-7944(85)90029-3 10.1016/0013-7944(86)90161-X 10.1007/BF01177002 10.1007/978-3-642-35849-4 10.1016/0956-7151(92)90444-J 10.1007/s004660050414 10.1115/PVP2018-84241 10.1016/j.engfracmech.2013.06.009 10.1016/S0167-6636(97)00059-8 10.1016/0022-5096(68)90013-6 10.1016/S0142-1123(03)00111-7 10.1016/j.ijpvp.2021.104343 10.1023/A:1007536915336 10.1016/j.jmps.2015.08.011 10.1016/j.engfracmech.2018.11.031 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.tafmec.2023.103938 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-7638 |
ExternalDocumentID | 10_1016_j_tafmec_2023_103938 S016784422300201X |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UHS WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c221t-964aa8bfbe9823391080fccd0e6bb055b962662d8b979eeaffbd3799544b4fc33 |
IEDL.DBID | AIKHN |
ISSN | 0167-8442 |
IngestDate | Sun Jul 06 05:07:27 EDT 2025 Thu Apr 24 23:11:11 EDT 2025 Fri Feb 23 02:36:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | J-integral Ultra-low cycle fatigue J-integral range ΔJ Subloading surface plasticity model Cyclic plasticity Crack propagation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c221t-964aa8bfbe9823391080fccd0e6bb055b962662d8b979eeaffbd3799544b4fc33 |
ParticipantIDs | crossref_primary_10_1016_j_tafmec_2023_103938 crossref_citationtrail_10_1016_j_tafmec_2023_103938 elsevier_sciencedirect_doi_10_1016_j_tafmec_2023_103938 |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationTitle | Theoretical and applied fracture mechanics |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hashiguchi (b0240) 2017 Dowling (b0010) 1976; 601 JSME (Japan Society of Mechanical Engineers), Codes for nuclear power generation facilities -rules on fitness-for-service for nuclear power plants-, JSME S NA1- 2012, 2012. Maugin (b0030) 1992; 94 Okada, Tamura, Ramakrishnan, Atluri, Epstein (b0080) 1992; 40–6 Shahani, Kashani, Rastegar, Dehkordi (b0115) 2009; 32 Shishido, Hayama, Morooka, Hagihara, Miyazaki (b0170) 2019; 7–3 Gasiak, G., Rozumek, D., ΔJ-integral range estimation for fatigue crack growth rate description, International Journal of Fatigue 26-2 (2004), Volume 26, 135-140, 10.1016/S0142-1123(03)00111-7. Lamba (b0145) 1975; 7–4 ASTM International, Standard test method for measurement of fracture toughness, ASTM E1820-15a (2015). Newman, ames, Zerbst (b0265) 2003; 70 Okada, Atluri (b0085) 1999; 23–4 Uomoto, Satoh, Okada, Yusa (b0295) 2017; 136 Wüthrich (b0150) 1982; 20–2 Carka, McMeeking, Landis (b0210) 2012; 79–4 Brust, McGowan, Atluri (b0065) 1986; 23 Brust, Nakagaki, Springfield (b0070) 1989; 33–4 Hashiguchi (b0235) 1980; 47–2 Kubo, Yafuso, Nohara, Ishimaru, Ohji (b0160) 1989; I Hutchinson (b0025) 1968; 16–1 Omori, Kobayashi, Okada, Atluri, Tan (b0090) 1998; 28 Atluri (b0045) 1986 Delorenzi (b0175) 1985; 21–1 Koshima, Okada (b0215) 2015; 135 Wang, Jiang, Li, Wang, Xu (b0135) 2019; 205 Xiao, Wang, Liu, Hwang (b0100) 2015; 84 Belytschko, Black (b0280) 1999; 45 Okada, Ohata (b0255) 2013; 109 Sukumar, Dolbow, Moës (b0285) 2015; 196 Hashiguchi, K., Elastoplasticity theory, Second Edition, Lecture Notes in Applied and Computational Mechanics 69, Springer Heidelberg New York Dordrecht London, 2014, 10.1007/978-3-642-35849-4. Okada, Ishizaka, Takahashi, Arai, Yusa (b0220) 2020; 236 Arai, K., Okada, H., Yusa, Y., Formulation of Three-Dimensional J-Integral for Finite Strain Elastic-Plastic Fracture Problems Under Any Load Histories (Monotonic and Cyclic Loads), Proceedings of the ASME 2018 Pressure Vessels and Piping Conference PVP2018 PVP2018-84241 (2018), 10.1115/PVP2018-84241. Nagashima (b0290) 2020; 7–4 Atluri, Nishioka, Nakagaki (b0050) 1984; 20–2 Rice, Paris, Merkle (b0140) 1973; 536 Tanaka (b0155) 1983; 22–2 Li, Shih, Needleman (b0180) 1985; 21–2 Brust, Nishioka, Atluri, Nakagaki (b0055) 1985; 22–6 Rice (b0015) 1968; 35 MSC Software Corporation, Marc® 2019 Feature Pack 1, 2019. Tchoffo Ngoula, Madia, Beier, Vormwald, Zerbst (b0130) 2018; 198 Hagihara, Shishido, Hayama, Miyazaki (b0165) 2021; 191 Japan Welding Engineering Society (JWES), Data base on fatigue and ductile fracture under multi-axial load, http://www-it.jw es.or.jp/fatigue_db/index.jsp, Accessed December 2022. Pyo, Okada, Atluri (b0060) 1995; 16 Xiao, Wang, Liu, Hwang (b0105) 2017; 175 Nikishkov, Atluri (b0190) 1987; 24–9 Arai, Okada, Yusa (b0195) 2018; 84–863 Okada, Atluri, Omori, Kobayashi (b0095) 1999; 15–9 Dowling, Begley (b0005) 1976; 590 Carka, Landis (b0205) 2011; 78–1 Lee, Kokaly, Kobayashi (b0075) 1998; 93 Metzger, Seifert, Schweizer (b0120) 2015; 134 Rice, Rosengren (b0020) 1968; 16–1 Maugin (b0035) 1994; 105 Eshelby, J. D., The force on an elastic singularity, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 244 (951), 87-112, 10.1098/rsta.1951.0016. Arai, Okada, Yusa (b0225) 2018; 84–864 Okada, Kadowaki, Suzuki, Yusa (b0275) 2019; 207 Azmi, Fujii, Tohgo, Shimamura (b0125) 2017; 176 Nikishkov, Atluri (b0185) 1988; 29–1 10.1016/j.tafmec.2023.103938_b0040 Hutchinson (10.1016/j.tafmec.2023.103938_b0025) 1968; 16–1 Arai (10.1016/j.tafmec.2023.103938_b0195) 2018; 84–863 Wüthrich (10.1016/j.tafmec.2023.103938_b0150) 1982; 20–2 Belytschko (10.1016/j.tafmec.2023.103938_b0280) 1999; 45 Wang (10.1016/j.tafmec.2023.103938_b0135) 2019; 205 Nagashima (10.1016/j.tafmec.2023.103938_b0290) 2020; 7–4 Atluri (10.1016/j.tafmec.2023.103938_b0045) 1986 Okada (10.1016/j.tafmec.2023.103938_b0255) 2013; 109 Li (10.1016/j.tafmec.2023.103938_b0180) 1985; 21–2 Uomoto (10.1016/j.tafmec.2023.103938_b0295) 2017; 136 Lee (10.1016/j.tafmec.2023.103938_b0075) 1998; 93 Okada (10.1016/j.tafmec.2023.103938_b0095) 1999; 15–9 Koshima (10.1016/j.tafmec.2023.103938_b0215) 2015; 135 10.1016/j.tafmec.2023.103938_b0110 Rice (10.1016/j.tafmec.2023.103938_b0020) 1968; 16–1 Metzger (10.1016/j.tafmec.2023.103938_b0120) 2015; 134 Nikishkov (10.1016/j.tafmec.2023.103938_b0190) 1987; 24–9 Okada (10.1016/j.tafmec.2023.103938_b0085) 1999; 23–4 Rice (10.1016/j.tafmec.2023.103938_b0140) 1973; 536 10.1016/j.tafmec.2023.103938_b0250 Pyo (10.1016/j.tafmec.2023.103938_b0060) 1995; 16 Maugin (10.1016/j.tafmec.2023.103938_b0030) 1992; 94 Hagihara (10.1016/j.tafmec.2023.103938_b0165) 2021; 191 Carka (10.1016/j.tafmec.2023.103938_b0210) 2012; 79–4 Hashiguchi (10.1016/j.tafmec.2023.103938_b0240) 2017 Brust (10.1016/j.tafmec.2023.103938_b0070) 1989; 33–4 Nikishkov (10.1016/j.tafmec.2023.103938_b0185) 1988; 29–1 Newman (10.1016/j.tafmec.2023.103938_b0265) 2003; 70 Sukumar (10.1016/j.tafmec.2023.103938_b0285) 2015; 196 10.1016/j.tafmec.2023.103938_b0200 10.1016/j.tafmec.2023.103938_b0245 Brust (10.1016/j.tafmec.2023.103938_b0055) 1985; 22–6 Omori (10.1016/j.tafmec.2023.103938_b0090) 1998; 28 Xiao (10.1016/j.tafmec.2023.103938_b0100) 2015; 84 Tanaka (10.1016/j.tafmec.2023.103938_b0155) 1983; 22–2 Okada (10.1016/j.tafmec.2023.103938_b0275) 2019; 207 Arai (10.1016/j.tafmec.2023.103938_b0225) 2018; 84–864 10.1016/j.tafmec.2023.103938_b0260 Xiao (10.1016/j.tafmec.2023.103938_b0105) 2017; 175 Shahani (10.1016/j.tafmec.2023.103938_b0115) 2009; 32 Hashiguchi (10.1016/j.tafmec.2023.103938_b0235) 1980; 47–2 Azmi (10.1016/j.tafmec.2023.103938_b0125) 2017; 176 Lamba (10.1016/j.tafmec.2023.103938_b0145) 1975; 7–4 Atluri (10.1016/j.tafmec.2023.103938_b0050) 1984; 20–2 Tchoffo Ngoula (10.1016/j.tafmec.2023.103938_b0130) 2018; 198 Delorenzi (10.1016/j.tafmec.2023.103938_b0175) 1985; 21–1 10.1016/j.tafmec.2023.103938_b0270 10.1016/j.tafmec.2023.103938_b0230 Kubo (10.1016/j.tafmec.2023.103938_b0160) 1989; I Rice (10.1016/j.tafmec.2023.103938_b0015) 1968; 35 Shishido (10.1016/j.tafmec.2023.103938_b0170) 2019; 7–3 Dowling (10.1016/j.tafmec.2023.103938_b0010) 1976; 601 Okada (10.1016/j.tafmec.2023.103938_b0080) 1992; 40–6 Dowling (10.1016/j.tafmec.2023.103938_b0005) 1976; 590 Brust (10.1016/j.tafmec.2023.103938_b0065) 1986; 23 Maugin (10.1016/j.tafmec.2023.103938_b0035) 1994; 105 Carka (10.1016/j.tafmec.2023.103938_b0205) 2011; 78–1 Okada (10.1016/j.tafmec.2023.103938_b0220) 2020; 236 |
References_xml | – volume: 16–1 start-page: 1 year: 1968 end-page: 12 ident: b0020 article-title: Plane strain deformation near a crack tip in a power-law hardening material publication-title: J. Mech. Phys. Solids – volume: 136 start-page: 18 year: 2017 end-page: 36 ident: b0295 article-title: Mesh-independent data point finite element method (MDP-FEM) for large deformation elastic-plastic problems - An application to the problems of diffused necking publication-title: Finite Elem. Anal. Des. – volume: 135 start-page: 34 year: 2015 end-page: 63 ident: b0215 article-title: Three-dimensional J-integral evaluation for finite strain elastic-plastic solid using the quadratic tetrahedral finite element and automatic meshing methodology publication-title: Eng. Fract. Mech. – year: 2017 ident: b0240 article-title: Foundations of Elastoplasticity: Subloading Surface Model, Springer publication-title: Tokyo – volume: 176 start-page: 300 year: 2017 end-page: 307 ident: b0125 article-title: On the ΔJ-integral to characterize elastic-plastic fatigue crack growth publication-title: Eng. Fract. Mech. – volume: 29–1 year: 1988 ident: b0185 article-title: Three-dimensional elastic-plastic j-integral calculations for semielliptical surface cracks in a tensile plate publication-title: Eng. Fract. Mech. – volume: 105 start-page: 33 year: 1994 end-page: 47 ident: b0035 article-title: A, On the J-integral and energy-release rates in dynamical fracture publication-title: Acta Mechanica – volume: 84–864 start-page: 18 year: 2018 end-page: 00309 ident: b0225 article-title: A new formulation of J-integral range ΔJ using three-dimensional equivalent domain integral for finite deformation elastic-plastic problem publication-title: Transaction of JSME (in Japanese) – reference: Eshelby, J. D., The force on an elastic singularity, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 244 (951), 87-112, 10.1098/rsta.1951.0016. – volume: 33–4 start-page: 561 year: 1989 end-page: 579 ident: b0070 article-title: Integral parameters for thermal fracture publication-title: Eng. Fract. Mech. – volume: 134 start-page: 459 year: 2015 end-page: 473 ident: b0120 article-title: Does the cyclic J-integral ΔJ describe the crack-tip opening displacement in the presence of crack closure? publication-title: Eng. Fract. Mech. – volume: 84 start-page: 336 year: 2015 end-page: 357 ident: b0100 article-title: The surface-forming energy release rate based fracture criterion for elastic–plastic crack propagation publication-title: J. Mech. Phys. Solids – volume: 196 start-page: 189 year: 2015 end-page: 206 ident: b0285 article-title: Extended finite element method in computational fracture mechanics: a retrospective examination publication-title: Int. J. Fract. – volume: 207 start-page: 181 year: 2019 end-page: 202 ident: b0275 article-title: J-integral computation for elastic-plastic materials with spatially varying mechanical properties publication-title: Eng. Fract. Mech. – volume: 78–1 year: 2011 ident: b0205 article-title: On the path-dependence of the J-integral near a stationary crack in an elastic-plastic material publication-title: ASME Journal of Applied Mechanics – volume: 20–2 start-page: 209 year: 1984 end-page: 244 ident: b0050 article-title: Incremental path-independent integrals in inelastic and dynamic fracture mechanics publication-title: Eng. Fract. Mech. – reference: Arai, K., Okada, H., Yusa, Y., Formulation of Three-Dimensional J-Integral for Finite Strain Elastic-Plastic Fracture Problems Under Any Load Histories (Monotonic and Cyclic Loads), Proceedings of the ASME 2018 Pressure Vessels and Piping Conference PVP2018 PVP2018-84241 (2018), 10.1115/PVP2018-84241. – volume: 45 start-page: 601 year: 1999 end-page: 620 ident: b0280 article-title: Elastic crack growth in finite elements with minimal remeshing publication-title: Int. J. Numer. Meth. Eng. – volume: 40–6 start-page: 1421 year: 1992 end-page: 1432 ident: b0080 article-title: Analysis of toughening of magnesia partially stabilized zirconia, due to dilatational transformation (1992) publication-title: Acta Metall. Mater. – volume: 70 start-page: 371 year: 2003 end-page: 385 ident: b0265 article-title: A review of the CTOA/CTOD fracture criterion publication-title: Eng. Fract. Mech. – volume: 22–6 start-page: 1079 year: 1985 end-page: 1103 ident: b0055 article-title: Further studies on elastic-plastic stable fracture utilizing the T∗ integral publication-title: Eng. Fract. Mech. – volume: 32 start-page: 105 year: 2009 end-page: 118 ident: b0115 article-title: A unified model for the fatigue crack growth rate in variable stress ratio publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 93 start-page: 39 year: 1998 end-page: 50 ident: b0075 article-title: S, Dynamic ductile fracture of aluminum SEN specimens an experimental-numerical analysis publication-title: Int. J. Fract. – reference: Hashiguchi, K., Elastoplasticity theory, Second Edition, Lecture Notes in Applied and Computational Mechanics 69, Springer Heidelberg New York Dordrecht London, 2014, 10.1007/978-3-642-35849-4. – volume: 175 start-page: 86 year: 2017 end-page: 100 ident: b0105 article-title: The surface-forming energy release rate versus the local energy release rate publication-title: Eng. Fract. Mech. – volume: 16 start-page: 190 year: 1995 end-page: 196 ident: b0060 article-title: Residual strength prediction for aircraft panels with multiple site damage, using the “EPFEAM” for stable crack growth analysis publication-title: Comput. Mech. – volume: 23–4 start-page: 339 year: 1999 end-page: 352 ident: b0085 article-title: Further studies on the characteristics of the T*-ε integral: plane stress stable crack propagation in ductile materials publication-title: Comput. Mech. – volume: 84–863 start-page: 18 year: 2018 end-page: 00115 ident: b0195 article-title: A new three-dimensional J-integral formulation for arbitrary load history and finite deformation publication-title: Transaction of JSME (in Japanese) – volume: 21–2 start-page: 405 year: 1985 end-page: 421 ident: b0180 article-title: A comparison of methods for calculating energy release rates publication-title: Eng. Fract. Mech. – volume: 109 start-page: 58 year: 2013 end-page: 77 ident: b0255 article-title: Three-dimensional J-integral evaluation for cracks with arbitrary curvatures and kinks based on domain integral method for quadratic tetrahedral finite element publication-title: Eng. Fract. Mech. – volume: 601 start-page: 19 year: 1976 end-page: 32 ident: b0010 article-title: Geometry effects and the J-integral approach to elastic-plastic fatigue crack growth publication-title: American Society for Testing and Materials, ASTM STP – volume: 205 start-page: 455 year: 2019 end-page: 469 ident: b0135 article-title: Numerical assessment of cyclic J-integral △J for predicting fatigue crack growth rate publication-title: Eng. Fract. Mech. – reference: ASTM International, Standard test method for measurement of fracture toughness, ASTM E1820-15a (2015). – volume: 16–1 start-page: 13 year: 1968 end-page: 31 ident: b0025 article-title: Singular behaviour at the end of a tensile crack in a hardening material publication-title: J. Mech. Phys. Solids – reference: Gasiak, G., Rozumek, D., ΔJ-integral range estimation for fatigue crack growth rate description, International Journal of Fatigue 26-2 (2004), Volume 26, 135-140, 10.1016/S0142-1123(03)00111-7. – volume: 15–9 start-page: 869 year: 1999 end-page: 897 ident: b0095 article-title: Direct evaluation of T*-ε integral from experimentally measured near tip displacement field, for a plate with stably propagating crack publication-title: Int. J. Plast – volume: 191 year: 2021 ident: b0165 article-title: Methodology for calculating J-integral range ΔJ under cyclic loading publication-title: Int. J. Press. Vessel. Pip. – volume: I start-page: 237 year: 1989 end-page: 244 ident: b0160 article-title: Investigation on path-integral expression of the J-Integral range using numerical simulations of fatigue crack growth publication-title: JSME International Journal, Series – volume: 94 start-page: 1 year: 1992 end-page: 28 ident: b0030 article-title: Trimarco, C, Pseudomomentum and material forces in nonlinear elasticity: variational formulations and application to brittle fracture publication-title: Acta Mechanica – volume: 7–3 start-page: 1604 year: 2019 end-page: 1614 ident: b0170 article-title: Application of nonlinear fracture mechanics parameter to predicting wire-liftoff lifetime of power module at elevated temperatures publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics – volume: 7–4 start-page: 20 year: 2020 end-page: 00098 ident: b0290 article-title: Three-dimensional crack analyses under thermal stress field by XFEM using only the Heaviside step function, Mechanical publication-title: Engineering Journal – volume: 47–2 start-page: 266 year: 1980 end-page: 272 ident: b0235 article-title: Constitutive equations of elastoplastic materials with elastic-plastic transition publication-title: ASME Journal of Applied Mechanics – volume: 536 start-page: 231 year: 1973 end-page: 245 ident: b0140 article-title: Some further results of J-integral analysis and estimates publication-title: Progress in Flaw Growth and Fracture Toughness Testing, American Society for Testing and Materials, ASTM STP – volume: 236 year: 2020 ident: b0220 article-title: 3D J-integral evaluation for solids undergoing large elastic-plastic deformations with residual stresses and spatially varying mechanical properties of a material publication-title: Eng. Fract. Mech. – volume: 79–4 year: 2012 ident: b0210 article-title: A note on the path-dependence of the J-integral near a stationary crack in an elastic-plastic material with finite deformation publication-title: ASME Journal of Applied Mechanics – volume: 590 start-page: 82 year: 1976 end-page: 103 ident: b0005 article-title: Fatigue crack growth during gross plasticity and J-integral publication-title: Am. Soc. Test. Mater., ASTM STP – volume: 35 start-page: 379 year: 1968 end-page: 386 ident: b0015 article-title: A path independent integral and the approximate analysis of strain concentration by notches and cracks publication-title: J. Appl. Mech. – start-page: 122 year: 1986 end-page: 165 ident: b0045 article-title: Energetic approaches and path-independent integrals in fracture mechanics publication-title: Computational Methods in the Mechanics of Fracture – reference: JSME (Japan Society of Mechanical Engineers), Codes for nuclear power generation facilities -rules on fitness-for-service for nuclear power plants-, JSME S NA1- 2012, 2012. – reference: MSC Software Corporation, Marc® 2019 Feature Pack 1, 2019. – volume: 7–4 start-page: 693 year: 1975 end-page: 703 ident: b0145 article-title: The J-integral applied to cyclic loading publication-title: Eng. Fract. Mech. – volume: 21–1 start-page: 129 year: 1985 end-page: 143 ident: b0175 article-title: G, Energy release rate calculations by the finite element method publication-title: Eng. Fract. Mech. – volume: 198 start-page: 24 year: 2018 end-page: 44 ident: b0130 article-title: Cyclic J-integral: Numerical and analytical investigations for surface cracks in weldments publication-title: Eng. Fract. Mech. – volume: 22–2 start-page: 91 year: 1983 end-page: 104 ident: b0155 article-title: The cyclic J-integral as a criterion for fatigue crack growth publication-title: Int. J. Fract. – reference: Japan Welding Engineering Society (JWES), Data base on fatigue and ductile fracture under multi-axial load, http://www-it.jw es.or.jp/fatigue_db/index.jsp, Accessed December 2022. – volume: 28 start-page: 147 year: 1998 end-page: 154 ident: b0090 article-title: T*-ε as a crack growth criterion publication-title: Mech. Mater. – volume: 23 start-page: 537 year: 1986 end-page: 550 ident: b0065 article-title: A combined numerical/experimental study of ductile crack growth after a large unloading, using T∗ publication-title: J and CTOA criteria, Engineering Fracture Mechanics – volume: 20–2 start-page: R35 year: 1982 end-page: R37 ident: b0150 article-title: The extension of the J-integral concept to fatigue cracks publication-title: Int. J. Fract. – volume: 24–9 start-page: 1801 year: 1987 end-page: 1821 ident: b0190 article-title: Calculation of fracture mechanics parameters for an arbitrary three-dimensional crack, by the ‘equivalent domain integral’ method publication-title: Int. J. Numer. Meth. Eng. – volume: 22–6 start-page: 1079 year: 1985 ident: 10.1016/j.tafmec.2023.103938_b0055 article-title: Further studies on elastic-plastic stable fracture utilizing the T∗ integral publication-title: Eng. Fract. Mech. doi: 10.1016/0013-7944(85)90046-3 – year: 2017 ident: 10.1016/j.tafmec.2023.103938_b0240 article-title: Foundations of Elastoplasticity: Subloading Surface Model, Springer publication-title: Tokyo – ident: 10.1016/j.tafmec.2023.103938_b0270 – volume: 536 start-page: 231 year: 1973 ident: 10.1016/j.tafmec.2023.103938_b0140 article-title: Some further results of J-integral analysis and estimates publication-title: Progress in Flaw Growth and Fracture Toughness Testing, American Society for Testing and Materials, ASTM STP – volume: 196 start-page: 189 year: 2015 ident: 10.1016/j.tafmec.2023.103938_b0285 article-title: Extended finite element method in computational fracture mechanics: a retrospective examination publication-title: Int. J. Fract. doi: 10.1007/s10704-015-0064-8 – volume: 105 start-page: 33 year: 1994 ident: 10.1016/j.tafmec.2023.103938_b0035 article-title: A, On the J-integral and energy-release rates in dynamical fracture publication-title: Acta Mechanica doi: 10.1007/BF01183940 – ident: 10.1016/j.tafmec.2023.103938_b0040 doi: 10.1098/rsta.1951.0016 – volume: 35 start-page: 379 year: 1968 ident: 10.1016/j.tafmec.2023.103938_b0015 article-title: A path independent integral and the approximate analysis of strain concentration by notches and cracks publication-title: J. Appl. Mech. doi: 10.1115/1.3601206 – volume: 78–1 year: 2011 ident: 10.1016/j.tafmec.2023.103938_b0205 article-title: On the path-dependence of the J-integral near a stationary crack in an elastic-plastic material publication-title: ASME Journal of Applied Mechanics – volume: 21–1 start-page: 129 year: 1985 ident: 10.1016/j.tafmec.2023.103938_b0175 article-title: G, Energy release rate calculations by the finite element method publication-title: Eng. Fract. Mech. doi: 10.1016/0013-7944(85)90060-8 – ident: 10.1016/j.tafmec.2023.103938_b0260 – volume: 135 start-page: 34 year: 2015 ident: 10.1016/j.tafmec.2023.103938_b0215 article-title: Three-dimensional J-integral evaluation for finite strain elastic-plastic solid using the quadratic tetrahedral finite element and automatic meshing methodology publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2015.01.014 – volume: 79–4 year: 2012 ident: 10.1016/j.tafmec.2023.103938_b0210 article-title: A note on the path-dependence of the J-integral near a stationary crack in an elastic-plastic material with finite deformation publication-title: ASME Journal of Applied Mechanics – volume: 16 start-page: 190 year: 1995 ident: 10.1016/j.tafmec.2023.103938_b0060 article-title: Residual strength prediction for aircraft panels with multiple site damage, using the “EPFEAM” for stable crack growth analysis publication-title: Comput. Mech. doi: 10.1007/BF00369780 – volume: 7–4 start-page: 693 year: 1975 ident: 10.1016/j.tafmec.2023.103938_b0145 article-title: The J-integral applied to cyclic loading publication-title: Eng. Fract. Mech. doi: 10.1016/0013-7944(75)90025-9 – volume: 22–2 start-page: 91 year: 1983 ident: 10.1016/j.tafmec.2023.103938_b0155 article-title: The cyclic J-integral as a criterion for fatigue crack growth publication-title: Int. J. Fract. doi: 10.1007/BF00942715 – volume: 198 start-page: 24 year: 2018 ident: 10.1016/j.tafmec.2023.103938_b0130 article-title: Cyclic J-integral: Numerical and analytical investigations for surface cracks in weldments publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2017.06.023 – volume: 7–3 start-page: 1604 year: 2019 ident: 10.1016/j.tafmec.2023.103938_b0170 article-title: Application of nonlinear fracture mechanics parameter to predicting wire-liftoff lifetime of power module at elevated temperatures publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics doi: 10.1109/JESTPE.2019.2914244 – volume: 207 start-page: 181 year: 2019 ident: 10.1016/j.tafmec.2023.103938_b0275 article-title: J-integral computation for elastic-plastic materials with spatially varying mechanical properties publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2018.12.029 – volume: 84–864 start-page: 18 year: 2018 ident: 10.1016/j.tafmec.2023.103938_b0225 article-title: A new formulation of J-integral range ΔJ using three-dimensional equivalent domain integral for finite deformation elastic-plastic problem publication-title: Transaction of JSME (in Japanese) – volume: 20–2 start-page: 209 year: 1984 ident: 10.1016/j.tafmec.2023.103938_b0050 article-title: Incremental path-independent integrals in inelastic and dynamic fracture mechanics publication-title: Eng. Fract. Mech. doi: 10.1016/0013-7944(84)90129-2 – volume: 24–9 start-page: 1801 year: 1987 ident: 10.1016/j.tafmec.2023.103938_b0190 article-title: Calculation of fracture mechanics parameters for an arbitrary three-dimensional crack, by the ‘equivalent domain integral’ method publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.1620240914 – volume: 20–2 start-page: R35 year: 1982 ident: 10.1016/j.tafmec.2023.103938_b0150 article-title: The extension of the J-integral concept to fatigue cracks publication-title: Int. J. Fract. doi: 10.1007/BF01141264 – volume: 236 year: 2020 ident: 10.1016/j.tafmec.2023.103938_b0220 article-title: 3D J-integral evaluation for solids undergoing large elastic-plastic deformations with residual stresses and spatially varying mechanical properties of a material publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2020.107212 – start-page: 122 year: 1986 ident: 10.1016/j.tafmec.2023.103938_b0045 article-title: Energetic approaches and path-independent integrals in fracture mechanics – volume: 136 start-page: 18 year: 2017 ident: 10.1016/j.tafmec.2023.103938_b0295 article-title: Mesh-independent data point finite element method (MDP-FEM) for large deformation elastic-plastic problems - An application to the problems of diffused necking publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2017.08.001 – volume: 16–1 start-page: 13 year: 1968 ident: 10.1016/j.tafmec.2023.103938_b0025 article-title: Singular behaviour at the end of a tensile crack in a hardening material publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(68)90014-8 – volume: 33–4 start-page: 561 year: 1989 ident: 10.1016/j.tafmec.2023.103938_b0070 article-title: Integral parameters for thermal fracture publication-title: Eng. Fract. Mech. doi: 10.1016/0013-7944(89)90040-4 – volume: 70 start-page: 371 year: 2003 ident: 10.1016/j.tafmec.2023.103938_b0265 article-title: A review of the CTOA/CTOD fracture criterion publication-title: Eng. Fract. Mech. doi: 10.1016/S0013-7944(02)00125-X – volume: 134 start-page: 459 year: 2015 ident: 10.1016/j.tafmec.2023.103938_b0120 article-title: Does the cyclic J-integral ΔJ describe the crack-tip opening displacement in the presence of crack closure? publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2014.07.017 – volume: 176 start-page: 300 year: 2017 ident: 10.1016/j.tafmec.2023.103938_b0125 article-title: On the ΔJ-integral to characterize elastic-plastic fatigue crack growth publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2017.03.041 – volume: 175 start-page: 86 year: 2017 ident: 10.1016/j.tafmec.2023.103938_b0105 article-title: The surface-forming energy release rate versus the local energy release rate publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2017.02.006 – volume: 45 start-page: 601 year: 1999 ident: 10.1016/j.tafmec.2023.103938_b0280 article-title: Elastic crack growth in finite elements with minimal remeshing publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S – volume: 29–1 year: 1988 ident: 10.1016/j.tafmec.2023.103938_b0185 article-title: Three-dimensional elastic-plastic j-integral calculations for semielliptical surface cracks in a tensile plate publication-title: Eng. Fract. Mech. – volume: 590 start-page: 82 year: 1976 ident: 10.1016/j.tafmec.2023.103938_b0005 article-title: Fatigue crack growth during gross plasticity and J-integral publication-title: Am. Soc. Test. Mater., ASTM STP – volume: 15–9 start-page: 869 year: 1999 ident: 10.1016/j.tafmec.2023.103938_b0095 article-title: Direct evaluation of T*-ε integral from experimentally measured near tip displacement field, for a plate with stably propagating crack publication-title: Int. J. Plast doi: 10.1016/S0749-6419(99)00016-9 – volume: 47–2 start-page: 266 year: 1980 ident: 10.1016/j.tafmec.2023.103938_b0235 article-title: Constitutive equations of elastoplastic materials with elastic-plastic transition publication-title: ASME Journal of Applied Mechanics doi: 10.1115/1.3153653 – volume: 32 start-page: 105 year: 2009 ident: 10.1016/j.tafmec.2023.103938_b0115 article-title: A unified model for the fatigue crack growth rate in variable stress ratio publication-title: Fatigue Fract. Eng. Mater. Struct. doi: 10.1111/j.1460-2695.2008.01315.x – volume: 21–2 start-page: 405 year: 1985 ident: 10.1016/j.tafmec.2023.103938_b0180 article-title: A comparison of methods for calculating energy release rates publication-title: Eng. Fract. Mech. doi: 10.1016/0013-7944(85)90029-3 – volume: 23 start-page: 537 issue: 3 year: 1986 ident: 10.1016/j.tafmec.2023.103938_b0065 article-title: A combined numerical/experimental study of ductile crack growth after a large unloading, using T∗ publication-title: J and CTOA criteria, Engineering Fracture Mechanics doi: 10.1016/0013-7944(86)90161-X – volume: 601 start-page: 19 year: 1976 ident: 10.1016/j.tafmec.2023.103938_b0010 article-title: Geometry effects and the J-integral approach to elastic-plastic fatigue crack growth publication-title: American Society for Testing and Materials, ASTM STP – volume: I start-page: 237 issue: 32–2 year: 1989 ident: 10.1016/j.tafmec.2023.103938_b0160 article-title: Investigation on path-integral expression of the J-Integral range using numerical simulations of fatigue crack growth publication-title: JSME International Journal, Series – volume: 94 start-page: 1 year: 1992 ident: 10.1016/j.tafmec.2023.103938_b0030 article-title: Trimarco, C, Pseudomomentum and material forces in nonlinear elasticity: variational formulations and application to brittle fracture publication-title: Acta Mechanica doi: 10.1007/BF01177002 – ident: 10.1016/j.tafmec.2023.103938_b0245 doi: 10.1007/978-3-642-35849-4 – volume: 40–6 start-page: 1421 year: 1992 ident: 10.1016/j.tafmec.2023.103938_b0080 article-title: Analysis of toughening of magnesia partially stabilized zirconia, due to dilatational transformation (1992) publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(92)90444-J – volume: 23–4 start-page: 339 year: 1999 ident: 10.1016/j.tafmec.2023.103938_b0085 article-title: Further studies on the characteristics of the T*-ε integral: plane stress stable crack propagation in ductile materials publication-title: Comput. Mech. doi: 10.1007/s004660050414 – ident: 10.1016/j.tafmec.2023.103938_b0200 doi: 10.1115/PVP2018-84241 – volume: 109 start-page: 58 year: 2013 ident: 10.1016/j.tafmec.2023.103938_b0255 article-title: Three-dimensional J-integral evaluation for cracks with arbitrary curvatures and kinks based on domain integral method for quadratic tetrahedral finite element publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2013.06.009 – volume: 28 start-page: 147 year: 1998 ident: 10.1016/j.tafmec.2023.103938_b0090 article-title: T*-ε as a crack growth criterion publication-title: Mech. Mater. doi: 10.1016/S0167-6636(97)00059-8 – ident: 10.1016/j.tafmec.2023.103938_b0230 – volume: 16–1 start-page: 1 year: 1968 ident: 10.1016/j.tafmec.2023.103938_b0020 article-title: Plane strain deformation near a crack tip in a power-law hardening material publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(68)90013-6 – ident: 10.1016/j.tafmec.2023.103938_b0110 doi: 10.1016/S0142-1123(03)00111-7 – ident: 10.1016/j.tafmec.2023.103938_b0250 – volume: 191 year: 2021 ident: 10.1016/j.tafmec.2023.103938_b0165 article-title: Methodology for calculating J-integral range ΔJ under cyclic loading publication-title: Int. J. Press. Vessel. Pip. doi: 10.1016/j.ijpvp.2021.104343 – volume: 7–4 start-page: 20 year: 2020 ident: 10.1016/j.tafmec.2023.103938_b0290 article-title: Three-dimensional crack analyses under thermal stress field by XFEM using only the Heaviside step function, Mechanical publication-title: Engineering Journal – volume: 93 start-page: 39 year: 1998 ident: 10.1016/j.tafmec.2023.103938_b0075 article-title: S, Dynamic ductile fracture of aluminum SEN specimens an experimental-numerical analysis publication-title: Int. J. Fract. doi: 10.1023/A:1007536915336 – volume: 84–863 start-page: 18 year: 2018 ident: 10.1016/j.tafmec.2023.103938_b0195 article-title: A new three-dimensional J-integral formulation for arbitrary load history and finite deformation publication-title: Transaction of JSME (in Japanese) – volume: 84 start-page: 336 year: 2015 ident: 10.1016/j.tafmec.2023.103938_b0100 article-title: The surface-forming energy release rate based fracture criterion for elastic–plastic crack propagation publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2015.08.011 – volume: 205 start-page: 455 year: 2019 ident: 10.1016/j.tafmec.2023.103938_b0135 article-title: Numerical assessment of cyclic J-integral △J for predicting fatigue crack growth rate publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2018.11.031 |
SSID | ssj0017193 |
Score | 2.3222313 |
Snippet | •Redefined J-integral range ΔJ was applied to ultra-low cycle fatigue problems.•Redefined J-integral range ΔJ is independent of size and shape of its integral... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103938 |
SubjectTerms | Crack propagation Cyclic plasticity J-integral J-integral range ΔJ Subloading surface plasticity model Ultra-low cycle fatigue |
Title | Application of redefined J-integral range ΔJ for ultra-low cycle fatigue problems with large magnitude of elastic-plastic deformation |
URI | https://dx.doi.org/10.1016/j.tafmec.2023.103938 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTuMwEB5BueweELssWv4qH_ZqSmw3iY8Vouq2Wg7sInqLYsdGoNBWJRXiwpEn4Ll4JmYahwVpxUpIUaz8jGN5oplJ_M03AD_0YbcrTGy5ihTunCq4yVXEHdVESdIozpclWX6dxIMzNRx3xytw1OTCEKwy2P7api-tdTjTCbPZmV1edn4TgD5VCv0bxTzReBXWhNRxtwVrvZ-jwcnLYkIS1dy7RPFNAk0G3RLmVeX-2hGXoZCUgK4pUeVfHuqV1-lvwHoIF1mvHtEXWHGTr_D5FYngJjz0_q5Bs6lnc1c4j5cLNuSBDKJkc8ohYE-PQ4ZBKluU1Tzn5fSW2TvslnkUvlg4FqrL3DD6O8tKAomz65zwRYvCUd8OY20cCZ_VLcMnNcmP3-Csf_znaMBDdQVuhYgqrmOV56nxxulUSKkJbOitLQ5dbAxq0Gj81olFkRqdaOdy700hl_RxyihvpdyC1mQ6cd-BWZt4QcRrOPsYXmHj0W553IQqjEy2QTYzmtlAPU4VMMqswZhdZbUeMtJDVuthG_iL1Kym3vjP_UmjrOzNK5Shd3hXcufDkrvwiY5qROAetKr5wu1jlFKZNqwe3Eft8C5SOzo9Hz0DTuLqXg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOQAHxCrK6gNX0yZ2k_hYVVSltL3QSr1FsWMjULooJEJcOPIFfBffhCdLKRICCSlKpNjjWB5rZpK8eYPQJW80m7ZwJGEWMyfFQiICZhEFNVFcz3KCrCTLYOh0x6w3aU4qqF3mwgCssrD9uU3PrHVxp16sZn3x8FC_AwC9x5jxbxDzWJM1tM6a1AVc39XrEudhuVbOvAsE39C9zJ_LQF5JoKcKmAxtCunnHNJUfvJPKz6ns4O2i2ARt_L57KKKmu2hrRUKwX301vr6A43nGscqVNo0h7hHCiqICMeQQYA_3nvYhKg4jZI4INH8GcsXMyzWRvg-VbioLfOE4dssjgAijqcBoIvSUMHYykTaZiZkkV-xeVKZ-niAxp3rUbtLitoKRNq2lRDusCDwhBaKezalHKCGWsqwoRwhjP4EN286jh16grtcqUBrEdKMPI4JpiWlh6g6m8_UEcJSutoG2jXuQEEzc9HGamlz2CwU1K0hWq6oLwvicah_EfklwuzRz_Xggx78XA81RJZSi5x444_-bqks_9sG8o1v-FXy-N-SF2ijOxr0_f7N8PYEbUJLjg08RdUkTtWZiVcScZ7tx0_96-mG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+redefined+J-integral+range+%CE%94J+for+ultra-low+cycle+fatigue+problems+with+large+magnitude+of+elastic-plastic+deformation&rft.jtitle=Theoretical+and+applied+fracture+mechanics&rft.au=Shoda%2C+Keigo&rft.au=Arai%2C+Koichiro&rft.au=Nakamura%2C+Sora&rft.au=Okada%2C+Hiroshi&rft.date=2023-08-01&rft.issn=0167-8442&rft.volume=126&rft.spage=103938&rft_id=info:doi/10.1016%2Fj.tafmec.2023.103938&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tafmec_2023_103938 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8442&client=summon |