Transition-metal-catalyzed C(sp3)–H bond fluorination reactions

Constructing C−F bonds via C−H activation has been a subject of considerable attention in the field of organic synthesis. Within this reaction class, the popularity of transition-metal-catalyzed approaches has substantially expanded in recent years. Currently, there are two main types of these react...

Full description

Saved in:
Bibliographic Details
Published inChem catalysis Vol. 4; no. 7; p. 101009
Main Authors Ge, Robbie, Xu, Ziting, Yang, Ke, Ge, Haibo
Format Journal Article
LanguageEnglish
Published Elsevier Inc 18.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Constructing C−F bonds via C−H activation has been a subject of considerable attention in the field of organic synthesis. Within this reaction class, the popularity of transition-metal-catalyzed approaches has substantially expanded in recent years. Currently, there are two main types of these reaction pathways. The first type involves the formation of a carbon-metal-fluorine intermediate with the assistance of a directing group. The second type utilizes a transition metal species to generate a radical or carbocation intermediate. Despite the importance of these reactions, there has yet to be a comprehensive review of transition-metal-catalyzed C(sp3)−H bond fluorination processes. This review presents major advances in and detailed mechanistic discussions of transition-metal-catalyzed C(sp3)−H bond fluorination reactions with different reaction modes under various thermal, photochemical, and electrochemical conditions. [Display omitted] The selective construction of C–F bonds is a highly active research field in pharmaceutical and agricultural chemistry, as well as materials science. In this field, the utilization of transition-metal-catalyzed C(sp3)–H fluorination has emerged as a prominent and remarkably efficient strategy for synthesizing diverse molecules containing fluorine. Considering their importance in organic chemistry, this review introduces the major advances in the field of transition-metal-catalyzed C(sp3)–H bond fluorination reactions under thermal, photochemical, and electrochemical conditions. Additionally, detailed mechanistic discussions have been provided to help readers gain insights in this area. Ge et al. provide and discuss the historical background and significant advancements in transition-metal-catalyzed C(sp3)–H bond fluorination reactions via different modes of action under thermal, photochemical, and electrochemical conditions. Additionally, they provide comprehensive discussions on reaction mechanisms alongside a forward-looking perspective on innovative strategies within this field.
AbstractList Constructing C−F bonds via C−H activation has been a subject of considerable attention in the field of organic synthesis. Within this reaction class, the popularity of transition-metal-catalyzed approaches has substantially expanded in recent years. Currently, there are two main types of these reaction pathways. The first type involves the formation of a carbon-metal-fluorine intermediate with the assistance of a directing group. The second type utilizes a transition metal species to generate a radical or carbocation intermediate. Despite the importance of these reactions, there has yet to be a comprehensive review of transition-metal-catalyzed C(sp3)−H bond fluorination processes. This review presents major advances in and detailed mechanistic discussions of transition-metal-catalyzed C(sp3)−H bond fluorination reactions with different reaction modes under various thermal, photochemical, and electrochemical conditions. [Display omitted] The selective construction of C–F bonds is a highly active research field in pharmaceutical and agricultural chemistry, as well as materials science. In this field, the utilization of transition-metal-catalyzed C(sp3)–H fluorination has emerged as a prominent and remarkably efficient strategy for synthesizing diverse molecules containing fluorine. Considering their importance in organic chemistry, this review introduces the major advances in the field of transition-metal-catalyzed C(sp3)–H bond fluorination reactions under thermal, photochemical, and electrochemical conditions. Additionally, detailed mechanistic discussions have been provided to help readers gain insights in this area. Ge et al. provide and discuss the historical background and significant advancements in transition-metal-catalyzed C(sp3)–H bond fluorination reactions via different modes of action under thermal, photochemical, and electrochemical conditions. Additionally, they provide comprehensive discussions on reaction mechanisms alongside a forward-looking perspective on innovative strategies within this field.
ArticleNumber 101009
Author Ge, Haibo
Ge, Robbie
Xu, Ziting
Yang, Ke
Author_xml – sequence: 1
  givenname: Robbie
  surname: Ge
  fullname: Ge, Robbie
  organization: Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
– sequence: 2
  givenname: Ziting
  surname: Xu
  fullname: Xu, Ziting
  organization: Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
– sequence: 3
  givenname: Ke
  surname: Yang
  fullname: Yang, Ke
  email: keyang@cczu.edu.cn
  organization: Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
– sequence: 4
  givenname: Haibo
  surname: Ge
  fullname: Ge, Haibo
  email: haibo.ge@ttu.edu
  organization: Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
BookMark eNqFkLFOwzAQhi1UJErpGzBkhCHl7DROzYBUVUCRkFjKbF2cs3CVOpUdkMrEO_CGPAkNYUAMMN3pdN-vu--YDXzjibFTDhMOXF6sJ-aJDLYTAWLajQDUARsKKYuUg8oGP_ojNo5xDQAi55nIxZDNVwF9dK1rfLqhFut0H4X17pWqZHEWt9n5x9v7MikbXyW2fm6C89gtJ4HQdE08YYcW60jj7zpijzfXq8UyvX-4vVvM71MjBG_TAiyiqCgvy1LgTEFOErGEWSVAgVEgkaOUFnJFnKbWiErZwigiScoUlI3YZZ9rQhNjIKuNa79uaQO6WnPQnQ-91r0P3fnQvY89PP0Fb4PbYNj9h131GO0fe3EUdDSOvKHKBTKtrhr3d8Ann0B_cA
CitedBy_id crossref_primary_10_1021_acs_orglett_5c00816
crossref_primary_10_1039_D4JA00261J
crossref_primary_10_1002_slct_202405859
crossref_primary_10_1039_D4QO01179A
crossref_primary_10_6023_cjoc202410015
Cites_doi 10.1002/anie.201301097
10.1021/ja5039819
10.1039/C8RA03230K
10.1039/C8OB00926K
10.1021/ja407223g
10.1039/C4QO00078A
10.1039/b812100c
10.1021/acs.orglett.8b03044
10.1002/asia.202000011
10.1038/s41557-018-0048-1
10.1039/D1GC03168F
10.1039/D2SC01677J
10.1002/anie.201814457
10.1021/acs.chemrev.9b00495
10.1002/anie.201808021
10.1039/D0SC05944G
10.1021/acs.joc.9b00324
10.1021/jacs.3c01824
10.1002/ajoc.202200532
10.1126/science.1222327
10.1021/acsomega.0c00830
10.1039/D2RA01268E
10.1021/jacs.5b04088
10.1039/C9QO01073D
10.1002/cbic.200300833
10.1021/acs.orglett.5b01774
10.1021/acs.orglett.0c02239
10.6023/cjoc202006068
10.1039/C4SC02099E
10.1002/anie.201203642
10.1039/C4QO00020J
10.1016/j.chempr.2020.08.017
10.1021/acs.chemrev.5b00392
10.1021/acs.joc.9b02202
10.1021/jacs.0c02583
10.1039/D2QO00663D
10.1039/C4QO00057A
10.1016/j.cclet.2020.11.036
10.1002/anie.202009995
10.1021/acs.chemrev.6b00622
10.1002/chem.201402516
10.1021/acs.orglett.5b01710
10.1002/anie.201806434
10.1039/D1QO00774B
10.1039/C8CC00980E
10.1039/D3GC02516K
10.1021/acs.joc.2c02575
10.1016/j.chempr.2017.11.002
10.1021/acs.accounts.0c00888
10.1021/jacs.9b13537
10.1039/D0OB01587C
10.1039/B611336B
10.1021/jacs.8b00048
10.1039/D0RA06518H
10.1021/acs.accounts.5b00062
10.1002/anie.201913126
10.1039/D2SC05735B
10.1016/j.jfluchem.2014.06.014
10.1002/adsc.201400101
10.6023/cjoc201512040
10.1055/s-0037-1611737
10.1039/D2SC01907H
10.1021/acs.orglett.7b01188
10.1039/C8RA01796D
10.1002/anie.201400420
10.1021/acs.jmedchem.7b01788
10.1126/science.abd5992
10.1039/C7SC04545J
10.1021/ja901352k
10.1002/anie.200806273
10.1002/jccs.201600184
10.1038/s41467-021-27165-z
10.1039/D1NJ02156G
10.1002/anie.202011872
10.1039/D0SC03052J
10.1002/anie.201400225
10.1039/D0GC02067B
10.1055/s-0036-1590878
10.1039/C9CC01047E
10.1021/acs.accounts.9b00512
10.1021/jacs.5b03989
10.1039/D0SC04676K
10.1016/j.trechm.2019.04.001
10.1021/acs.orglett.0c02238
10.1021/jacs.9b13171
10.6023/cjoc202006069
10.1002/anie.201713357
10.1038/nature24632
10.1021/ol400424s
10.1021/acs.joc.2c01886
10.1002/anie.201301451
10.1021/cr900184e
10.1002/anie.201404423
10.1021/jacs.6b08171
10.1038/nchem.2606
10.1002/cssc.201900151
10.1039/C9SC04055B
10.1002/anie.201102985
10.1016/S1872-2067(22)64197-4
10.1021/ja413131m
10.1021/ja054549f
10.1021/ar5004626
10.1021/ol301739f
10.1021/acscatal.9b02220
10.1038/nchem.2604
10.1038/s41570-021-00311-3
10.3762/bjoc.16.183
10.1021/acscatal.9b00623
10.1002/anie.202008437
10.1002/chem.201901840
10.1002/anie.201603149
10.1021/ja061943k
10.1039/D1GC02737A
10.1021/jacs.6b08478
10.1038/ncomms7462
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.checat.2024.101009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2667-1093
ExternalDocumentID 10_1016_j_checat_2024_101009
S2667109324001581
GroupedDBID 0R~
AAXUO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
EBS
FDB
AALRI
AAMRU
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AIGII
AITUG
AKAPO
AKBMS
AKYEP
AMRAJ
CITATION
EFKBS
ID FETCH-LOGICAL-c221t-70faa2de5bbb2a8905e6aab08d2090c906a1a66f059e1e4fc2d9f7c9ee6e9c7e3
ISSN 2667-1093
IngestDate Thu Jul 24 02:19:02 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Sat Jul 20 16:35:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords transition metal catalyzed
fluorination
electrochemistry
photochemistry
C(sp3)–H bond
SDG9: Industry, innovation, and infrastructure
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c221t-70faa2de5bbb2a8905e6aab08d2090c906a1a66f059e1e4fc2d9f7c9ee6e9c7e3
ParticipantIDs crossref_citationtrail_10_1016_j_checat_2024_101009
crossref_primary_10_1016_j_checat_2024_101009
elsevier_sciencedirect_doi_10_1016_j_checat_2024_101009
PublicationCentury 2000
PublicationDate 2024-07-18
PublicationDateYYYYMMDD 2024-07-18
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-18
  day: 18
PublicationDecade 2020
PublicationTitle Chem catalysis
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Li, Wu, Li, Wang (bib31) 2014; 356
Wu, Zhao, Ge (bib24) 2014; 136
Harry, Xiang, Holt, Zhu, Ghorbani, Patel, Lectka (bib45) 2022; 13
Guan, Sun, Mao, Chen, Lu, Huang, Liu (bib101) 2018; 57
Buss, Vasilopoulos, Golden, Stahl (bib95) 2020; 22
Li, Lawrence, Li, Ge (bib76) 2020; 59
Yuan, Yang, Malik, Čolović, Weber, Wilson, Bénard, Martin, Warren, Schaffer, Britton (bib115) 2019; 9
Jeschke (bib7) 2004; 5
Radhika, Abdulla, Aneeja, Anilkumar (bib85) 2021; 45
Dai, Yang, Luo, Xu, Li, Li, Li, Sun (bib25) 2022; 9
Liu, Groves (bib102) 2015; 48
Rago, Dong (bib17) 2021; 2
Leibler, Tekle-Smith, Doyle (bib118) 2021; 12
Meanwell (bib3) 2018; 61
Yuan, Yang, Yu (bib111) 2020; 40
Brooks, Topczewski, Ichiishi, Sanford, Scott (bib5) 2014; 5
Inoue, Sumii, Shibata (bib1) 2020; 5
Tang, Hu, Yang, Elsaid, Liu, Ge (bib12) 2022; 3
Wang, Verma, Xia, Shi, Qiao, Tao, Cheng, Poss, Farmer, Yeung, Yu (bib83) 2017; 551
Wu, Yang, Zhao, Sun, Li, Ge (bib22) 2015; 6
Liu, Groves (bib104) 2013; 52
Vasilopoulos, Golden, Buss, Stahl (bib96) 2020; 22
Wang, Chen, Luo, Xie (bib36) 2021; 41
Liu, Ge (bib79) 2017; 9
Babudri, Farinola, Naso, Ragni (bib8) 2007
Lou, Xu, Xu (bib43) 2014; 53
Yang, Zhang, Wang, Zhang, Ge (bib23) 2014; 20
Wei, Ma, Li, Liu, Liu, Liu (bib94) 2018; 20
Yakubov, Stockerl, Tian, Shahin, Mandigma, Gschwind, Barham (bib46) 2022; 13
Liu, Huang, Placzek, Krska, McQuade, Hooker, Groves (bib106) 2018; 9
Hua, Mai, Martinez, Baxter (bib87) 2017; 19
Niu, Yang, Lawrence, Ge (bib70) 2019; 12
Tarantino, Hammond (bib35) 2020; 22
Li, Seth, Niu, Pan, Yang, Ge (bib77) 2018; 57
Ferlin, Brufani, Rossini, Vaccaro (bib9) 2023; 25
Yang, Dai, Li, Li, Sun (bib26) 2021; 8
Daugulis, Roane, Tran (bib59) 2015; 48
Feng, Wang, Li, Tang, Sun, Yang (bib57) 2022; 12
Zaitsev, Shabashov, Daugulis (bib61) 2005; 127
Cheng, Ritter (bib34) 2019; 1
Herron, Liu, Xia, Yu (bib48) 2020; 142
Nobile, Castanheiro, Besset (bib15) 2021; 60
Das, Guin, Maiti (bib19) 2020; 11
Chen, Engle, Wang, Yu (bib55) 2009; 48
Takahira, Chen, Kawamata, Mykhailiuk, Nakamura, Peters, Reisberg, Li, Chen, Hoshikawa (bib51) 2019; 30
Chan, Wasa, Wang, Yu (bib38) 2011; 50
Halperin, Kwon, Holmes, Regalado, Campeau, DiRocco, Britton (bib114) 2015; 17
Hua, Bidwell, Baker, Hratchian, Baxter (bib88) 2019; 9
Yakubov, Barham (bib49) 2020; 16
Neumann, Ritter (bib117) 2016; 8
Rej, Ano, Chatani (bib58) 2020; 120
Bower, Cypcar, Henriquez, Stieber, Zhang (bib125) 2020; 142
Pimparkar, Dalvi, Koodan, Maiti, Al-Thabaiti, Mokhtar, Dutta, Lee, Maiti (bib11) 2021; 23
Mao, Lou, Hao, Xu (bib66) 2018; 57
Hull, Anani, Sanford (bib40) 2006; 128
Bhattacharya, Pimparkar, Maiti (bib73) 2018; 8
Yang, Song, Ma, Li, Li, Sun (bib20) 2019; 6
Yamashita, Fujiwara, Hamashima (bib89) 2023; 88
Halperin, Fan, Chang, Martin, Britton (bib113) 2014; 53
Bloom, Pitts, Miller, Haselton, Holl, Urheim, Lectka (bib93) 2012; 51
Zhou, Wang, Gu, Wang, Zhu, Aceña, Soloshonok, Izawa, Liu (bib4) 2016; 116
Rouquet, Chatani (bib60) 2013; 52
He, Wasa, Chan, Shao, Yu (bib53) 2017; 117
Yang, Niu, Ma, Wang, Lawrence, Ge (bib21) 2019; 84
Groendyke, AbuSalim, Cook (bib99) 2016; 138
Wen, Shi (bib14) 2021; 54
Bloom, Pitts, Woltornist, Griswold, Holl, Lectka (bib98) 2013; 15
Liu, Huang, Cheng, Nielsen, Goddard, Groves (bib103) 2012; 337
Braun, Doyle (bib84) 2013; 135
Leibler, Gandhi, Tekle-Smith, Doyle (bib37) 2023; 145
Wang, Zhao, Xiao, Chen (bib109) 2020; 1
St John-Campbell, Bull, Bull (bib74) 2018; 16
Zhang, Fitzpatrick, Das, Bedre, Yayla, Lall, Musacchio (bib119) 2022; 2
Ferguson, Malapit, Bour, Sanford (bib44) 2019; 84
Zhang, Yin, Chen, Zhang, Shi (bib63) 2015; 137
Zhou, Tang, He (bib120) 2023; 46
Mei, Han, Fustero, Medio-Simon, Sedgwick, Santi, Ruzziconi, Soloshonok (bib2) 2019; 25
Zhu, Ji, Liang, Wang, Xu (bib64) 2015; 17
Fujiwara, O’Hagan (bib6) 2014; 167
Yang, Li, Zhang, Chen, Tang (bib28) 2018; 8
Wang, Mei, Yu (bib39) 2009; 131
Szpera, Moseley, Smith, Sterling, Gouverneur (bib33) 2019; 58
Zhu, Tanaka, Li, He, Fu, Li, Yu (bib65) 2015; 137
West, Bedell, Sorensen (bib116) 2016; 55
Goswami, Bhattacharya, Maiti (bib67) 2021; 5
Yuan, Lei (bib123) 2019; 52
He, Lou, Xu (bib32) 2016; 36
Yang, Tan, Fan, Liu, Wu, Huang, Li, Wang (bib47) 2021; 60
Lin, Huehls, Yang (bib29) 2014; 1
Su, Li, Ma (bib97) 2016; 63
Ma, Li (bib30) 2014; 1
Aneeja, Neetha, Afsina, Anilkumar (bib92) 2020; 10
Gandeepan, Ackermann (bib42) 2018; 4
Yang, Li, Song, Dai, Li, Sun (bib27) 2021; 32
Chen, Sorensen (bib41) 2018; 140
Miao, Yang, Kurek, Ge (bib62) 2015; 17
Zhao, Polsson, Pannecouke, Besset (bib71) 2017; 49
Dutta, Maiti, Bhattacharya, Maiti (bib13) 2021; 372
Liao, Zhang, Lin, Shi (bib68) 2020; 59
Pinter, Bingham, AbuSalim, Cook (bib100) 2019; 11
Yang, Li, Liu, Li, Hu, Elsaid, Li, Das, Dang, Maiti, Ge (bib75) 2022; 13
Lyons, Sanford (bib54) 2010; 110
Xia, Ma, Chen (bib107) 2014; 1
Yang, Song, Liu, Ge (bib52) 2020; 11
Xu, Guo, Wang, Tang (bib86) 2014; 53
Albano, Punzi, Capozzi, Farinola (bib10) 2022; 24
Li, Ali, Ge (bib18) 2020; 6
Chen, Xu (bib121) 2021; 2
Wu, Chen, Liao, Shu, Duan, Yang, He (bib122) 2021; 2
Huang, Liu, Ren, Neelamegam, Hooker, Groves (bib105) 2014; 136
Holt, Wang, Harry, He, Wang, Henriquez, Xiang, Zhu, Ghorbani, Lectka (bib50) 2023; 88
Chen, Singh, Wu, Wang, Hao, Verma, Qiao, Sunoj, Yu (bib82) 2020; 142
Kim, Li (bib108) 2020; 1
Hintz, Bower, Tang, LaLama, Sevov, Zhang (bib124) 2023; 3
Yang, Li, Liu, Li, Ge (bib80) 2016; 138
Shang, Lu, Cao, Liu, He, Yu (bib110) 2019; 55
McMurtrey, Racowski, Sanford (bib56) 2012; 14
Higham, Bull (bib69) 2020; 18
Zhang, Shi (bib16) 2020; 12
Deshpande, Satani, Bharodiya, Naveen (bib91) 2022; 11
Tzirakis, Lykakis, Orfanopoulos (bib112) 2009; 38
Yang, Song, Ali, Mudassir, Ge (bib90) 2020; 15
Park, Verma, Hong, Yu (bib81) 2018; 10
Pan, Yang, Li, Ge (bib78) 2018; 54
Hull (10.1016/j.checat.2024.101009_bib40) 2006; 128
Bower (10.1016/j.checat.2024.101009_bib125) 2020; 142
Mao (10.1016/j.checat.2024.101009_bib66) 2018; 57
Feng (10.1016/j.checat.2024.101009_bib57) 2022; 12
Pan (10.1016/j.checat.2024.101009_bib78) 2018; 54
Nobile (10.1016/j.checat.2024.101009_bib15) 2021; 60
He (10.1016/j.checat.2024.101009_bib53) 2017; 117
Chen (10.1016/j.checat.2024.101009_bib41) 2018; 140
Aneeja (10.1016/j.checat.2024.101009_bib92) 2020; 10
Neumann (10.1016/j.checat.2024.101009_bib117) 2016; 8
Liao (10.1016/j.checat.2024.101009_bib68) 2020; 59
Mei (10.1016/j.checat.2024.101009_bib2) 2019; 25
Brooks (10.1016/j.checat.2024.101009_bib5) 2014; 5
Bloom (10.1016/j.checat.2024.101009_bib98) 2013; 15
Babudri (10.1016/j.checat.2024.101009_bib8) 2007
Rago (10.1016/j.checat.2024.101009_bib17) 2021; 2
Yuan (10.1016/j.checat.2024.101009_bib123) 2019; 52
Yang (10.1016/j.checat.2024.101009_bib20) 2019; 6
Yakubov (10.1016/j.checat.2024.101009_bib49) 2020; 16
Ferlin (10.1016/j.checat.2024.101009_bib9) 2023; 25
Holt (10.1016/j.checat.2024.101009_bib50) 2023; 88
Miao (10.1016/j.checat.2024.101009_bib62) 2015; 17
Hua (10.1016/j.checat.2024.101009_bib88) 2019; 9
Park (10.1016/j.checat.2024.101009_bib81) 2018; 10
Wang (10.1016/j.checat.2024.101009_bib83) 2017; 551
Zhu (10.1016/j.checat.2024.101009_bib65) 2015; 137
Wei (10.1016/j.checat.2024.101009_bib94) 2018; 20
Su (10.1016/j.checat.2024.101009_bib97) 2016; 63
McMurtrey (10.1016/j.checat.2024.101009_bib56) 2012; 14
Kim (10.1016/j.checat.2024.101009_bib108) 2020; 1
Liu (10.1016/j.checat.2024.101009_bib106) 2018; 9
Zhou (10.1016/j.checat.2024.101009_bib120) 2023; 46
Li (10.1016/j.checat.2024.101009_bib76) 2020; 59
Takahira (10.1016/j.checat.2024.101009_bib51) 2019; 30
Yakubov (10.1016/j.checat.2024.101009_bib46) 2022; 13
Zhang (10.1016/j.checat.2024.101009_bib119) 2022; 2
Hintz (10.1016/j.checat.2024.101009_bib124) 2023; 3
Fujiwara (10.1016/j.checat.2024.101009_bib6) 2014; 167
Leibler (10.1016/j.checat.2024.101009_bib118) 2021; 12
Vasilopoulos (10.1016/j.checat.2024.101009_bib96) 2020; 22
Meanwell (10.1016/j.checat.2024.101009_bib3) 2018; 61
Pinter (10.1016/j.checat.2024.101009_bib100) 2019; 11
Zhang (10.1016/j.checat.2024.101009_bib16) 2020; 12
Wen (10.1016/j.checat.2024.101009_bib14) 2021; 54
Lyons (10.1016/j.checat.2024.101009_bib54) 2010; 110
Huang (10.1016/j.checat.2024.101009_bib105) 2014; 136
Yang (10.1016/j.checat.2024.101009_bib80) 2016; 138
Yang (10.1016/j.checat.2024.101009_bib52) 2020; 11
Dutta (10.1016/j.checat.2024.101009_bib13) 2021; 372
Groendyke (10.1016/j.checat.2024.101009_bib99) 2016; 138
Higham (10.1016/j.checat.2024.101009_bib69) 2020; 18
Liu (10.1016/j.checat.2024.101009_bib103) 2012; 337
Shang (10.1016/j.checat.2024.101009_bib110) 2019; 55
Zhang (10.1016/j.checat.2024.101009_bib63) 2015; 137
Hua (10.1016/j.checat.2024.101009_bib87) 2017; 19
Chen (10.1016/j.checat.2024.101009_bib121) 2021; 2
Wu (10.1016/j.checat.2024.101009_bib22) 2015; 6
Yang (10.1016/j.checat.2024.101009_bib90) 2020; 15
Goswami (10.1016/j.checat.2024.101009_bib67) 2021; 5
Das (10.1016/j.checat.2024.101009_bib19) 2020; 11
Dai (10.1016/j.checat.2024.101009_bib25) 2022; 9
Wu (10.1016/j.checat.2024.101009_bib24) 2014; 136
Bhattacharya (10.1016/j.checat.2024.101009_bib73) 2018; 8
Tang (10.1016/j.checat.2024.101009_bib12) 2022; 3
Yang (10.1016/j.checat.2024.101009_bib75) 2022; 13
Zhou (10.1016/j.checat.2024.101009_bib4) 2016; 116
Harry (10.1016/j.checat.2024.101009_bib45) 2022; 13
Liu (10.1016/j.checat.2024.101009_bib102) 2015; 48
Wang (10.1016/j.checat.2024.101009_bib39) 2009; 131
Yuan (10.1016/j.checat.2024.101009_bib115) 2019; 9
Halperin (10.1016/j.checat.2024.101009_bib114) 2015; 17
Bloom (10.1016/j.checat.2024.101009_bib93) 2012; 51
Wang (10.1016/j.checat.2024.101009_bib109) 2020; 1
Albano (10.1016/j.checat.2024.101009_bib10) 2022; 24
Guan (10.1016/j.checat.2024.101009_bib101) 2018; 57
Jeschke (10.1016/j.checat.2024.101009_bib7) 2004; 5
Xu (10.1016/j.checat.2024.101009_bib86) 2014; 53
Yang (10.1016/j.checat.2024.101009_bib28) 2018; 8
Ma (10.1016/j.checat.2024.101009_bib30) 2014; 1
Yang (10.1016/j.checat.2024.101009_bib27) 2021; 32
Zaitsev (10.1016/j.checat.2024.101009_bib61) 2005; 127
Cheng (10.1016/j.checat.2024.101009_bib34) 2019; 1
Chen (10.1016/j.checat.2024.101009_bib82) 2020; 142
Wang (10.1016/j.checat.2024.101009_bib36) 2021; 41
Inoue (10.1016/j.checat.2024.101009_bib1) 2020; 5
Leibler (10.1016/j.checat.2024.101009_bib37) 2023; 145
Rouquet (10.1016/j.checat.2024.101009_bib60) 2013; 52
Zhao (10.1016/j.checat.2024.101009_bib71) 2017; 49
Xia (10.1016/j.checat.2024.101009_bib107) 2014; 1
Li (10.1016/j.checat.2024.101009_bib77) 2018; 57
Yang (10.1016/j.checat.2024.101009_bib26) 2021; 8
Lou (10.1016/j.checat.2024.101009_bib43) 2014; 53
He (10.1016/j.checat.2024.101009_bib32) 2016; 36
Ferguson (10.1016/j.checat.2024.101009_bib44) 2019; 84
Tzirakis (10.1016/j.checat.2024.101009_bib112) 2009; 38
Radhika (10.1016/j.checat.2024.101009_bib85) 2021; 45
Liu (10.1016/j.checat.2024.101009_bib104) 2013; 52
Yamashita (10.1016/j.checat.2024.101009_bib89) 2023; 88
Buss (10.1016/j.checat.2024.101009_bib95) 2020; 22
Yang (10.1016/j.checat.2024.101009_bib21) 2019; 84
Zhu (10.1016/j.checat.2024.101009_bib64) 2015; 17
Li (10.1016/j.checat.2024.101009_bib18) 2020; 6
Deshpande (10.1016/j.checat.2024.101009_bib91) 2022; 11
Niu (10.1016/j.checat.2024.101009_bib70) 2019; 12
Chen (10.1016/j.checat.2024.101009_bib55) 2009; 48
Tarantino (10.1016/j.checat.2024.101009_bib35) 2020; 22
Gandeepan (10.1016/j.checat.2024.101009_bib42) 2018; 4
Yang (10.1016/j.checat.2024.101009_bib47) 2021; 60
Lin (10.1016/j.checat.2024.101009_bib29) 2014; 1
Liu (10.1016/j.checat.2024.101009_bib79) 2017; 9
Li (10.1016/j.checat.2024.101009_bib31) 2014; 356
Wu (10.1016/j.checat.2024.101009_bib122) 2021; 2
Szpera (10.1016/j.checat.2024.101009_bib33) 2019; 58
Halperin (10.1016/j.checat.2024.101009_bib113) 2014; 53
Braun (10.1016/j.checat.2024.101009_bib84) 2013; 135
Chan (10.1016/j.checat.2024.101009_bib38) 2011; 50
Yuan (10.1016/j.checat.2024.101009_bib111) 2020; 40
Daugulis (10.1016/j.checat.2024.101009_bib59) 2015; 48
Pimparkar (10.1016/j.checat.2024.101009_bib11) 2021; 23
Yang (10.1016/j.checat.2024.101009_bib23) 2014; 20
Rej (10.1016/j.checat.2024.101009_bib58) 2020; 120
St John-Campbell (10.1016/j.checat.2024.101009_bib74) 2018; 16
Herron (10.1016/j.checat.2024.101009_bib48) 2020; 142
West (10.1016/j.checat.2024.101009_bib116) 2016; 55
References_xml – volume: 13
  start-page: 7007
  year: 2022
  end-page: 7013
  ident: bib45
  article-title: Hydroxy-directed fluorination of remote unactivated C(sp
  publication-title: Chem. Sci.
– volume: 63
  start-page: 828
  year: 2016
  end-page: 840
  ident: bib97
  article-title: Iron-catalyzed C−H activation
  publication-title: J. Chin. Chem. Soc.
– volume: 15
  start-page: 729
  year: 2020
  end-page: 741
  ident: bib90
  article-title: Recent advances in the application of selectfluor as a “fluorine-free” functional reagent in organic synthesis
  publication-title: Chem. Asian J.
– volume: 142
  start-page: 2766
  year: 2020
  end-page: 2770
  ident: bib48
  article-title: δ-C–H Mono- and dihalogenation of alcohols
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 5938
  year: 2022
  end-page: 5943
  ident: bib75
  article-title: Ligand-promoted palladium-catalyzed β-methylene C–H arylation of primary aldehydes
  publication-title: Chem. Sci.
– volume: 142
  start-page: 9966
  year: 2020
  end-page: 9974
  ident: bib82
  article-title: Pd-catalyzed γ-C(sp
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 4016
  year: 2022
  end-page: 4022
  ident: bib25
  article-title: Metal-free and selectfluor-mediated diverse transformations of 2-alkylthiobenzamides to access 2,3-dihydrobenzothiazin-4-ones, benzoisothiazol-3-ones and 2-alkylthiobenzonitriles
  publication-title: Org. Chem. Front.
– volume: 25
  start-page: 11797
  year: 2019
  end-page: 11819
  ident: bib2
  article-title: Fluorine-containing drugs approved by the FDA in 2018
  publication-title: Chem. Eur J.
– start-page: 1003
  year: 2007
  end-page: 1022
  ident: bib8
  article-title: Fluorinated organic materials for electronic and optoelectronic applications: the role of the fluorine atom
  publication-title: Chem. Commun.
– volume: 1
  start-page: 42
  year: 2020
  end-page: 51
  ident: bib109
  article-title: Recent advances in visible-light photoredox-catalyzed nitrogen radical cyclization
  publication-title: Green Synth. Catal.
– volume: 4
  start-page: 199
  year: 2018
  end-page: 222
  ident: bib42
  article-title: Transient directing groups for transformative C–H activation by synergistic metal catalysis
  publication-title: Chem
– volume: 551
  start-page: 489
  year: 2017
  end-page: 493
  ident: bib83
  article-title: Ligand-accelerated non-directed C–H functionalization of arenes
  publication-title: Nature
– volume: 53
  start-page: 4690
  year: 2014
  end-page: 4693
  ident: bib113
  article-title: A convenient photocatalytic fluorination of unactivated C–H bonds
  publication-title: Angew. Chem. Int. Ed.
– volume: 23
  start-page: 9283
  year: 2021
  end-page: 9317
  ident: bib11
  article-title: Recent advances in the incorporation of CO
  publication-title: Green Chem.
– volume: 13
  start-page: 14041
  year: 2022
  end-page: 14051
  ident: bib46
  article-title: Benzoates as photosensitization catalysts and auxiliaries in efficient, practical, light-powered direct C(sp
  publication-title: Chem. Sci.
– volume: 167
  start-page: 16
  year: 2014
  end-page: 29
  ident: bib6
  article-title: Successful fluorine-containing herbicide agrochemicals
  publication-title: J. Fluor. Chem.
– volume: 110
  start-page: 1147
  year: 2010
  end-page: 1169
  ident: bib54
  article-title: Palladium-catalyzed ligand-directed C−H functionalization reactions
  publication-title: Chem. Rev.
– volume: 127
  start-page: 13154
  year: 2005
  end-page: 13155
  ident: bib61
  article-title: Highly regioselective arylation of sp
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 571
  year: 2004
  end-page: 589
  ident: bib7
  article-title: The unique Role of fluorine in the design of active ingredients for modern crop protection
  publication-title: Chembiochem
– volume: 61
  start-page: 5822
  year: 2018
  end-page: 5880
  ident: bib3
  article-title: Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design
  publication-title: J. Med. Chem.
– volume: 88
  start-page: 1865
  year: 2023
  end-page: 1874
  ident: bib89
  article-title: Amide-ligand-promoted silver-catalyzed C–H fluorination via radical/polar crossover
  publication-title: J. Org. Chem.
– volume: 48
  start-page: 1053
  year: 2015
  end-page: 1064
  ident: bib59
  article-title: Bidentate, monoanionic auxiliary-directed functionalization of carbon–hydrogen bonds
  publication-title: Acc. Chem. Res.
– volume: 9
  start-page: 1168
  year: 2018
  end-page: 1172
  ident: bib106
  article-title: Site-selective
  publication-title: Chem. Sci.
– volume: 46
  start-page: 4
  year: 2023
  end-page: 10
  ident: bib120
  article-title: The future of organic electrochemistry current transfer
  publication-title: Chin. J. Catal.
– volume: 48
  start-page: 5094
  year: 2009
  end-page: 5115
  ident: bib55
  article-title: Palladium(II)-catalyzed C–H activation/C–C cross-coupling reactions: versatility and practicality
  publication-title: Angew. Chem. Int. Ed.
– volume: 131
  start-page: 7520
  year: 2009
  end-page: 7521
  ident: bib39
  article-title: Versatile Pd(OTf)
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 6842
  year: 2014
  end-page: 6845
  ident: bib105
  article-title: Late stage benzylic C–H fluorination with [
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 26
  year: 2017
  end-page: 32
  ident: bib79
  article-title: Site-selective C–H arylation of primary aliphatic amines enabled by a catalytic transient directing group
  publication-title: Nat. Chem.
– volume: 8
  start-page: 4974
  year: 2021
  end-page: 4979
  ident: bib26
  article-title: Amide-assisted α-C(sp
  publication-title: Org. Chem. Front.
– volume: 22
  start-page: 5749
  year: 2020
  end-page: 5752
  ident: bib95
  article-title: Copper-catalyzed functionalization of benzylic C–H bonds with N-fluorobenzenesulfonimide: Switch from C–N to C–F bond formation promoted by a redox buffer and brønsted base
  publication-title: Org. Lett.
– volume: 136
  start-page: 1789
  year: 2014
  end-page: 1792
  ident: bib24
  article-title: Nickel-catalyzed site-selective alkylation of unactivated C(sp
  publication-title: J. Am. Chem. Soc.
– volume: 145
  start-page: 9928
  year: 2023
  end-page: 9950
  ident: bib37
  article-title: Strategies for nucleophilic C(sp
  publication-title: J. Am. Chem. Soc.
– volume: 60
  start-page: 12170
  year: 2021
  end-page: 12191
  ident: bib15
  article-title: Radical-promoted distal C−H functionalization of C(sp
  publication-title: Angew. Chem. Int. Ed.
– volume: 24
  start-page: 1809
  year: 2022
  end-page: 1894
  ident: bib10
  article-title: Sustainable protocols for direct C–H bond arylation of (hetero)arenes
  publication-title: Green Chem.
– volume: 14
  start-page: 4094
  year: 2012
  end-page: 4097
  ident: bib56
  article-title: Pd-catalyzed C–H fluorination with nucleophilic fluoride
  publication-title: Org. Lett.
– volume: 8
  start-page: 13671
  year: 2018
  end-page: 13674
  ident: bib28
  article-title: Heterogeneous Co-catalyzed direct 2-alkylation of azoles with ethers
  publication-title: RSC Adv.
– volume: 40
  start-page: 3620
  year: 2020
  end-page: 3632
  ident: bib111
  article-title: Photoinduced decatungstate-catalyzed C-H functionalization
  publication-title: Chin. J. Org. Chem.
– volume: 8
  start-page: 822
  year: 2016
  end-page: 823
  ident: bib117
  article-title: U can fluorinate unactivated bonds
  publication-title: Nat. Chem.
– volume: 49
  start-page: 4808
  year: 2017
  end-page: 4826
  ident: bib71
  article-title: The transient directing group strategy: a new trend in transition-metal-catalyzed C–H bond functionalization
  publication-title: Synthesis
– volume: 128
  start-page: 7134
  year: 2006
  end-page: 7135
  ident: bib40
  article-title: Palladium-catalyzed fluorination of carbon−hydrogen bonds
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 34429
  year: 2020
  end-page: 34458
  ident: bib92
  article-title: Progress and prospects in copper-catalyzed C–H functionalization
  publication-title: RSC Adv.
– volume: 5
  start-page: 646
  year: 2021
  end-page: 659
  ident: bib67
  article-title: Transient directing ligands for selective metal-catalysed C–H activation
  publication-title: Nat. Rev. Chem
– volume: 45
  start-page: 15718
  year: 2021
  end-page: 15738
  ident: bib85
  article-title: Silver-catalysed C–H bond activation: a recent review
  publication-title: New J. Chem.
– volume: 48
  start-page: 1727
  year: 2015
  end-page: 1735
  ident: bib102
  article-title: Manganese catalyzed C–H halogenation
  publication-title: Acc. Chem. Res.
– volume: 55
  start-page: 8923
  year: 2016
  end-page: 8927
  ident: bib116
  article-title: The uranyl cation as a visible-light photocatalyst for C(sp
  publication-title: Angew. Chem. Int. Ed.
– volume: 88
  start-page: 2557
  year: 2023
  end-page: 2560
  ident: bib50
  article-title: An electrochemical approach to directed fluorination
  publication-title: J. Org. Chem.
– volume: 10
  start-page: 755
  year: 2018
  end-page: 762
  ident: bib81
  article-title: Controlling Pd(IV) reductive elimination pathways enables Pd(II)-catalysed enantioselective C(sp
  publication-title: Nat. Chem.
– volume: 2
  start-page: 165
  year: 2021
  end-page: 178
  ident: bib121
  article-title: Electrochemical generation of nitrogen-centered radicals for organic synthesis
  publication-title: Green Synth. Catal.
– volume: 5
  start-page: 4545
  year: 2014
  end-page: 4553
  ident: bib5
  article-title: Late-stage [
  publication-title: Chem. Sci.
– volume: 36
  start-page: 1218
  year: 2016
  end-page: 1228
  ident: bib32
  article-title: Recent advances in transition-metal catalyzed C–H bond fluorination
  publication-title: Chin. J. Org. Chem.
– volume: 140
  start-page: 2789
  year: 2018
  end-page: 2792
  ident: bib41
  article-title: Pd-catalyzed, ortho C–H methylation and fluorination of benzaldehydes using orthanilic acids as transient directing groups
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 10887
  year: 2020
  end-page: 10909
  ident: bib19
  article-title: Diverse strategies for transition metal catalyzed distal C(sp
  publication-title: Chem. Sci.
– volume: 2
  start-page: 292
  year: 2022
  end-page: 308
  ident: bib119
  article-title: A photoredox-catalyzed approach for formal hydride abstraction to enable C
  publication-title: Chem Catal.
– volume: 60
  start-page: 3454
  year: 2021
  end-page: 3458
  ident: bib47
  article-title: Photochemical radical C–H halogenation of benzyl N-methyliminodiacetyl (MIDA) boronates: synthesis of α-functionalized alkyl boronates
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 10633
  year: 2020
  end-page: 10640
  ident: bib1
  article-title: Contribution of organofluorine compounds to pharmaceuticals
  publication-title: ACS Omega
– volume: 8
  start-page: 19456
  year: 2018
  end-page: 19464
  ident: bib73
  article-title: Combining transition metals and transient directing groups for C–H functionalizations
  publication-title: RSC Adv.
– volume: 54
  start-page: 2759
  year: 2018
  end-page: 2762
  ident: bib78
  article-title: Palladium-catalyzed site-selective arylation of aliphatic ketones enabled by a transient ligand
  publication-title: Chem. Commun.
– volume: 25
  start-page: 7916
  year: 2023
  end-page: 7933
  ident: bib9
  article-title: Classic vs. C–H functionalization strategies in the synthesis of APIs: a sustainability comparison
  publication-title: Green Chem.
– volume: 22
  start-page: 5753
  year: 2020
  end-page: 5757
  ident: bib96
  article-title: Copper-catalyzed C–H fluorination/functionalization sequence enabling benzylic C–H cross coupling with diverse nucleophiles
  publication-title: Org. Lett.
– volume: 356
  start-page: 1412
  year: 2014
  end-page: 1418
  ident: bib31
  article-title: Palladium-catalyzed C–F bond formation via directed C–H activation
  publication-title: Adv. Synth. Catal.
– volume: 116
  start-page: 422
  year: 2016
  end-page: 518
  ident: bib4
  article-title: Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II−III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas
  publication-title: Chem. Rev.
– volume: 135
  start-page: 12990
  year: 2013
  end-page: 12993
  ident: bib84
  article-title: Palladium-catalyzed allylic C–H fluorination
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 11413
  year: 2018
  end-page: 11417
  ident: bib101
  article-title: Iron(II)-catalyzed site-selective functionalization of unactivated C(sp
  publication-title: Angew. Chem. Int. Ed.
– volume: 138
  start-page: 12775
  year: 2016
  end-page: 12778
  ident: bib80
  article-title: Catalytic C–H arylation of aliphatic aldehydes enabled by a transient ligand
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 543
  year: 2021
  end-page: 552
  ident: bib36
  article-title: Recent advances in C−H fluorination and amination with N-fluorobenzenesulfonimide
  publication-title: Chin. J. Org. Chem.
– volume: 11
  start-page: 12616
  year: 2020
  end-page: 12632
  ident: bib52
  article-title: Palladium-catalyzed direct asymmetric C–H bond functionalization enabled by the directing group strategy
  publication-title: Chem. Sci.
– volume: 51
  start-page: 10580
  year: 2012
  end-page: 10583
  ident: bib93
  article-title: A polycomponent metal-catalyzed aliphatic, allylic, and benzylic fluorination
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  year: 2022
  ident: bib91
  article-title: Recent advances in copper-catalyzed functionalization of unactivated C(sp
  publication-title: Asian J. Org. Chem.
– volume: 52
  start-page: 6024
  year: 2013
  end-page: 6027
  ident: bib104
  article-title: Manganese-catalyzed oxidative benzylic C–H fluorination by fluoride ions
  publication-title: Angew. Chem. Int. Ed.
– volume: 137
  start-page: 7067
  year: 2015
  end-page: 7070
  ident: bib65
  article-title: Ligand-enabled Stereoselective β-C(sp
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 434
  year: 2014
  end-page: 438
  ident: bib29
  article-title: Recent advances in C–H fluorination
  publication-title: Org. Chem. Front.
– volume: 9
  start-page: 3322
  year: 2019
  end-page: 3326
  ident: bib88
  article-title: Experimental and theoretical evidence for nitrogen–fluorine halogen bonding in silver-initiated radical fluorinations
  publication-title: ACS Catal.
– volume: 18
  start-page: 7291
  year: 2020
  end-page: 7315
  ident: bib69
  article-title: Transient imine directing groups for the C–H functionalisation of aldehydes, ketones and amines: an update 2018–2020
  publication-title: Org. Biomol. Chem.
– volume: 337
  start-page: 1322
  year: 2012
  end-page: 1325
  ident: bib103
  article-title: Oxidative aliphatic C–H fluorination with fluoride ion catalyzed by a manganese porphyrin
  publication-title: Science
– volume: 20
  start-page: 7100
  year: 2018
  end-page: 7103
  ident: bib94
  article-title: Synthesis of quaternary α-fluorinated α-amino acid derivatives via coordinating Cu(II) catalytic α-C(sp
  publication-title: Org. Lett.
– volume: 32
  start-page: 146
  year: 2021
  end-page: 149
  ident: bib27
  article-title: Metal-free direct C(sp
  publication-title: Chin. Chem. Lett.
– volume: 58
  start-page: 14824
  year: 2019
  end-page: 14848
  ident: bib33
  article-title: The fluorination of C−H bonds: developments and perspectives
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 6950
  year: 2021
  ident: bib118
  article-title: A general strategy for C(sp
  publication-title: Nat. Commun.
– volume: 53
  start-page: 5955
  year: 2014
  end-page: 5958
  ident: bib86
  article-title: Silver-catalyzed oxidative activation of benzylic C–H bonds for the synthesis of difluoromethylated arenes
  publication-title: Angew. Chem. Int. Ed.
– volume: 57
  start-page: 14085
  year: 2018
  end-page: 14089
  ident: bib66
  article-title: Selective C(sp
  publication-title: Angew. Chem. Int. Ed.
– volume: 17
  start-page: 5200
  year: 2015
  end-page: 5203
  ident: bib114
  article-title: Development of a direct photocatalytic C–H fluorination for the preparative synthesis of odanacatib. Org
  publication-title: Lett.
– volume: 17
  start-page: 3738
  year: 2015
  end-page: 3741
  ident: bib62
  article-title: Palladium-catalyzed site-selective fluorination of unactivated C(sp
  publication-title: Org. Lett.
– volume: 3
  year: 2023
  ident: bib124
  article-title: Copper-catalyzed electrochemical C–H fluorination
  publication-title: Chem Catal.
– volume: 12
  start-page: 10835
  year: 2022
  end-page: 10845
  ident: bib57
  article-title: Transition-metal-catalyzed remote C–H functionalization of thioethers
  publication-title: RSC Adv.
– volume: 1
  start-page: 712
  year: 2014
  end-page: 715
  ident: bib30
  article-title: Catalytic fluorination of unactivated C(sp
  publication-title: Org. Chem. Front.
– volume: 52
  start-page: 11726
  year: 2013
  end-page: 11743
  ident: bib60
  article-title: Catalytic functionalization of C(sp
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 6462
  year: 2015
  ident: bib22
  article-title: Cobalt-catalysed site-selective intra- and intermolecular dehydrogenative amination of unactivated sp
  publication-title: Nat. Commun.
– volume: 372
  year: 2021
  ident: bib13
  article-title: Arene diversification through distal C(sp
  publication-title: Science
– volume: 1
  start-page: 461
  year: 2019
  end-page: 470
  ident: bib34
  article-title: New directions in C–H fluorination
  publication-title: Trends Chem.
– volume: 11
  start-page: 1102
  year: 2019
  end-page: 1106
  ident: bib100
  article-title: N-Directed fluorination of unactivated Csp
  publication-title: Chem. Sci.
– volume: 17
  start-page: 3798
  year: 2015
  end-page: 3801
  ident: bib64
  article-title: Efficient palladium-catalyzed C–H fluorination of C(sp
  publication-title: Org. Lett.
– volume: 54
  start-page: 1723
  year: 2021
  end-page: 1736
  ident: bib14
  article-title: From C4 to C7: innovative strategies for site-selective functionalization of indole C–H bonds
  publication-title: Acc. Chem. Res.
– volume: 120
  start-page: 1788
  year: 2020
  end-page: 1887
  ident: bib58
  article-title: Bidentate directing groups: an efficient tool in C–H bond functionalization chemistry for the expedient construction of C–C bonds
  publication-title: Chem. Rev.
– volume: 20
  start-page: 7241
  year: 2014
  end-page: 7244
  ident: bib23
  article-title: Nickel-catalyzed decarboxylative acylation of heteroarenes by sp
  publication-title: Chem. Eur J.
– volume: 84
  start-page: 3735
  year: 2019
  end-page: 3740
  ident: bib44
  article-title: Palladium-catalyzed difluoromethylation of aryl chlorides and bromides with TMSCF
  publication-title: J. Org. Chem.
– volume: 59
  start-page: 19773
  year: 2020
  end-page: 19786
  ident: bib68
  article-title: Transition metal-catalyzed enantioselective C−H functionalization via chiral transient directing group strategies
  publication-title: Angew. Chem. Int. Ed.
– volume: 84
  start-page: 14045
  year: 2019
  end-page: 14052
  ident: bib21
  article-title: Silver-promoted site-selective ontramolecular cyclization of 2-methylthiobenzamide through α-C(sp
  publication-title: J. Org. Chem.
– volume: 12
  start-page: 841
  year: 2020
  end-page: 852
  ident: bib16
  article-title: Site-selective functionalization of remote aliphatic C–H bonds via C–H metalation
  publication-title: Chem. Sci.
– volume: 117
  start-page: 8754
  year: 2017
  end-page: 8786
  ident: bib53
  article-title: Palladium-catalyzed transformations of alkyl C–H bonds
  publication-title: Chem. Rev.
– volume: 6
  start-page: 2591
  year: 2020
  end-page: 2657
  ident: bib18
  article-title: Recent advances in using transition-metal-catalyzed C–H functionalization to build fluorescent materials
  publication-title: Chem
– volume: 6
  start-page: 3996
  year: 2019
  end-page: 3999
  ident: bib20
  article-title: The decarboxylative C–H heteroarylation of azoles catalysed by nickel catalysts to access unsymmetrical biheteroaryls
  publication-title: Org. Chem. Front.
– volume: 53
  start-page: 10330
  year: 2014
  end-page: 10335
  ident: bib43
  article-title: Mild and versatile nitrate-promoted C–H bond fluorination
  publication-title: Angew. Chem. Int.
– volume: 16
  start-page: 4582
  year: 2018
  end-page: 4595
  ident: bib74
  article-title: Transient imines as ‘next generation’ directing groups for the catalytic functionalisation of C–H bonds in a single operation
  publication-title: Org. Biomol. Chem.
– volume: 30
  start-page: 1178
  year: 2019
  end-page: 1182
  ident: bib51
  article-title: Electrochemical C(sp
  publication-title: Synlett
– volume: 1
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib108
  article-title: Perspectives on green synthesis and catalysis
  publication-title: Green Synth. Catal.
– volume: 16
  start-page: 2151
  year: 2020
  end-page: 2192
  ident: bib49
  article-title: Photosensitized direct C–H fluorination and trifluoromethylation in organic synthesis
  publication-title: Beilstein J. Org. Chem.
– volume: 15
  start-page: 1722
  year: 2013
  end-page: 1724
  ident: bib98
  article-title: Iron(II)-catalyzed benzylic fluorination
  publication-title: Org. Lett.
– volume: 38
  start-page: 2609
  year: 2009
  end-page: 2621
  ident: bib112
  article-title: Decatungstate as an efficient photocatalyst in organic chemistry
  publication-title: Chem. Soc. Rev.
– volume: 138
  start-page: 12771
  year: 2016
  end-page: 12774
  ident: bib99
  article-title: Iron-catalyzed, fluoroamide-directed C–H fluorination
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 233
  year: 2021
  end-page: 236
  ident: bib122
  article-title: Electrochemical transient iodination and coupling for selenylated 4-anilinocoumarin synthesis
  publication-title: Green Synth. Catal.
– volume: 22
  start-page: 5195
  year: 2020
  end-page: 5209
  ident: bib35
  article-title: Catalytic C(sp
  publication-title: Green Chem.
– volume: 2
  start-page: 216
  year: 2021
  end-page: 227
  ident: bib17
  article-title: Synthesis of indoles, indolines, and carbazoles via palladium-catalyzed C–H activation
  publication-title: Green Synth. Catal.
– volume: 19
  start-page: 2949
  year: 2017
  end-page: 2952
  ident: bib87
  article-title: Radical C–H fluorination using unprotected amino acids as radical precursors
  publication-title: Org. Lett.
– volume: 59
  start-page: 3078
  year: 2020
  end-page: 3082
  ident: bib76
  article-title: Ligand-controlled direct γ-C−H arylation of aldehydes
  publication-title: Angew. Chem. Int. Ed.
– volume: 55
  start-page: 5408
  year: 2019
  end-page: 5419
  ident: bib110
  article-title: Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations
  publication-title: Chem. Commun.
– volume: 9
  start-page: 8276
  year: 2019
  end-page: 8284
  ident: bib115
  article-title: Electrostatic effects accelerate decatungstate-catalyzed C–H fluorination using [
  publication-title: ACS Catal.
– volume: 50
  start-page: 9081
  year: 2011
  end-page: 9084
  ident: bib38
  article-title: Palladium(II)-catalyzed selective monofluorination of benzoic acids using a practical auxiliary: a weak-coordination approach
  publication-title: Angew. Chem. Int. Ed.
– volume: 142
  start-page: 8514
  year: 2020
  end-page: 8521
  ident: bib125
  article-title: C(sp
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 8219
  year: 2015
  end-page: 8226
  ident: bib63
  article-title: Stereoselective synthesis of chiral β-fluoro α-amino acids via Pd(II)-catalyzed fluorination of unactivated methylene C(sp
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 203
  year: 2022
  end-page: 211
  ident: bib12
  article-title: Recent advances in direct α-C(sp
  publication-title: Green Synth. Catal.
– volume: 1
  start-page: 468
  year: 2014
  end-page: 472
  ident: bib107
  article-title: Vanadium-catalyzed C(sp
  publication-title: Org. Chem. Front.
– volume: 12
  start-page: 2955
  year: 2019
  end-page: 2969
  ident: bib70
  article-title: Transient ligand-enabled transition metal-catalyzed C−H Functionalization
  publication-title: ChemSusChem
– volume: 52
  start-page: 3309
  year: 2019
  end-page: 3324
  ident: bib123
  article-title: Electrochemical oxidative cross-coupling with hydrogen evolution reactions
  publication-title: Acc. Chem. Res.
– volume: 57
  start-page: 3401
  year: 2018
  end-page: 3405
  ident: bib77
  article-title: Transient-ligand-enabled ortho-arylation of five-membered heterocycles: facile access to mechanochromic materials
  publication-title: Angew. Chem. Int. Ed.
– volume: 52
  start-page: 6024
  year: 2013
  ident: 10.1016/j.checat.2024.101009_bib104
  article-title: Manganese-catalyzed oxidative benzylic C–H fluorination by fluoride ions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201301097
– volume: 3
  year: 2023
  ident: 10.1016/j.checat.2024.101009_bib124
  article-title: Copper-catalyzed electrochemical C–H fluorination
  publication-title: Chem Catal.
– volume: 136
  start-page: 6842
  year: 2014
  ident: 10.1016/j.checat.2024.101009_bib105
  article-title: Late stage benzylic C–H fluorination with [18F]fluoride for PET imaging
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5039819
– volume: 8
  start-page: 19456
  year: 2018
  ident: 10.1016/j.checat.2024.101009_bib73
  article-title: Combining transition metals and transient directing groups for C–H functionalizations
  publication-title: RSC Adv.
  doi: 10.1039/C8RA03230K
– volume: 16
  start-page: 4582
  year: 2018
  ident: 10.1016/j.checat.2024.101009_bib74
  article-title: Transient imines as ‘next generation’ directing groups for the catalytic functionalisation of C–H bonds in a single operation
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C8OB00926K
– volume: 135
  start-page: 12990
  year: 2013
  ident: 10.1016/j.checat.2024.101009_bib84
  article-title: Palladium-catalyzed allylic C–H fluorination
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407223g
– volume: 1
  start-page: 712
  year: 2014
  ident: 10.1016/j.checat.2024.101009_bib30
  article-title: Catalytic fluorination of unactivated C(sp3)–H bonds
  publication-title: Org. Chem. Front.
  doi: 10.1039/C4QO00078A
– volume: 38
  start-page: 2609
  year: 2009
  ident: 10.1016/j.checat.2024.101009_bib112
  article-title: Decatungstate as an efficient photocatalyst in organic chemistry
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b812100c
– volume: 20
  start-page: 7100
  year: 2018
  ident: 10.1016/j.checat.2024.101009_bib94
  article-title: Synthesis of quaternary α-fluorinated α-amino acid derivatives via coordinating Cu(II) catalytic α-C(sp3)–H direct fluorination
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b03044
– volume: 15
  start-page: 729
  year: 2020
  ident: 10.1016/j.checat.2024.101009_bib90
  article-title: Recent advances in the application of selectfluor as a “fluorine-free” functional reagent in organic synthesis
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.202000011
– volume: 10
  start-page: 755
  year: 2018
  ident: 10.1016/j.checat.2024.101009_bib81
  article-title: Controlling Pd(IV) reductive elimination pathways enables Pd(II)-catalysed enantioselective C(sp3)−H fluorination
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0048-1
– volume: 24
  start-page: 1809
  year: 2022
  ident: 10.1016/j.checat.2024.101009_bib10
  article-title: Sustainable protocols for direct C–H bond arylation of (hetero)arenes
  publication-title: Green Chem.
  doi: 10.1039/D1GC03168F
– volume: 2
  start-page: 165
  year: 2021
  ident: 10.1016/j.checat.2024.101009_bib121
  article-title: Electrochemical generation of nitrogen-centered radicals for organic synthesis
  publication-title: Green Synth. Catal.
– volume: 2
  start-page: 216
  year: 2021
  ident: 10.1016/j.checat.2024.101009_bib17
  article-title: Synthesis of indoles, indolines, and carbazoles via palladium-catalyzed C–H activation
  publication-title: Green Synth. Catal.
– volume: 13
  start-page: 5938
  year: 2022
  ident: 10.1016/j.checat.2024.101009_bib75
  article-title: Ligand-promoted palladium-catalyzed β-methylene C–H arylation of primary aldehydes
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC01677J
– volume: 58
  start-page: 14824
  year: 2019
  ident: 10.1016/j.checat.2024.101009_bib33
  article-title: The fluorination of C−H bonds: developments and perspectives
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201814457
– volume: 120
  start-page: 1788
  year: 2020
  ident: 10.1016/j.checat.2024.101009_bib58
  article-title: Bidentate directing groups: an efficient tool in C–H bond functionalization chemistry for the expedient construction of C–C bonds
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00495
– volume: 57
  start-page: 14085
  year: 2018
  ident: 10.1016/j.checat.2024.101009_bib66
  article-title: Selective C(sp3)−H and C(sp2)−H fluorination of alcohols using practical auxiliaries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201808021
– volume: 12
  start-page: 841
  year: 2020
  ident: 10.1016/j.checat.2024.101009_bib16
  article-title: Site-selective functionalization of remote aliphatic C–H bonds via C–H metalation
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC05944G
– volume: 84
  start-page: 3735
  year: 2019
  ident: 10.1016/j.checat.2024.101009_bib44
  article-title: Palladium-catalyzed difluoromethylation of aryl chlorides and bromides with TMSCF2H
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.9b00324
– volume: 145
  start-page: 9928
  year: 2023
  ident: 10.1016/j.checat.2024.101009_bib37
  article-title: Strategies for nucleophilic C(sp3)–(radio)fluorination
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c01824
– volume: 11
  year: 2022
  ident: 10.1016/j.checat.2024.101009_bib91
  article-title: Recent advances in copper-catalyzed functionalization of unactivated C(sp3)−H bonds
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.202200532
– volume: 337
  start-page: 1322
  year: 2012
  ident: 10.1016/j.checat.2024.101009_bib103
  article-title: Oxidative aliphatic C–H fluorination with fluoride ion catalyzed by a manganese porphyrin
  publication-title: Science
  doi: 10.1126/science.1222327
– volume: 5
  start-page: 10633
  year: 2020
  ident: 10.1016/j.checat.2024.101009_bib1
  article-title: Contribution of organofluorine compounds to pharmaceuticals
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c00830
– volume: 12
  start-page: 10835
  year: 2022
  ident: 10.1016/j.checat.2024.101009_bib57
  article-title: Transition-metal-catalyzed remote C–H functionalization of thioethers
  publication-title: RSC Adv.
  doi: 10.1039/D2RA01268E
– volume: 137
  start-page: 7067
  year: 2015
  ident: 10.1016/j.checat.2024.101009_bib65
  article-title: Ligand-enabled Stereoselective β-C(sp3)–H fluorination: synthesis of unnatural enantiopure anti-β-fluoro-α-amino acids
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04088
– volume: 2
  start-page: 233
  year: 2021
  ident: 10.1016/j.checat.2024.101009_bib122
  article-title: Electrochemical transient iodination and coupling for selenylated 4-anilinocoumarin synthesis
  publication-title: Green Synth. Catal.
– volume: 6
  start-page: 3996
  year: 2019
  ident: 10.1016/j.checat.2024.101009_bib20
  article-title: The decarboxylative C–H heteroarylation of azoles catalysed by nickel catalysts to access unsymmetrical biheteroaryls
  publication-title: Org. Chem. Front.
  doi: 10.1039/C9QO01073D
– volume: 5
  start-page: 571
  year: 2004
  ident: 10.1016/j.checat.2024.101009_bib7
  article-title: The unique Role of fluorine in the design of active ingredients for modern crop protection
  publication-title: Chembiochem
  doi: 10.1002/cbic.200300833
– volume: 17
  start-page: 3798
  year: 2015
  ident: 10.1016/j.checat.2024.101009_bib64
  article-title: Efficient palladium-catalyzed C–H fluorination of C(sp3)–H bonds: synthesis of β-fluorinated carboxylic acids
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.5b01774
– volume: 22
  start-page: 5749
  year: 2020
  ident: 10.1016/j.checat.2024.101009_bib95
  article-title: Copper-catalyzed functionalization of benzylic C–H bonds with N-fluorobenzenesulfonimide: Switch from C–N to C–F bond formation promoted by a redox buffer and brønsted base
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c02239
– volume: 40
  start-page: 3620
  year: 2020
  ident: 10.1016/j.checat.2024.101009_bib111
  article-title: Photoinduced decatungstate-catalyzed C-H functionalization
  publication-title: Chin. J. Org. Chem.
  doi: 10.6023/cjoc202006068
– volume: 5
  start-page: 4545
  year: 2014
  ident: 10.1016/j.checat.2024.101009_bib5
  article-title: Late-stage [18F]fluorination: new solutions to old problems
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC02099E
– volume: 51
  start-page: 10580
  year: 2012
  ident: 10.1016/j.checat.2024.101009_bib93
  article-title: A polycomponent metal-catalyzed aliphatic, allylic, and benzylic fluorination
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201203642
– volume: 1
  start-page: 434
  year: 2014
  ident: 10.1016/j.checat.2024.101009_bib29
  article-title: Recent advances in C–H fluorination
  publication-title: Org. Chem. Front.
  doi: 10.1039/C4QO00020J
– volume: 3
  start-page: 203
  year: 2022
  ident: 10.1016/j.checat.2024.101009_bib12
  article-title: Recent advances in direct α-C(sp3)–H bond functionalization of thioethers
  publication-title: Green Synth. Catal.
– volume: 6
  start-page: 2591
  year: 2020
  ident: 10.1016/j.checat.2024.101009_bib18
  article-title: Recent advances in using transition-metal-catalyzed C–H functionalization to build fluorescent materials
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.08.017
– volume: 116
  start-page: 422
  year: 2016
  ident: 10.1016/j.checat.2024.101009_bib4
  article-title: Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II−III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00392
– volume: 84
  start-page: 14045
  year: 2019
  ident: 10.1016/j.checat.2024.101009_bib21
  article-title: Silver-promoted site-selective ontramolecular cyclization of 2-methylthiobenzamide through α-C(sp3)–H functionalization
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.9b02202
– volume: 142
  start-page: 8514
  year: 2020
  ident: 10.1016/j.checat.2024.101009_bib125
  article-title: C(sp3)–H fluorination with a copper(II)/(III) redox couple
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c02583
– volume: 9
  start-page: 4016
  year: 2022
  ident: 10.1016/j.checat.2024.101009_bib25
  article-title: Metal-free and selectfluor-mediated diverse transformations of 2-alkylthiobenzamides to access 2,3-dihydrobenzothiazin-4-ones, benzoisothiazol-3-ones and 2-alkylthiobenzonitriles
  publication-title: Org. Chem. Front.
  doi: 10.1039/D2QO00663D
– volume: 1
  start-page: 468
  year: 2014
  ident: 10.1016/j.checat.2024.101009_bib107
  article-title: Vanadium-catalyzed C(sp3)–H fluorination reactions
  publication-title: Org. Chem. Front.
  doi: 10.1039/C4QO00057A
– volume: 32
  start-page: 146
  year: 2021
  ident: 10.1016/j.checat.2024.101009_bib27
  article-title: Metal-free direct C(sp3)−H functionalization of 2-alkylthiobenzoic acid to access 1,3-benzooxathiin-4-one
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2020.11.036
– volume: 60
  start-page: 12170
  year: 2021
  ident: 10.1016/j.checat.2024.101009_bib15
  article-title: Radical-promoted distal C−H functionalization of C(sp3) centers with fluorinated moieties
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202009995
– volume: 117
  start-page: 8754
  year: 2017
  ident: 10.1016/j.checat.2024.101009_bib53
  article-title: Palladium-catalyzed transformations of alkyl C–H bonds
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00622
– volume: 20
  start-page: 7241
  year: 2014
  ident: 10.1016/j.checat.2024.101009_bib23
  article-title: Nickel-catalyzed decarboxylative acylation of heteroarenes by sp2 C–H functionalization
  publication-title: Chem. Eur J.
  doi: 10.1002/chem.201402516
– volume: 17
  start-page: 3738
  year: 2015
  ident: 10.1016/j.checat.2024.101009_bib62
  article-title: Palladium-catalyzed site-selective fluorination of unactivated C(sp3)–H Bonds
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.5b01710
– volume: 57
  start-page: 11413
  year: 2018
  ident: 10.1016/j.checat.2024.101009_bib101
  article-title: Iron(II)-catalyzed site-selective functionalization of unactivated C(sp3)−H bonds guided by alkoxyl radicals
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806434
– volume: 8
  start-page: 4974
  year: 2021
  ident: 10.1016/j.checat.2024.101009_bib26
  article-title: Amide-assisted α-C(sp3)–H acyloxyation of organic sulfides to access α-acyloxy sulfides
  publication-title: Org. Chem. Front.
  doi: 10.1039/D1QO00774B
– volume: 54
  start-page: 2759
  year: 2018
  ident: 10.1016/j.checat.2024.101009_bib78
  article-title: Palladium-catalyzed site-selective arylation of aliphatic ketones enabled by a transient ligand
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC00980E
– volume: 25
  start-page: 7916
  year: 2023
  ident: 10.1016/j.checat.2024.101009_bib9
  article-title: Classic vs. C–H functionalization strategies in the synthesis of APIs: a sustainability comparison
  publication-title: Green Chem.
  doi: 10.1039/D3GC02516K
– volume: 1
  start-page: 42
  year: 2020
  ident: 10.1016/j.checat.2024.101009_bib109
  article-title: Recent advances in visible-light photoredox-catalyzed nitrogen radical cyclization
  publication-title: Green Synth. Catal.
– volume: 88
  start-page: 1865
  year: 2023
  ident: 10.1016/j.checat.2024.101009_bib89
  article-title: Amide-ligand-promoted silver-catalyzed C–H fluorination via radical/polar crossover
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.2c02575
– volume: 4
  start-page: 199
  year: 2018
  ident: 10.1016/j.checat.2024.101009_bib42
  article-title: Transient directing groups for transformative C–H activation by synergistic metal catalysis
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.11.002
– volume: 54
  start-page: 1723
  year: 2021
  ident: 10.1016/j.checat.2024.101009_bib14
  article-title: From C4 to C7: innovative strategies for site-selective functionalization of indole C–H bonds
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00888
– volume: 142
  start-page: 9966
  year: 2020
  ident: 10.1016/j.checat.2024.101009_bib82
  article-title: Pd-catalyzed γ-C(sp3)–H fluorination of free amines
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13537
– volume: 18
  start-page: 7291
  year: 2020
  ident: 10.1016/j.checat.2024.101009_bib69
  article-title: Transient imine directing groups for the C–H functionalisation of aldehydes, ketones and amines: an update 2018–2020
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/D0OB01587C
– start-page: 1003
  year: 2007
  ident: 10.1016/j.checat.2024.101009_bib8
  article-title: Fluorinated organic materials for electronic and optoelectronic applications: the role of the fluorine atom
  publication-title: Chem. Commun.
  doi: 10.1039/B611336B
– volume: 140
  start-page: 2789
  year: 2018
  ident: 10.1016/j.checat.2024.101009_bib41
  article-title: Pd-catalyzed, ortho C–H methylation and fluorination of benzaldehydes using orthanilic acids as transient directing groups
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00048
– volume: 10
  start-page: 34429
  year: 2020
  ident: 10.1016/j.checat.2024.101009_bib92
  article-title: Progress and prospects in copper-catalyzed C–H functionalization
  publication-title: RSC Adv.
  doi: 10.1039/D0RA06518H
– volume: 48
  start-page: 1727
  year: 2015
  ident: 10.1016/j.checat.2024.101009_bib102
  article-title: Manganese catalyzed C–H halogenation
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00062
– volume: 59
  start-page: 3078
  year: 2020
  ident: 10.1016/j.checat.2024.101009_bib76
  article-title: Ligand-controlled direct γ-C−H arylation of aldehydes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201913126
– volume: 13
  start-page: 14041
  year: 2022
  ident: 10.1016/j.checat.2024.101009_bib46
  article-title: Benzoates as photosensitization catalysts and auxiliaries in efficient, practical, light-powered direct C(sp3)–H fluorinations
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC05735B
– volume: 167
  start-page: 16
  year: 2014
  ident: 10.1016/j.checat.2024.101009_bib6
  article-title: Successful fluorine-containing herbicide agrochemicals
  publication-title: J. Fluor. Chem.
  doi: 10.1016/j.jfluchem.2014.06.014
– volume: 356
  start-page: 1412
  year: 2014
  ident: 10.1016/j.checat.2024.101009_bib31
  article-title: Palladium-catalyzed C–F bond formation via directed C–H activation
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201400101
– volume: 36
  start-page: 1218
  year: 2016
  ident: 10.1016/j.checat.2024.101009_bib32
  article-title: Recent advances in transition-metal catalyzed C–H bond fluorination
  publication-title: Chin. J. Org. Chem.
  doi: 10.6023/cjoc201512040
– volume: 30
  start-page: 1178
  year: 2019
  ident: 10.1016/j.checat.2024.101009_bib51
  article-title: Electrochemical C(sp3)–H fluorination
  publication-title: Synlett
  doi: 10.1055/s-0037-1611737
– volume: 13
  start-page: 7007
  year: 2022
  ident: 10.1016/j.checat.2024.101009_bib45
  article-title: Hydroxy-directed fluorination of remote unactivated C(sp3)–H bonds: a new age of diastereoselective radical fluorination
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC01907H
– volume: 19
  start-page: 2949
  year: 2017
  ident: 10.1016/j.checat.2024.101009_bib87
  article-title: Radical C–H fluorination using unprotected amino acids as radical precursors
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.7b01188
– volume: 8
  start-page: 13671
  year: 2018
  ident: 10.1016/j.checat.2024.101009_bib28
  article-title: Heterogeneous Co-catalyzed direct 2-alkylation of azoles with ethers
  publication-title: RSC Adv.
  doi: 10.1039/C8RA01796D
– volume: 53
  start-page: 4690
  year: 2014
  ident: 10.1016/j.checat.2024.101009_bib113
  article-title: A convenient photocatalytic fluorination of unactivated C–H bonds
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201400420
– volume: 61
  start-page: 5822
  year: 2018
  ident: 10.1016/j.checat.2024.101009_bib3
  article-title: Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.7b01788
– volume: 372
  year: 2021
  ident: 10.1016/j.checat.2024.101009_bib13
  article-title: Arene diversification through distal C(sp2)−H functionalization
  publication-title: Science
  doi: 10.1126/science.abd5992
– volume: 9
  start-page: 1168
  year: 2018
  ident: 10.1016/j.checat.2024.101009_bib106
  article-title: Site-selective 18F fluorination of unactivated C–H bonds mediated by a manganese porphyrin
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC04545J
– volume: 131
  start-page: 7520
  year: 2009
  ident: 10.1016/j.checat.2024.101009_bib39
  article-title: Versatile Pd(OTf)2·2H2O-catalyzed ortho-fluorination using NMP as a promoter
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja901352k
– volume: 1
  start-page: 1
  year: 2020
  ident: 10.1016/j.checat.2024.101009_bib108
  article-title: Perspectives on green synthesis and catalysis
  publication-title: Green Synth. Catal.
– volume: 48
  start-page: 5094
  year: 2009
  ident: 10.1016/j.checat.2024.101009_bib55
  article-title: Palladium(II)-catalyzed C–H activation/C–C cross-coupling reactions: versatility and practicality
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200806273
– volume: 63
  start-page: 828
  year: 2016
  ident: 10.1016/j.checat.2024.101009_bib97
  article-title: Iron-catalyzed C−H activation
  publication-title: J. Chin. Chem. Soc.
  doi: 10.1002/jccs.201600184
– volume: 12
  start-page: 6950
  year: 2021
  ident: 10.1016/j.checat.2024.101009_bib118
  article-title: A general strategy for C(sp3)–H functionalization with nucleophiles using methyl radical as a hydrogen atom abstractor
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27165-z
– volume: 2
  start-page: 292
  year: 2022
  ident: 10.1016/j.checat.2024.101009_bib119
  article-title: A photoredox-catalyzed approach for formal hydride abstraction to enable Csp3–H functionalization with nucleophilic partners (F, C, O, N, and Br/Cl)
  publication-title: Chem Catal.
– volume: 45
  start-page: 15718
  year: 2021
  ident: 10.1016/j.checat.2024.101009_bib85
  article-title: Silver-catalysed C–H bond activation: a recent review
  publication-title: New J. Chem.
  doi: 10.1039/D1NJ02156G
– volume: 60
  start-page: 3454
  year: 2021
  ident: 10.1016/j.checat.2024.101009_bib47
  article-title: Photochemical radical C–H halogenation of benzyl N-methyliminodiacetyl (MIDA) boronates: synthesis of α-functionalized alkyl boronates
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202011872
– volume: 11
  start-page: 12616
  year: 2020
  ident: 10.1016/j.checat.2024.101009_bib52
  article-title: Palladium-catalyzed direct asymmetric C–H bond functionalization enabled by the directing group strategy
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC03052J
– volume: 53
  start-page: 5955
  year: 2014
  ident: 10.1016/j.checat.2024.101009_bib86
  article-title: Silver-catalyzed oxidative activation of benzylic C–H bonds for the synthesis of difluoromethylated arenes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201400225
– volume: 22
  start-page: 5195
  year: 2020
  ident: 10.1016/j.checat.2024.101009_bib35
  article-title: Catalytic C(sp3)–F bond formation: recent achievements and pertaining challenges
  publication-title: Green Chem.
  doi: 10.1039/D0GC02067B
– volume: 49
  start-page: 4808
  year: 2017
  ident: 10.1016/j.checat.2024.101009_bib71
  article-title: The transient directing group strategy: a new trend in transition-metal-catalyzed C–H bond functionalization
  publication-title: Synthesis
  doi: 10.1055/s-0036-1590878
– volume: 55
  start-page: 5408
  year: 2019
  ident: 10.1016/j.checat.2024.101009_bib110
  article-title: Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC01047E
– volume: 52
  start-page: 3309
  year: 2019
  ident: 10.1016/j.checat.2024.101009_bib123
  article-title: Electrochemical oxidative cross-coupling with hydrogen evolution reactions
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00512
– volume: 137
  start-page: 8219
  year: 2015
  ident: 10.1016/j.checat.2024.101009_bib63
  article-title: Stereoselective synthesis of chiral β-fluoro α-amino acids via Pd(II)-catalyzed fluorination of unactivated methylene C(sp3)–H bonds: scope and mechanistic studies
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03989
– volume: 11
  start-page: 10887
  year: 2020
  ident: 10.1016/j.checat.2024.101009_bib19
  article-title: Diverse strategies for transition metal catalyzed distal C(sp3)–H functionalizations
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC04676K
– volume: 1
  start-page: 461
  year: 2019
  ident: 10.1016/j.checat.2024.101009_bib34
  article-title: New directions in C–H fluorination
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2019.04.001
– volume: 22
  start-page: 5753
  year: 2020
  ident: 10.1016/j.checat.2024.101009_bib96
  article-title: Copper-catalyzed C–H fluorination/functionalization sequence enabling benzylic C–H cross coupling with diverse nucleophiles
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c02238
– volume: 142
  start-page: 2766
  year: 2020
  ident: 10.1016/j.checat.2024.101009_bib48
  article-title: δ-C–H Mono- and dihalogenation of alcohols
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13171
– volume: 41
  start-page: 543
  year: 2021
  ident: 10.1016/j.checat.2024.101009_bib36
  article-title: Recent advances in C−H fluorination and amination with N-fluorobenzenesulfonimide
  publication-title: Chin. J. Org. Chem.
  doi: 10.6023/cjoc202006069
– volume: 57
  start-page: 3401
  year: 2018
  ident: 10.1016/j.checat.2024.101009_bib77
  article-title: Transient-ligand-enabled ortho-arylation of five-membered heterocycles: facile access to mechanochromic materials
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201713357
– volume: 551
  start-page: 489
  year: 2017
  ident: 10.1016/j.checat.2024.101009_bib83
  article-title: Ligand-accelerated non-directed C–H functionalization of arenes
  publication-title: Nature
  doi: 10.1038/nature24632
– volume: 15
  start-page: 1722
  year: 2013
  ident: 10.1016/j.checat.2024.101009_bib98
  article-title: Iron(II)-catalyzed benzylic fluorination
  publication-title: Org. Lett.
  doi: 10.1021/ol400424s
– volume: 17
  start-page: 5200
  year: 2015
  ident: 10.1016/j.checat.2024.101009_bib114
  article-title: Development of a direct photocatalytic C–H fluorination for the preparative synthesis of odanacatib. Org
  publication-title: Lett.
– volume: 88
  start-page: 2557
  year: 2023
  ident: 10.1016/j.checat.2024.101009_bib50
  article-title: An electrochemical approach to directed fluorination
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.2c01886
– volume: 52
  start-page: 11726
  year: 2013
  ident: 10.1016/j.checat.2024.101009_bib60
  article-title: Catalytic functionalization of C(sp2)–H and C(sp3)–H bonds by using bidentate directing groups
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201301451
– volume: 110
  start-page: 1147
  year: 2010
  ident: 10.1016/j.checat.2024.101009_bib54
  article-title: Palladium-catalyzed ligand-directed C−H functionalization reactions
  publication-title: Chem. Rev.
  doi: 10.1021/cr900184e
– volume: 53
  start-page: 10330
  year: 2014
  ident: 10.1016/j.checat.2024.101009_bib43
  article-title: Mild and versatile nitrate-promoted C–H bond fluorination
  publication-title: Angew. Chem. Int.
  doi: 10.1002/anie.201404423
– volume: 138
  start-page: 12771
  year: 2016
  ident: 10.1016/j.checat.2024.101009_bib99
  article-title: Iron-catalyzed, fluoroamide-directed C–H fluorination
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08171
– volume: 9
  start-page: 26
  year: 2017
  ident: 10.1016/j.checat.2024.101009_bib79
  article-title: Site-selective C–H arylation of primary aliphatic amines enabled by a catalytic transient directing group
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2606
– volume: 12
  start-page: 2955
  year: 2019
  ident: 10.1016/j.checat.2024.101009_bib70
  article-title: Transient ligand-enabled transition metal-catalyzed C−H Functionalization
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201900151
– volume: 11
  start-page: 1102
  year: 2019
  ident: 10.1016/j.checat.2024.101009_bib100
  article-title: N-Directed fluorination of unactivated Csp3–H bonds
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC04055B
– volume: 50
  start-page: 9081
  year: 2011
  ident: 10.1016/j.checat.2024.101009_bib38
  article-title: Palladium(II)-catalyzed selective monofluorination of benzoic acids using a practical auxiliary: a weak-coordination approach
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201102985
– volume: 46
  start-page: 4
  year: 2023
  ident: 10.1016/j.checat.2024.101009_bib120
  article-title: The future of organic electrochemistry current transfer
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(22)64197-4
– volume: 136
  start-page: 1789
  year: 2014
  ident: 10.1016/j.checat.2024.101009_bib24
  article-title: Nickel-catalyzed site-selective alkylation of unactivated C(sp3)–H bonds
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja413131m
– volume: 127
  start-page: 13154
  year: 2005
  ident: 10.1016/j.checat.2024.101009_bib61
  article-title: Highly regioselective arylation of sp3 C−H Bonds catalyzed by palladium acetate
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja054549f
– volume: 48
  start-page: 1053
  year: 2015
  ident: 10.1016/j.checat.2024.101009_bib59
  article-title: Bidentate, monoanionic auxiliary-directed functionalization of carbon–hydrogen bonds
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar5004626
– volume: 14
  start-page: 4094
  year: 2012
  ident: 10.1016/j.checat.2024.101009_bib56
  article-title: Pd-catalyzed C–H fluorination with nucleophilic fluoride
  publication-title: Org. Lett.
  doi: 10.1021/ol301739f
– volume: 9
  start-page: 8276
  year: 2019
  ident: 10.1016/j.checat.2024.101009_bib115
  article-title: Electrostatic effects accelerate decatungstate-catalyzed C–H fluorination using [18F]- and [19F]NFSI in small molecules and peptide mimics
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02220
– volume: 8
  start-page: 822
  year: 2016
  ident: 10.1016/j.checat.2024.101009_bib117
  article-title: U can fluorinate unactivated bonds
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2604
– volume: 5
  start-page: 646
  year: 2021
  ident: 10.1016/j.checat.2024.101009_bib67
  article-title: Transient directing ligands for selective metal-catalysed C–H activation
  publication-title: Nat. Rev. Chem
  doi: 10.1038/s41570-021-00311-3
– volume: 16
  start-page: 2151
  year: 2020
  ident: 10.1016/j.checat.2024.101009_bib49
  article-title: Photosensitized direct C–H fluorination and trifluoromethylation in organic synthesis
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.16.183
– volume: 9
  start-page: 3322
  year: 2019
  ident: 10.1016/j.checat.2024.101009_bib88
  article-title: Experimental and theoretical evidence for nitrogen–fluorine halogen bonding in silver-initiated radical fluorinations
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00623
– volume: 59
  start-page: 19773
  year: 2020
  ident: 10.1016/j.checat.2024.101009_bib68
  article-title: Transition metal-catalyzed enantioselective C−H functionalization via chiral transient directing group strategies
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202008437
– volume: 25
  start-page: 11797
  year: 2019
  ident: 10.1016/j.checat.2024.101009_bib2
  article-title: Fluorine-containing drugs approved by the FDA in 2018
  publication-title: Chem. Eur J.
  doi: 10.1002/chem.201901840
– volume: 55
  start-page: 8923
  year: 2016
  ident: 10.1016/j.checat.2024.101009_bib116
  article-title: The uranyl cation as a visible-light photocatalyst for C(sp3)−H fluorination
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201603149
– volume: 128
  start-page: 7134
  year: 2006
  ident: 10.1016/j.checat.2024.101009_bib40
  article-title: Palladium-catalyzed fluorination of carbon−hydrogen bonds
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja061943k
– volume: 23
  start-page: 9283
  year: 2021
  ident: 10.1016/j.checat.2024.101009_bib11
  article-title: Recent advances in the incorporation of CO2 for C–H and C–C bond functionalization
  publication-title: Green Chem.
  doi: 10.1039/D1GC02737A
– volume: 138
  start-page: 12775
  year: 2016
  ident: 10.1016/j.checat.2024.101009_bib80
  article-title: Catalytic C–H arylation of aliphatic aldehydes enabled by a transient ligand
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08478
– volume: 6
  start-page: 6462
  year: 2015
  ident: 10.1016/j.checat.2024.101009_bib22
  article-title: Cobalt-catalysed site-selective intra- and intermolecular dehydrogenative amination of unactivated sp3 carbons
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7462
SSID ssj0002513252
Score 2.3201993
SecondaryResourceType review_article
Snippet Constructing C−F bonds via C−H activation has been a subject of considerable attention in the field of organic synthesis. Within this reaction class, the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101009
SubjectTerms C(sp3)–H bond
electrochemistry
fluorination
photochemistry
transition metal catalyzed
Title Transition-metal-catalyzed C(sp3)–H bond fluorination reactions
URI https://dx.doi.org/10.1016/j.checat.2024.101009
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b9swECUKZ-lStGiLpl_QkKFFQIOmJEocjSCNUKMd2gT1JpD0EXWQOEEiD82U_5B_2F-SO4mUHdT9yiIYhCjKfGfe4_Mdj7EdTW7aGsfBO8ANisl5qUrBfZalhSmKmW6PUvr0WVVH2cdpPo212kN2SWOH7mpjXsl9UMU2xJWyZP8D2f6h2ICfEV-8IsJ4_TeMydG0MVf8FJBF81aM-XFFqi0yx8tzklFjOENa7VpKVvEnSwq664BHyuhWkl08seA7nO52j7qc95z7AEIktp33xjBdtn9uzJvoAGn9CAr0BO72rMzcnq2LDDIj9TKsi63yFbNf7gRnom_Hu0RX4XAIG9rCCputGVKxcd3uJITjIRoqCa70CtQohF75qT568CsNQmNQ_Osop8T7LYm7BDlgW-PJl2-TXmRD8pbKtupS_14xfbKN8ft1uM30ZI1yHD5mj8JeIRl3wD9hD2DxlI1_D3qy9w4hf__z-qZKCOpkHeqkh_oZO_qwf7hX8VAHgzspRw0vhDdGziC31kpTapGDMsaKciaFFk4LZUZGKY9MGUaQeSdn2hdOAyjQroD0ORsszhbwgiU6F95bU2bSePxhFiZTVqfCGJ1BXiq1zdL49WsXDomnWiUndYwGPK67Satp0upu0rYZ73udd4ek_OX-Is5sHYheR-BqtIc_9nx5756v2MOVYb9mg-ZiCW-QTzb2bbCaWwwWc4Q
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transition-metal-catalyzed+C%28sp3%29%E2%80%93H+bond+fluorination+reactions&rft.jtitle=Chem+catalysis&rft.au=Ge%2C+Robbie&rft.au=Xu%2C+Ziting&rft.au=Yang%2C+Ke&rft.au=Ge%2C+Haibo&rft.date=2024-07-18&rft.pub=Elsevier+Inc&rft.issn=2667-1093&rft.eissn=2667-1093&rft.volume=4&rft.issue=7&rft_id=info:doi/10.1016%2Fj.checat.2024.101009&rft.externalDocID=S2667109324001581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-1093&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-1093&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-1093&client=summon