Transition-metal-catalyzed C(sp3)–H bond fluorination reactions
Constructing C−F bonds via C−H activation has been a subject of considerable attention in the field of organic synthesis. Within this reaction class, the popularity of transition-metal-catalyzed approaches has substantially expanded in recent years. Currently, there are two main types of these react...
Saved in:
Published in | Chem catalysis Vol. 4; no. 7; p. 101009 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
18.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Constructing C−F bonds via C−H activation has been a subject of considerable attention in the field of organic synthesis. Within this reaction class, the popularity of transition-metal-catalyzed approaches has substantially expanded in recent years. Currently, there are two main types of these reaction pathways. The first type involves the formation of a carbon-metal-fluorine intermediate with the assistance of a directing group. The second type utilizes a transition metal species to generate a radical or carbocation intermediate. Despite the importance of these reactions, there has yet to be a comprehensive review of transition-metal-catalyzed C(sp3)−H bond fluorination processes. This review presents major advances in and detailed mechanistic discussions of transition-metal-catalyzed C(sp3)−H bond fluorination reactions with different reaction modes under various thermal, photochemical, and electrochemical conditions.
[Display omitted]
The selective construction of C–F bonds is a highly active research field in pharmaceutical and agricultural chemistry, as well as materials science. In this field, the utilization of transition-metal-catalyzed C(sp3)–H fluorination has emerged as a prominent and remarkably efficient strategy for synthesizing diverse molecules containing fluorine. Considering their importance in organic chemistry, this review introduces the major advances in the field of transition-metal-catalyzed C(sp3)–H bond fluorination reactions under thermal, photochemical, and electrochemical conditions. Additionally, detailed mechanistic discussions have been provided to help readers gain insights in this area.
Ge et al. provide and discuss the historical background and significant advancements in transition-metal-catalyzed C(sp3)–H bond fluorination reactions via different modes of action under thermal, photochemical, and electrochemical conditions. Additionally, they provide comprehensive discussions on reaction mechanisms alongside a forward-looking perspective on innovative strategies within this field. |
---|---|
AbstractList | Constructing C−F bonds via C−H activation has been a subject of considerable attention in the field of organic synthesis. Within this reaction class, the popularity of transition-metal-catalyzed approaches has substantially expanded in recent years. Currently, there are two main types of these reaction pathways. The first type involves the formation of a carbon-metal-fluorine intermediate with the assistance of a directing group. The second type utilizes a transition metal species to generate a radical or carbocation intermediate. Despite the importance of these reactions, there has yet to be a comprehensive review of transition-metal-catalyzed C(sp3)−H bond fluorination processes. This review presents major advances in and detailed mechanistic discussions of transition-metal-catalyzed C(sp3)−H bond fluorination reactions with different reaction modes under various thermal, photochemical, and electrochemical conditions.
[Display omitted]
The selective construction of C–F bonds is a highly active research field in pharmaceutical and agricultural chemistry, as well as materials science. In this field, the utilization of transition-metal-catalyzed C(sp3)–H fluorination has emerged as a prominent and remarkably efficient strategy for synthesizing diverse molecules containing fluorine. Considering their importance in organic chemistry, this review introduces the major advances in the field of transition-metal-catalyzed C(sp3)–H bond fluorination reactions under thermal, photochemical, and electrochemical conditions. Additionally, detailed mechanistic discussions have been provided to help readers gain insights in this area.
Ge et al. provide and discuss the historical background and significant advancements in transition-metal-catalyzed C(sp3)–H bond fluorination reactions via different modes of action under thermal, photochemical, and electrochemical conditions. Additionally, they provide comprehensive discussions on reaction mechanisms alongside a forward-looking perspective on innovative strategies within this field. |
ArticleNumber | 101009 |
Author | Ge, Haibo Ge, Robbie Xu, Ziting Yang, Ke |
Author_xml | – sequence: 1 givenname: Robbie surname: Ge fullname: Ge, Robbie organization: Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA – sequence: 2 givenname: Ziting surname: Xu fullname: Xu, Ziting organization: Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China – sequence: 3 givenname: Ke surname: Yang fullname: Yang, Ke email: keyang@cczu.edu.cn organization: Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China – sequence: 4 givenname: Haibo surname: Ge fullname: Ge, Haibo email: haibo.ge@ttu.edu organization: Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA |
BookMark | eNqFkLFOwzAQhi1UJErpGzBkhCHl7DROzYBUVUCRkFjKbF2cs3CVOpUdkMrEO_CGPAkNYUAMMN3pdN-vu--YDXzjibFTDhMOXF6sJ-aJDLYTAWLajQDUARsKKYuUg8oGP_ojNo5xDQAi55nIxZDNVwF9dK1rfLqhFut0H4X17pWqZHEWt9n5x9v7MikbXyW2fm6C89gtJ4HQdE08YYcW60jj7zpijzfXq8UyvX-4vVvM71MjBG_TAiyiqCgvy1LgTEFOErGEWSVAgVEgkaOUFnJFnKbWiErZwigiScoUlI3YZZ9rQhNjIKuNa79uaQO6WnPQnQ-91r0P3fnQvY89PP0Fb4PbYNj9h131GO0fe3EUdDSOvKHKBTKtrhr3d8Ann0B_cA |
CitedBy_id | crossref_primary_10_1021_acs_orglett_5c00816 crossref_primary_10_1039_D4JA00261J crossref_primary_10_1002_slct_202405859 crossref_primary_10_1039_D4QO01179A crossref_primary_10_6023_cjoc202410015 |
Cites_doi | 10.1002/anie.201301097 10.1021/ja5039819 10.1039/C8RA03230K 10.1039/C8OB00926K 10.1021/ja407223g 10.1039/C4QO00078A 10.1039/b812100c 10.1021/acs.orglett.8b03044 10.1002/asia.202000011 10.1038/s41557-018-0048-1 10.1039/D1GC03168F 10.1039/D2SC01677J 10.1002/anie.201814457 10.1021/acs.chemrev.9b00495 10.1002/anie.201808021 10.1039/D0SC05944G 10.1021/acs.joc.9b00324 10.1021/jacs.3c01824 10.1002/ajoc.202200532 10.1126/science.1222327 10.1021/acsomega.0c00830 10.1039/D2RA01268E 10.1021/jacs.5b04088 10.1039/C9QO01073D 10.1002/cbic.200300833 10.1021/acs.orglett.5b01774 10.1021/acs.orglett.0c02239 10.6023/cjoc202006068 10.1039/C4SC02099E 10.1002/anie.201203642 10.1039/C4QO00020J 10.1016/j.chempr.2020.08.017 10.1021/acs.chemrev.5b00392 10.1021/acs.joc.9b02202 10.1021/jacs.0c02583 10.1039/D2QO00663D 10.1039/C4QO00057A 10.1016/j.cclet.2020.11.036 10.1002/anie.202009995 10.1021/acs.chemrev.6b00622 10.1002/chem.201402516 10.1021/acs.orglett.5b01710 10.1002/anie.201806434 10.1039/D1QO00774B 10.1039/C8CC00980E 10.1039/D3GC02516K 10.1021/acs.joc.2c02575 10.1016/j.chempr.2017.11.002 10.1021/acs.accounts.0c00888 10.1021/jacs.9b13537 10.1039/D0OB01587C 10.1039/B611336B 10.1021/jacs.8b00048 10.1039/D0RA06518H 10.1021/acs.accounts.5b00062 10.1002/anie.201913126 10.1039/D2SC05735B 10.1016/j.jfluchem.2014.06.014 10.1002/adsc.201400101 10.6023/cjoc201512040 10.1055/s-0037-1611737 10.1039/D2SC01907H 10.1021/acs.orglett.7b01188 10.1039/C8RA01796D 10.1002/anie.201400420 10.1021/acs.jmedchem.7b01788 10.1126/science.abd5992 10.1039/C7SC04545J 10.1021/ja901352k 10.1002/anie.200806273 10.1002/jccs.201600184 10.1038/s41467-021-27165-z 10.1039/D1NJ02156G 10.1002/anie.202011872 10.1039/D0SC03052J 10.1002/anie.201400225 10.1039/D0GC02067B 10.1055/s-0036-1590878 10.1039/C9CC01047E 10.1021/acs.accounts.9b00512 10.1021/jacs.5b03989 10.1039/D0SC04676K 10.1016/j.trechm.2019.04.001 10.1021/acs.orglett.0c02238 10.1021/jacs.9b13171 10.6023/cjoc202006069 10.1002/anie.201713357 10.1038/nature24632 10.1021/ol400424s 10.1021/acs.joc.2c01886 10.1002/anie.201301451 10.1021/cr900184e 10.1002/anie.201404423 10.1021/jacs.6b08171 10.1038/nchem.2606 10.1002/cssc.201900151 10.1039/C9SC04055B 10.1002/anie.201102985 10.1016/S1872-2067(22)64197-4 10.1021/ja413131m 10.1021/ja054549f 10.1021/ar5004626 10.1021/ol301739f 10.1021/acscatal.9b02220 10.1038/nchem.2604 10.1038/s41570-021-00311-3 10.3762/bjoc.16.183 10.1021/acscatal.9b00623 10.1002/anie.202008437 10.1002/chem.201901840 10.1002/anie.201603149 10.1021/ja061943k 10.1039/D1GC02737A 10.1021/jacs.6b08478 10.1038/ncomms7462 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. |
Copyright_xml | – notice: 2024 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.checat.2024.101009 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2667-1093 |
ExternalDocumentID | 10_1016_j_checat_2024_101009 S2667109324001581 |
GroupedDBID | 0R~ AAXUO AKRWK ALMA_UNASSIGNED_HOLDINGS EBS FDB AALRI AAMRU AAYWO AAYXX ABJNI ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AIGII AITUG AKAPO AKBMS AKYEP AMRAJ CITATION EFKBS |
ID | FETCH-LOGICAL-c221t-70faa2de5bbb2a8905e6aab08d2090c906a1a66f059e1e4fc2d9f7c9ee6e9c7e3 |
ISSN | 2667-1093 |
IngestDate | Thu Jul 24 02:19:02 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Sat Jul 20 16:35:11 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | transition metal catalyzed fluorination electrochemistry photochemistry C(sp3)–H bond SDG9: Industry, innovation, and infrastructure |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c221t-70faa2de5bbb2a8905e6aab08d2090c906a1a66f059e1e4fc2d9f7c9ee6e9c7e3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_checat_2024_101009 crossref_primary_10_1016_j_checat_2024_101009 elsevier_sciencedirect_doi_10_1016_j_checat_2024_101009 |
PublicationCentury | 2000 |
PublicationDate | 2024-07-18 |
PublicationDateYYYYMMDD | 2024-07-18 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-18 day: 18 |
PublicationDecade | 2020 |
PublicationTitle | Chem catalysis |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Li, Wu, Li, Wang (bib31) 2014; 356 Wu, Zhao, Ge (bib24) 2014; 136 Harry, Xiang, Holt, Zhu, Ghorbani, Patel, Lectka (bib45) 2022; 13 Guan, Sun, Mao, Chen, Lu, Huang, Liu (bib101) 2018; 57 Buss, Vasilopoulos, Golden, Stahl (bib95) 2020; 22 Li, Lawrence, Li, Ge (bib76) 2020; 59 Yuan, Yang, Malik, Čolović, Weber, Wilson, Bénard, Martin, Warren, Schaffer, Britton (bib115) 2019; 9 Jeschke (bib7) 2004; 5 Radhika, Abdulla, Aneeja, Anilkumar (bib85) 2021; 45 Dai, Yang, Luo, Xu, Li, Li, Li, Sun (bib25) 2022; 9 Liu, Groves (bib102) 2015; 48 Rago, Dong (bib17) 2021; 2 Leibler, Tekle-Smith, Doyle (bib118) 2021; 12 Meanwell (bib3) 2018; 61 Yuan, Yang, Yu (bib111) 2020; 40 Brooks, Topczewski, Ichiishi, Sanford, Scott (bib5) 2014; 5 Inoue, Sumii, Shibata (bib1) 2020; 5 Tang, Hu, Yang, Elsaid, Liu, Ge (bib12) 2022; 3 Wang, Verma, Xia, Shi, Qiao, Tao, Cheng, Poss, Farmer, Yeung, Yu (bib83) 2017; 551 Wu, Yang, Zhao, Sun, Li, Ge (bib22) 2015; 6 Liu, Groves (bib104) 2013; 52 Vasilopoulos, Golden, Buss, Stahl (bib96) 2020; 22 Wang, Chen, Luo, Xie (bib36) 2021; 41 Liu, Ge (bib79) 2017; 9 Babudri, Farinola, Naso, Ragni (bib8) 2007 Lou, Xu, Xu (bib43) 2014; 53 Yang, Zhang, Wang, Zhang, Ge (bib23) 2014; 20 Wei, Ma, Li, Liu, Liu, Liu (bib94) 2018; 20 Yakubov, Stockerl, Tian, Shahin, Mandigma, Gschwind, Barham (bib46) 2022; 13 Liu, Huang, Placzek, Krska, McQuade, Hooker, Groves (bib106) 2018; 9 Hua, Mai, Martinez, Baxter (bib87) 2017; 19 Niu, Yang, Lawrence, Ge (bib70) 2019; 12 Tarantino, Hammond (bib35) 2020; 22 Li, Seth, Niu, Pan, Yang, Ge (bib77) 2018; 57 Ferlin, Brufani, Rossini, Vaccaro (bib9) 2023; 25 Yang, Dai, Li, Li, Sun (bib26) 2021; 8 Daugulis, Roane, Tran (bib59) 2015; 48 Feng, Wang, Li, Tang, Sun, Yang (bib57) 2022; 12 Zaitsev, Shabashov, Daugulis (bib61) 2005; 127 Cheng, Ritter (bib34) 2019; 1 Herron, Liu, Xia, Yu (bib48) 2020; 142 Nobile, Castanheiro, Besset (bib15) 2021; 60 Das, Guin, Maiti (bib19) 2020; 11 Chen, Engle, Wang, Yu (bib55) 2009; 48 Takahira, Chen, Kawamata, Mykhailiuk, Nakamura, Peters, Reisberg, Li, Chen, Hoshikawa (bib51) 2019; 30 Chan, Wasa, Wang, Yu (bib38) 2011; 50 Halperin, Kwon, Holmes, Regalado, Campeau, DiRocco, Britton (bib114) 2015; 17 Hua, Bidwell, Baker, Hratchian, Baxter (bib88) 2019; 9 Yakubov, Barham (bib49) 2020; 16 Neumann, Ritter (bib117) 2016; 8 Rej, Ano, Chatani (bib58) 2020; 120 Bower, Cypcar, Henriquez, Stieber, Zhang (bib125) 2020; 142 Pimparkar, Dalvi, Koodan, Maiti, Al-Thabaiti, Mokhtar, Dutta, Lee, Maiti (bib11) 2021; 23 Mao, Lou, Hao, Xu (bib66) 2018; 57 Hull, Anani, Sanford (bib40) 2006; 128 Bhattacharya, Pimparkar, Maiti (bib73) 2018; 8 Yang, Song, Ma, Li, Li, Sun (bib20) 2019; 6 Yamashita, Fujiwara, Hamashima (bib89) 2023; 88 Halperin, Fan, Chang, Martin, Britton (bib113) 2014; 53 Bloom, Pitts, Miller, Haselton, Holl, Urheim, Lectka (bib93) 2012; 51 Zhou, Wang, Gu, Wang, Zhu, Aceña, Soloshonok, Izawa, Liu (bib4) 2016; 116 Rouquet, Chatani (bib60) 2013; 52 He, Wasa, Chan, Shao, Yu (bib53) 2017; 117 Yang, Niu, Ma, Wang, Lawrence, Ge (bib21) 2019; 84 Groendyke, AbuSalim, Cook (bib99) 2016; 138 Wen, Shi (bib14) 2021; 54 Bloom, Pitts, Woltornist, Griswold, Holl, Lectka (bib98) 2013; 15 Liu, Huang, Cheng, Nielsen, Goddard, Groves (bib103) 2012; 337 Braun, Doyle (bib84) 2013; 135 Leibler, Gandhi, Tekle-Smith, Doyle (bib37) 2023; 145 Wang, Zhao, Xiao, Chen (bib109) 2020; 1 St John-Campbell, Bull, Bull (bib74) 2018; 16 Zhang, Fitzpatrick, Das, Bedre, Yayla, Lall, Musacchio (bib119) 2022; 2 Ferguson, Malapit, Bour, Sanford (bib44) 2019; 84 Zhang, Yin, Chen, Zhang, Shi (bib63) 2015; 137 Zhou, Tang, He (bib120) 2023; 46 Mei, Han, Fustero, Medio-Simon, Sedgwick, Santi, Ruzziconi, Soloshonok (bib2) 2019; 25 Zhu, Ji, Liang, Wang, Xu (bib64) 2015; 17 Fujiwara, O’Hagan (bib6) 2014; 167 Yang, Li, Zhang, Chen, Tang (bib28) 2018; 8 Wang, Mei, Yu (bib39) 2009; 131 Szpera, Moseley, Smith, Sterling, Gouverneur (bib33) 2019; 58 Zhu, Tanaka, Li, He, Fu, Li, Yu (bib65) 2015; 137 West, Bedell, Sorensen (bib116) 2016; 55 Goswami, Bhattacharya, Maiti (bib67) 2021; 5 Yuan, Lei (bib123) 2019; 52 He, Lou, Xu (bib32) 2016; 36 Yang, Tan, Fan, Liu, Wu, Huang, Li, Wang (bib47) 2021; 60 Lin, Huehls, Yang (bib29) 2014; 1 Su, Li, Ma (bib97) 2016; 63 Ma, Li (bib30) 2014; 1 Aneeja, Neetha, Afsina, Anilkumar (bib92) 2020; 10 Gandeepan, Ackermann (bib42) 2018; 4 Yang, Li, Song, Dai, Li, Sun (bib27) 2021; 32 Chen, Sorensen (bib41) 2018; 140 Miao, Yang, Kurek, Ge (bib62) 2015; 17 Zhao, Polsson, Pannecouke, Besset (bib71) 2017; 49 Dutta, Maiti, Bhattacharya, Maiti (bib13) 2021; 372 Liao, Zhang, Lin, Shi (bib68) 2020; 59 Pinter, Bingham, AbuSalim, Cook (bib100) 2019; 11 Yang, Li, Liu, Li, Hu, Elsaid, Li, Das, Dang, Maiti, Ge (bib75) 2022; 13 Lyons, Sanford (bib54) 2010; 110 Xia, Ma, Chen (bib107) 2014; 1 Yang, Song, Liu, Ge (bib52) 2020; 11 Xu, Guo, Wang, Tang (bib86) 2014; 53 Albano, Punzi, Capozzi, Farinola (bib10) 2022; 24 Li, Ali, Ge (bib18) 2020; 6 Chen, Xu (bib121) 2021; 2 Wu, Chen, Liao, Shu, Duan, Yang, He (bib122) 2021; 2 Huang, Liu, Ren, Neelamegam, Hooker, Groves (bib105) 2014; 136 Holt, Wang, Harry, He, Wang, Henriquez, Xiang, Zhu, Ghorbani, Lectka (bib50) 2023; 88 Chen, Singh, Wu, Wang, Hao, Verma, Qiao, Sunoj, Yu (bib82) 2020; 142 Kim, Li (bib108) 2020; 1 Hintz, Bower, Tang, LaLama, Sevov, Zhang (bib124) 2023; 3 Yang, Li, Liu, Li, Ge (bib80) 2016; 138 Shang, Lu, Cao, Liu, He, Yu (bib110) 2019; 55 McMurtrey, Racowski, Sanford (bib56) 2012; 14 Higham, Bull (bib69) 2020; 18 Zhang, Shi (bib16) 2020; 12 Deshpande, Satani, Bharodiya, Naveen (bib91) 2022; 11 Tzirakis, Lykakis, Orfanopoulos (bib112) 2009; 38 Yang, Song, Ali, Mudassir, Ge (bib90) 2020; 15 Park, Verma, Hong, Yu (bib81) 2018; 10 Pan, Yang, Li, Ge (bib78) 2018; 54 Hull (10.1016/j.checat.2024.101009_bib40) 2006; 128 Bower (10.1016/j.checat.2024.101009_bib125) 2020; 142 Mao (10.1016/j.checat.2024.101009_bib66) 2018; 57 Feng (10.1016/j.checat.2024.101009_bib57) 2022; 12 Pan (10.1016/j.checat.2024.101009_bib78) 2018; 54 Nobile (10.1016/j.checat.2024.101009_bib15) 2021; 60 He (10.1016/j.checat.2024.101009_bib53) 2017; 117 Chen (10.1016/j.checat.2024.101009_bib41) 2018; 140 Aneeja (10.1016/j.checat.2024.101009_bib92) 2020; 10 Neumann (10.1016/j.checat.2024.101009_bib117) 2016; 8 Liao (10.1016/j.checat.2024.101009_bib68) 2020; 59 Mei (10.1016/j.checat.2024.101009_bib2) 2019; 25 Brooks (10.1016/j.checat.2024.101009_bib5) 2014; 5 Bloom (10.1016/j.checat.2024.101009_bib98) 2013; 15 Babudri (10.1016/j.checat.2024.101009_bib8) 2007 Rago (10.1016/j.checat.2024.101009_bib17) 2021; 2 Yuan (10.1016/j.checat.2024.101009_bib123) 2019; 52 Yang (10.1016/j.checat.2024.101009_bib20) 2019; 6 Yakubov (10.1016/j.checat.2024.101009_bib49) 2020; 16 Ferlin (10.1016/j.checat.2024.101009_bib9) 2023; 25 Holt (10.1016/j.checat.2024.101009_bib50) 2023; 88 Miao (10.1016/j.checat.2024.101009_bib62) 2015; 17 Hua (10.1016/j.checat.2024.101009_bib88) 2019; 9 Park (10.1016/j.checat.2024.101009_bib81) 2018; 10 Wang (10.1016/j.checat.2024.101009_bib83) 2017; 551 Zhu (10.1016/j.checat.2024.101009_bib65) 2015; 137 Wei (10.1016/j.checat.2024.101009_bib94) 2018; 20 Su (10.1016/j.checat.2024.101009_bib97) 2016; 63 McMurtrey (10.1016/j.checat.2024.101009_bib56) 2012; 14 Kim (10.1016/j.checat.2024.101009_bib108) 2020; 1 Liu (10.1016/j.checat.2024.101009_bib106) 2018; 9 Zhou (10.1016/j.checat.2024.101009_bib120) 2023; 46 Li (10.1016/j.checat.2024.101009_bib76) 2020; 59 Takahira (10.1016/j.checat.2024.101009_bib51) 2019; 30 Yakubov (10.1016/j.checat.2024.101009_bib46) 2022; 13 Zhang (10.1016/j.checat.2024.101009_bib119) 2022; 2 Hintz (10.1016/j.checat.2024.101009_bib124) 2023; 3 Fujiwara (10.1016/j.checat.2024.101009_bib6) 2014; 167 Leibler (10.1016/j.checat.2024.101009_bib118) 2021; 12 Vasilopoulos (10.1016/j.checat.2024.101009_bib96) 2020; 22 Meanwell (10.1016/j.checat.2024.101009_bib3) 2018; 61 Pinter (10.1016/j.checat.2024.101009_bib100) 2019; 11 Zhang (10.1016/j.checat.2024.101009_bib16) 2020; 12 Wen (10.1016/j.checat.2024.101009_bib14) 2021; 54 Lyons (10.1016/j.checat.2024.101009_bib54) 2010; 110 Huang (10.1016/j.checat.2024.101009_bib105) 2014; 136 Yang (10.1016/j.checat.2024.101009_bib80) 2016; 138 Yang (10.1016/j.checat.2024.101009_bib52) 2020; 11 Dutta (10.1016/j.checat.2024.101009_bib13) 2021; 372 Groendyke (10.1016/j.checat.2024.101009_bib99) 2016; 138 Higham (10.1016/j.checat.2024.101009_bib69) 2020; 18 Liu (10.1016/j.checat.2024.101009_bib103) 2012; 337 Shang (10.1016/j.checat.2024.101009_bib110) 2019; 55 Zhang (10.1016/j.checat.2024.101009_bib63) 2015; 137 Hua (10.1016/j.checat.2024.101009_bib87) 2017; 19 Chen (10.1016/j.checat.2024.101009_bib121) 2021; 2 Wu (10.1016/j.checat.2024.101009_bib22) 2015; 6 Yang (10.1016/j.checat.2024.101009_bib90) 2020; 15 Goswami (10.1016/j.checat.2024.101009_bib67) 2021; 5 Das (10.1016/j.checat.2024.101009_bib19) 2020; 11 Dai (10.1016/j.checat.2024.101009_bib25) 2022; 9 Wu (10.1016/j.checat.2024.101009_bib24) 2014; 136 Bhattacharya (10.1016/j.checat.2024.101009_bib73) 2018; 8 Tang (10.1016/j.checat.2024.101009_bib12) 2022; 3 Yang (10.1016/j.checat.2024.101009_bib75) 2022; 13 Zhou (10.1016/j.checat.2024.101009_bib4) 2016; 116 Harry (10.1016/j.checat.2024.101009_bib45) 2022; 13 Liu (10.1016/j.checat.2024.101009_bib102) 2015; 48 Wang (10.1016/j.checat.2024.101009_bib39) 2009; 131 Yuan (10.1016/j.checat.2024.101009_bib115) 2019; 9 Halperin (10.1016/j.checat.2024.101009_bib114) 2015; 17 Bloom (10.1016/j.checat.2024.101009_bib93) 2012; 51 Wang (10.1016/j.checat.2024.101009_bib109) 2020; 1 Albano (10.1016/j.checat.2024.101009_bib10) 2022; 24 Guan (10.1016/j.checat.2024.101009_bib101) 2018; 57 Jeschke (10.1016/j.checat.2024.101009_bib7) 2004; 5 Xu (10.1016/j.checat.2024.101009_bib86) 2014; 53 Yang (10.1016/j.checat.2024.101009_bib28) 2018; 8 Ma (10.1016/j.checat.2024.101009_bib30) 2014; 1 Yang (10.1016/j.checat.2024.101009_bib27) 2021; 32 Zaitsev (10.1016/j.checat.2024.101009_bib61) 2005; 127 Cheng (10.1016/j.checat.2024.101009_bib34) 2019; 1 Chen (10.1016/j.checat.2024.101009_bib82) 2020; 142 Wang (10.1016/j.checat.2024.101009_bib36) 2021; 41 Inoue (10.1016/j.checat.2024.101009_bib1) 2020; 5 Leibler (10.1016/j.checat.2024.101009_bib37) 2023; 145 Rouquet (10.1016/j.checat.2024.101009_bib60) 2013; 52 Zhao (10.1016/j.checat.2024.101009_bib71) 2017; 49 Xia (10.1016/j.checat.2024.101009_bib107) 2014; 1 Li (10.1016/j.checat.2024.101009_bib77) 2018; 57 Yang (10.1016/j.checat.2024.101009_bib26) 2021; 8 Lou (10.1016/j.checat.2024.101009_bib43) 2014; 53 He (10.1016/j.checat.2024.101009_bib32) 2016; 36 Ferguson (10.1016/j.checat.2024.101009_bib44) 2019; 84 Tzirakis (10.1016/j.checat.2024.101009_bib112) 2009; 38 Radhika (10.1016/j.checat.2024.101009_bib85) 2021; 45 Liu (10.1016/j.checat.2024.101009_bib104) 2013; 52 Yamashita (10.1016/j.checat.2024.101009_bib89) 2023; 88 Buss (10.1016/j.checat.2024.101009_bib95) 2020; 22 Yang (10.1016/j.checat.2024.101009_bib21) 2019; 84 Zhu (10.1016/j.checat.2024.101009_bib64) 2015; 17 Li (10.1016/j.checat.2024.101009_bib18) 2020; 6 Deshpande (10.1016/j.checat.2024.101009_bib91) 2022; 11 Niu (10.1016/j.checat.2024.101009_bib70) 2019; 12 Chen (10.1016/j.checat.2024.101009_bib55) 2009; 48 Tarantino (10.1016/j.checat.2024.101009_bib35) 2020; 22 Gandeepan (10.1016/j.checat.2024.101009_bib42) 2018; 4 Yang (10.1016/j.checat.2024.101009_bib47) 2021; 60 Lin (10.1016/j.checat.2024.101009_bib29) 2014; 1 Liu (10.1016/j.checat.2024.101009_bib79) 2017; 9 Li (10.1016/j.checat.2024.101009_bib31) 2014; 356 Wu (10.1016/j.checat.2024.101009_bib122) 2021; 2 Szpera (10.1016/j.checat.2024.101009_bib33) 2019; 58 Halperin (10.1016/j.checat.2024.101009_bib113) 2014; 53 Braun (10.1016/j.checat.2024.101009_bib84) 2013; 135 Chan (10.1016/j.checat.2024.101009_bib38) 2011; 50 Yuan (10.1016/j.checat.2024.101009_bib111) 2020; 40 Daugulis (10.1016/j.checat.2024.101009_bib59) 2015; 48 Pimparkar (10.1016/j.checat.2024.101009_bib11) 2021; 23 Yang (10.1016/j.checat.2024.101009_bib23) 2014; 20 Rej (10.1016/j.checat.2024.101009_bib58) 2020; 120 St John-Campbell (10.1016/j.checat.2024.101009_bib74) 2018; 16 Herron (10.1016/j.checat.2024.101009_bib48) 2020; 142 West (10.1016/j.checat.2024.101009_bib116) 2016; 55 |
References_xml | – volume: 13 start-page: 7007 year: 2022 end-page: 7013 ident: bib45 article-title: Hydroxy-directed fluorination of remote unactivated C(sp publication-title: Chem. Sci. – volume: 63 start-page: 828 year: 2016 end-page: 840 ident: bib97 article-title: Iron-catalyzed C−H activation publication-title: J. Chin. Chem. Soc. – volume: 15 start-page: 729 year: 2020 end-page: 741 ident: bib90 article-title: Recent advances in the application of selectfluor as a “fluorine-free” functional reagent in organic synthesis publication-title: Chem. Asian J. – volume: 142 start-page: 2766 year: 2020 end-page: 2770 ident: bib48 article-title: δ-C–H Mono- and dihalogenation of alcohols publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 5938 year: 2022 end-page: 5943 ident: bib75 article-title: Ligand-promoted palladium-catalyzed β-methylene C–H arylation of primary aldehydes publication-title: Chem. Sci. – volume: 142 start-page: 9966 year: 2020 end-page: 9974 ident: bib82 article-title: Pd-catalyzed γ-C(sp publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 4016 year: 2022 end-page: 4022 ident: bib25 article-title: Metal-free and selectfluor-mediated diverse transformations of 2-alkylthiobenzamides to access 2,3-dihydrobenzothiazin-4-ones, benzoisothiazol-3-ones and 2-alkylthiobenzonitriles publication-title: Org. Chem. Front. – volume: 25 start-page: 11797 year: 2019 end-page: 11819 ident: bib2 article-title: Fluorine-containing drugs approved by the FDA in 2018 publication-title: Chem. Eur J. – start-page: 1003 year: 2007 end-page: 1022 ident: bib8 article-title: Fluorinated organic materials for electronic and optoelectronic applications: the role of the fluorine atom publication-title: Chem. Commun. – volume: 1 start-page: 42 year: 2020 end-page: 51 ident: bib109 article-title: Recent advances in visible-light photoredox-catalyzed nitrogen radical cyclization publication-title: Green Synth. Catal. – volume: 4 start-page: 199 year: 2018 end-page: 222 ident: bib42 article-title: Transient directing groups for transformative C–H activation by synergistic metal catalysis publication-title: Chem – volume: 551 start-page: 489 year: 2017 end-page: 493 ident: bib83 article-title: Ligand-accelerated non-directed C–H functionalization of arenes publication-title: Nature – volume: 53 start-page: 4690 year: 2014 end-page: 4693 ident: bib113 article-title: A convenient photocatalytic fluorination of unactivated C–H bonds publication-title: Angew. Chem. Int. Ed. – volume: 23 start-page: 9283 year: 2021 end-page: 9317 ident: bib11 article-title: Recent advances in the incorporation of CO publication-title: Green Chem. – volume: 13 start-page: 14041 year: 2022 end-page: 14051 ident: bib46 article-title: Benzoates as photosensitization catalysts and auxiliaries in efficient, practical, light-powered direct C(sp publication-title: Chem. Sci. – volume: 167 start-page: 16 year: 2014 end-page: 29 ident: bib6 article-title: Successful fluorine-containing herbicide agrochemicals publication-title: J. Fluor. Chem. – volume: 110 start-page: 1147 year: 2010 end-page: 1169 ident: bib54 article-title: Palladium-catalyzed ligand-directed C−H functionalization reactions publication-title: Chem. Rev. – volume: 127 start-page: 13154 year: 2005 end-page: 13155 ident: bib61 article-title: Highly regioselective arylation of sp publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 571 year: 2004 end-page: 589 ident: bib7 article-title: The unique Role of fluorine in the design of active ingredients for modern crop protection publication-title: Chembiochem – volume: 61 start-page: 5822 year: 2018 end-page: 5880 ident: bib3 article-title: Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design publication-title: J. Med. Chem. – volume: 88 start-page: 1865 year: 2023 end-page: 1874 ident: bib89 article-title: Amide-ligand-promoted silver-catalyzed C–H fluorination via radical/polar crossover publication-title: J. Org. Chem. – volume: 48 start-page: 1053 year: 2015 end-page: 1064 ident: bib59 article-title: Bidentate, monoanionic auxiliary-directed functionalization of carbon–hydrogen bonds publication-title: Acc. Chem. Res. – volume: 9 start-page: 1168 year: 2018 end-page: 1172 ident: bib106 article-title: Site-selective publication-title: Chem. Sci. – volume: 46 start-page: 4 year: 2023 end-page: 10 ident: bib120 article-title: The future of organic electrochemistry current transfer publication-title: Chin. J. Catal. – volume: 48 start-page: 5094 year: 2009 end-page: 5115 ident: bib55 article-title: Palladium(II)-catalyzed C–H activation/C–C cross-coupling reactions: versatility and practicality publication-title: Angew. Chem. Int. Ed. – volume: 131 start-page: 7520 year: 2009 end-page: 7521 ident: bib39 article-title: Versatile Pd(OTf) publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 6842 year: 2014 end-page: 6845 ident: bib105 article-title: Late stage benzylic C–H fluorination with [ publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 26 year: 2017 end-page: 32 ident: bib79 article-title: Site-selective C–H arylation of primary aliphatic amines enabled by a catalytic transient directing group publication-title: Nat. Chem. – volume: 8 start-page: 4974 year: 2021 end-page: 4979 ident: bib26 article-title: Amide-assisted α-C(sp publication-title: Org. Chem. Front. – volume: 22 start-page: 5749 year: 2020 end-page: 5752 ident: bib95 article-title: Copper-catalyzed functionalization of benzylic C–H bonds with N-fluorobenzenesulfonimide: Switch from C–N to C–F bond formation promoted by a redox buffer and brønsted base publication-title: Org. Lett. – volume: 136 start-page: 1789 year: 2014 end-page: 1792 ident: bib24 article-title: Nickel-catalyzed site-selective alkylation of unactivated C(sp publication-title: J. Am. Chem. Soc. – volume: 145 start-page: 9928 year: 2023 end-page: 9950 ident: bib37 article-title: Strategies for nucleophilic C(sp publication-title: J. Am. Chem. Soc. – volume: 60 start-page: 12170 year: 2021 end-page: 12191 ident: bib15 article-title: Radical-promoted distal C−H functionalization of C(sp publication-title: Angew. Chem. Int. Ed. – volume: 24 start-page: 1809 year: 2022 end-page: 1894 ident: bib10 article-title: Sustainable protocols for direct C–H bond arylation of (hetero)arenes publication-title: Green Chem. – volume: 14 start-page: 4094 year: 2012 end-page: 4097 ident: bib56 article-title: Pd-catalyzed C–H fluorination with nucleophilic fluoride publication-title: Org. Lett. – volume: 8 start-page: 13671 year: 2018 end-page: 13674 ident: bib28 article-title: Heterogeneous Co-catalyzed direct 2-alkylation of azoles with ethers publication-title: RSC Adv. – volume: 40 start-page: 3620 year: 2020 end-page: 3632 ident: bib111 article-title: Photoinduced decatungstate-catalyzed C-H functionalization publication-title: Chin. J. Org. Chem. – volume: 8 start-page: 822 year: 2016 end-page: 823 ident: bib117 article-title: U can fluorinate unactivated bonds publication-title: Nat. Chem. – volume: 49 start-page: 4808 year: 2017 end-page: 4826 ident: bib71 article-title: The transient directing group strategy: a new trend in transition-metal-catalyzed C–H bond functionalization publication-title: Synthesis – volume: 128 start-page: 7134 year: 2006 end-page: 7135 ident: bib40 article-title: Palladium-catalyzed fluorination of carbon−hydrogen bonds publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 34429 year: 2020 end-page: 34458 ident: bib92 article-title: Progress and prospects in copper-catalyzed C–H functionalization publication-title: RSC Adv. – volume: 5 start-page: 646 year: 2021 end-page: 659 ident: bib67 article-title: Transient directing ligands for selective metal-catalysed C–H activation publication-title: Nat. Rev. Chem – volume: 45 start-page: 15718 year: 2021 end-page: 15738 ident: bib85 article-title: Silver-catalysed C–H bond activation: a recent review publication-title: New J. Chem. – volume: 48 start-page: 1727 year: 2015 end-page: 1735 ident: bib102 article-title: Manganese catalyzed C–H halogenation publication-title: Acc. Chem. Res. – volume: 55 start-page: 8923 year: 2016 end-page: 8927 ident: bib116 article-title: The uranyl cation as a visible-light photocatalyst for C(sp publication-title: Angew. Chem. Int. Ed. – volume: 88 start-page: 2557 year: 2023 end-page: 2560 ident: bib50 article-title: An electrochemical approach to directed fluorination publication-title: J. Org. Chem. – volume: 10 start-page: 755 year: 2018 end-page: 762 ident: bib81 article-title: Controlling Pd(IV) reductive elimination pathways enables Pd(II)-catalysed enantioselective C(sp publication-title: Nat. Chem. – volume: 2 start-page: 165 year: 2021 end-page: 178 ident: bib121 article-title: Electrochemical generation of nitrogen-centered radicals for organic synthesis publication-title: Green Synth. Catal. – volume: 5 start-page: 4545 year: 2014 end-page: 4553 ident: bib5 article-title: Late-stage [ publication-title: Chem. Sci. – volume: 36 start-page: 1218 year: 2016 end-page: 1228 ident: bib32 article-title: Recent advances in transition-metal catalyzed C–H bond fluorination publication-title: Chin. J. Org. Chem. – volume: 140 start-page: 2789 year: 2018 end-page: 2792 ident: bib41 article-title: Pd-catalyzed, ortho C–H methylation and fluorination of benzaldehydes using orthanilic acids as transient directing groups publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 10887 year: 2020 end-page: 10909 ident: bib19 article-title: Diverse strategies for transition metal catalyzed distal C(sp publication-title: Chem. Sci. – volume: 2 start-page: 292 year: 2022 end-page: 308 ident: bib119 article-title: A photoredox-catalyzed approach for formal hydride abstraction to enable C publication-title: Chem Catal. – volume: 60 start-page: 3454 year: 2021 end-page: 3458 ident: bib47 article-title: Photochemical radical C–H halogenation of benzyl N-methyliminodiacetyl (MIDA) boronates: synthesis of α-functionalized alkyl boronates publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 10633 year: 2020 end-page: 10640 ident: bib1 article-title: Contribution of organofluorine compounds to pharmaceuticals publication-title: ACS Omega – volume: 8 start-page: 19456 year: 2018 end-page: 19464 ident: bib73 article-title: Combining transition metals and transient directing groups for C–H functionalizations publication-title: RSC Adv. – volume: 54 start-page: 2759 year: 2018 end-page: 2762 ident: bib78 article-title: Palladium-catalyzed site-selective arylation of aliphatic ketones enabled by a transient ligand publication-title: Chem. Commun. – volume: 25 start-page: 7916 year: 2023 end-page: 7933 ident: bib9 article-title: Classic vs. C–H functionalization strategies in the synthesis of APIs: a sustainability comparison publication-title: Green Chem. – volume: 22 start-page: 5753 year: 2020 end-page: 5757 ident: bib96 article-title: Copper-catalyzed C–H fluorination/functionalization sequence enabling benzylic C–H cross coupling with diverse nucleophiles publication-title: Org. Lett. – volume: 356 start-page: 1412 year: 2014 end-page: 1418 ident: bib31 article-title: Palladium-catalyzed C–F bond formation via directed C–H activation publication-title: Adv. Synth. Catal. – volume: 116 start-page: 422 year: 2016 end-page: 518 ident: bib4 article-title: Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II−III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas publication-title: Chem. Rev. – volume: 135 start-page: 12990 year: 2013 end-page: 12993 ident: bib84 article-title: Palladium-catalyzed allylic C–H fluorination publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 11413 year: 2018 end-page: 11417 ident: bib101 article-title: Iron(II)-catalyzed site-selective functionalization of unactivated C(sp publication-title: Angew. Chem. Int. Ed. – volume: 138 start-page: 12775 year: 2016 end-page: 12778 ident: bib80 article-title: Catalytic C–H arylation of aliphatic aldehydes enabled by a transient ligand publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 543 year: 2021 end-page: 552 ident: bib36 article-title: Recent advances in C−H fluorination and amination with N-fluorobenzenesulfonimide publication-title: Chin. J. Org. Chem. – volume: 11 start-page: 12616 year: 2020 end-page: 12632 ident: bib52 article-title: Palladium-catalyzed direct asymmetric C–H bond functionalization enabled by the directing group strategy publication-title: Chem. Sci. – volume: 51 start-page: 10580 year: 2012 end-page: 10583 ident: bib93 article-title: A polycomponent metal-catalyzed aliphatic, allylic, and benzylic fluorination publication-title: Angew. Chem. Int. Ed. – volume: 11 year: 2022 ident: bib91 article-title: Recent advances in copper-catalyzed functionalization of unactivated C(sp publication-title: Asian J. Org. Chem. – volume: 52 start-page: 6024 year: 2013 end-page: 6027 ident: bib104 article-title: Manganese-catalyzed oxidative benzylic C–H fluorination by fluoride ions publication-title: Angew. Chem. Int. Ed. – volume: 137 start-page: 7067 year: 2015 end-page: 7070 ident: bib65 article-title: Ligand-enabled Stereoselective β-C(sp publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 434 year: 2014 end-page: 438 ident: bib29 article-title: Recent advances in C–H fluorination publication-title: Org. Chem. Front. – volume: 9 start-page: 3322 year: 2019 end-page: 3326 ident: bib88 article-title: Experimental and theoretical evidence for nitrogen–fluorine halogen bonding in silver-initiated radical fluorinations publication-title: ACS Catal. – volume: 18 start-page: 7291 year: 2020 end-page: 7315 ident: bib69 article-title: Transient imine directing groups for the C–H functionalisation of aldehydes, ketones and amines: an update 2018–2020 publication-title: Org. Biomol. Chem. – volume: 337 start-page: 1322 year: 2012 end-page: 1325 ident: bib103 article-title: Oxidative aliphatic C–H fluorination with fluoride ion catalyzed by a manganese porphyrin publication-title: Science – volume: 20 start-page: 7100 year: 2018 end-page: 7103 ident: bib94 article-title: Synthesis of quaternary α-fluorinated α-amino acid derivatives via coordinating Cu(II) catalytic α-C(sp publication-title: Org. Lett. – volume: 32 start-page: 146 year: 2021 end-page: 149 ident: bib27 article-title: Metal-free direct C(sp publication-title: Chin. Chem. Lett. – volume: 58 start-page: 14824 year: 2019 end-page: 14848 ident: bib33 article-title: The fluorination of C−H bonds: developments and perspectives publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 6950 year: 2021 ident: bib118 article-title: A general strategy for C(sp publication-title: Nat. Commun. – volume: 53 start-page: 5955 year: 2014 end-page: 5958 ident: bib86 article-title: Silver-catalyzed oxidative activation of benzylic C–H bonds for the synthesis of difluoromethylated arenes publication-title: Angew. Chem. Int. Ed. – volume: 57 start-page: 14085 year: 2018 end-page: 14089 ident: bib66 article-title: Selective C(sp publication-title: Angew. Chem. Int. Ed. – volume: 17 start-page: 5200 year: 2015 end-page: 5203 ident: bib114 article-title: Development of a direct photocatalytic C–H fluorination for the preparative synthesis of odanacatib. Org publication-title: Lett. – volume: 17 start-page: 3738 year: 2015 end-page: 3741 ident: bib62 article-title: Palladium-catalyzed site-selective fluorination of unactivated C(sp publication-title: Org. Lett. – volume: 3 year: 2023 ident: bib124 article-title: Copper-catalyzed electrochemical C–H fluorination publication-title: Chem Catal. – volume: 12 start-page: 10835 year: 2022 end-page: 10845 ident: bib57 article-title: Transition-metal-catalyzed remote C–H functionalization of thioethers publication-title: RSC Adv. – volume: 1 start-page: 712 year: 2014 end-page: 715 ident: bib30 article-title: Catalytic fluorination of unactivated C(sp publication-title: Org. Chem. Front. – volume: 52 start-page: 11726 year: 2013 end-page: 11743 ident: bib60 article-title: Catalytic functionalization of C(sp publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 6462 year: 2015 ident: bib22 article-title: Cobalt-catalysed site-selective intra- and intermolecular dehydrogenative amination of unactivated sp publication-title: Nat. Commun. – volume: 372 year: 2021 ident: bib13 article-title: Arene diversification through distal C(sp publication-title: Science – volume: 1 start-page: 461 year: 2019 end-page: 470 ident: bib34 article-title: New directions in C–H fluorination publication-title: Trends Chem. – volume: 11 start-page: 1102 year: 2019 end-page: 1106 ident: bib100 article-title: N-Directed fluorination of unactivated Csp publication-title: Chem. Sci. – volume: 17 start-page: 3798 year: 2015 end-page: 3801 ident: bib64 article-title: Efficient palladium-catalyzed C–H fluorination of C(sp publication-title: Org. Lett. – volume: 54 start-page: 1723 year: 2021 end-page: 1736 ident: bib14 article-title: From C4 to C7: innovative strategies for site-selective functionalization of indole C–H bonds publication-title: Acc. Chem. Res. – volume: 120 start-page: 1788 year: 2020 end-page: 1887 ident: bib58 article-title: Bidentate directing groups: an efficient tool in C–H bond functionalization chemistry for the expedient construction of C–C bonds publication-title: Chem. Rev. – volume: 20 start-page: 7241 year: 2014 end-page: 7244 ident: bib23 article-title: Nickel-catalyzed decarboxylative acylation of heteroarenes by sp publication-title: Chem. Eur J. – volume: 84 start-page: 3735 year: 2019 end-page: 3740 ident: bib44 article-title: Palladium-catalyzed difluoromethylation of aryl chlorides and bromides with TMSCF publication-title: J. Org. Chem. – volume: 59 start-page: 19773 year: 2020 end-page: 19786 ident: bib68 article-title: Transition metal-catalyzed enantioselective C−H functionalization via chiral transient directing group strategies publication-title: Angew. Chem. Int. Ed. – volume: 84 start-page: 14045 year: 2019 end-page: 14052 ident: bib21 article-title: Silver-promoted site-selective ontramolecular cyclization of 2-methylthiobenzamide through α-C(sp publication-title: J. Org. Chem. – volume: 12 start-page: 841 year: 2020 end-page: 852 ident: bib16 article-title: Site-selective functionalization of remote aliphatic C–H bonds via C–H metalation publication-title: Chem. Sci. – volume: 117 start-page: 8754 year: 2017 end-page: 8786 ident: bib53 article-title: Palladium-catalyzed transformations of alkyl C–H bonds publication-title: Chem. Rev. – volume: 6 start-page: 2591 year: 2020 end-page: 2657 ident: bib18 article-title: Recent advances in using transition-metal-catalyzed C–H functionalization to build fluorescent materials publication-title: Chem – volume: 6 start-page: 3996 year: 2019 end-page: 3999 ident: bib20 article-title: The decarboxylative C–H heteroarylation of azoles catalysed by nickel catalysts to access unsymmetrical biheteroaryls publication-title: Org. Chem. Front. – volume: 53 start-page: 10330 year: 2014 end-page: 10335 ident: bib43 article-title: Mild and versatile nitrate-promoted C–H bond fluorination publication-title: Angew. Chem. Int. – volume: 16 start-page: 4582 year: 2018 end-page: 4595 ident: bib74 article-title: Transient imines as ‘next generation’ directing groups for the catalytic functionalisation of C–H bonds in a single operation publication-title: Org. Biomol. Chem. – volume: 30 start-page: 1178 year: 2019 end-page: 1182 ident: bib51 article-title: Electrochemical C(sp publication-title: Synlett – volume: 1 start-page: 1 year: 2020 end-page: 11 ident: bib108 article-title: Perspectives on green synthesis and catalysis publication-title: Green Synth. Catal. – volume: 16 start-page: 2151 year: 2020 end-page: 2192 ident: bib49 article-title: Photosensitized direct C–H fluorination and trifluoromethylation in organic synthesis publication-title: Beilstein J. Org. Chem. – volume: 15 start-page: 1722 year: 2013 end-page: 1724 ident: bib98 article-title: Iron(II)-catalyzed benzylic fluorination publication-title: Org. Lett. – volume: 38 start-page: 2609 year: 2009 end-page: 2621 ident: bib112 article-title: Decatungstate as an efficient photocatalyst in organic chemistry publication-title: Chem. Soc. Rev. – volume: 138 start-page: 12771 year: 2016 end-page: 12774 ident: bib99 article-title: Iron-catalyzed, fluoroamide-directed C–H fluorination publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 233 year: 2021 end-page: 236 ident: bib122 article-title: Electrochemical transient iodination and coupling for selenylated 4-anilinocoumarin synthesis publication-title: Green Synth. Catal. – volume: 22 start-page: 5195 year: 2020 end-page: 5209 ident: bib35 article-title: Catalytic C(sp publication-title: Green Chem. – volume: 2 start-page: 216 year: 2021 end-page: 227 ident: bib17 article-title: Synthesis of indoles, indolines, and carbazoles via palladium-catalyzed C–H activation publication-title: Green Synth. Catal. – volume: 19 start-page: 2949 year: 2017 end-page: 2952 ident: bib87 article-title: Radical C–H fluorination using unprotected amino acids as radical precursors publication-title: Org. Lett. – volume: 59 start-page: 3078 year: 2020 end-page: 3082 ident: bib76 article-title: Ligand-controlled direct γ-C−H arylation of aldehydes publication-title: Angew. Chem. Int. Ed. – volume: 55 start-page: 5408 year: 2019 end-page: 5419 ident: bib110 article-title: Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations publication-title: Chem. Commun. – volume: 9 start-page: 8276 year: 2019 end-page: 8284 ident: bib115 article-title: Electrostatic effects accelerate decatungstate-catalyzed C–H fluorination using [ publication-title: ACS Catal. – volume: 50 start-page: 9081 year: 2011 end-page: 9084 ident: bib38 article-title: Palladium(II)-catalyzed selective monofluorination of benzoic acids using a practical auxiliary: a weak-coordination approach publication-title: Angew. Chem. Int. Ed. – volume: 142 start-page: 8514 year: 2020 end-page: 8521 ident: bib125 article-title: C(sp publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 8219 year: 2015 end-page: 8226 ident: bib63 article-title: Stereoselective synthesis of chiral β-fluoro α-amino acids via Pd(II)-catalyzed fluorination of unactivated methylene C(sp publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 203 year: 2022 end-page: 211 ident: bib12 article-title: Recent advances in direct α-C(sp publication-title: Green Synth. Catal. – volume: 1 start-page: 468 year: 2014 end-page: 472 ident: bib107 article-title: Vanadium-catalyzed C(sp publication-title: Org. Chem. Front. – volume: 12 start-page: 2955 year: 2019 end-page: 2969 ident: bib70 article-title: Transient ligand-enabled transition metal-catalyzed C−H Functionalization publication-title: ChemSusChem – volume: 52 start-page: 3309 year: 2019 end-page: 3324 ident: bib123 article-title: Electrochemical oxidative cross-coupling with hydrogen evolution reactions publication-title: Acc. Chem. Res. – volume: 57 start-page: 3401 year: 2018 end-page: 3405 ident: bib77 article-title: Transient-ligand-enabled ortho-arylation of five-membered heterocycles: facile access to mechanochromic materials publication-title: Angew. Chem. Int. Ed. – volume: 52 start-page: 6024 year: 2013 ident: 10.1016/j.checat.2024.101009_bib104 article-title: Manganese-catalyzed oxidative benzylic C–H fluorination by fluoride ions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201301097 – volume: 3 year: 2023 ident: 10.1016/j.checat.2024.101009_bib124 article-title: Copper-catalyzed electrochemical C–H fluorination publication-title: Chem Catal. – volume: 136 start-page: 6842 year: 2014 ident: 10.1016/j.checat.2024.101009_bib105 article-title: Late stage benzylic C–H fluorination with [18F]fluoride for PET imaging publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5039819 – volume: 8 start-page: 19456 year: 2018 ident: 10.1016/j.checat.2024.101009_bib73 article-title: Combining transition metals and transient directing groups for C–H functionalizations publication-title: RSC Adv. doi: 10.1039/C8RA03230K – volume: 16 start-page: 4582 year: 2018 ident: 10.1016/j.checat.2024.101009_bib74 article-title: Transient imines as ‘next generation’ directing groups for the catalytic functionalisation of C–H bonds in a single operation publication-title: Org. Biomol. Chem. doi: 10.1039/C8OB00926K – volume: 135 start-page: 12990 year: 2013 ident: 10.1016/j.checat.2024.101009_bib84 article-title: Palladium-catalyzed allylic C–H fluorination publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407223g – volume: 1 start-page: 712 year: 2014 ident: 10.1016/j.checat.2024.101009_bib30 article-title: Catalytic fluorination of unactivated C(sp3)–H bonds publication-title: Org. Chem. Front. doi: 10.1039/C4QO00078A – volume: 38 start-page: 2609 year: 2009 ident: 10.1016/j.checat.2024.101009_bib112 article-title: Decatungstate as an efficient photocatalyst in organic chemistry publication-title: Chem. Soc. Rev. doi: 10.1039/b812100c – volume: 20 start-page: 7100 year: 2018 ident: 10.1016/j.checat.2024.101009_bib94 article-title: Synthesis of quaternary α-fluorinated α-amino acid derivatives via coordinating Cu(II) catalytic α-C(sp3)–H direct fluorination publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b03044 – volume: 15 start-page: 729 year: 2020 ident: 10.1016/j.checat.2024.101009_bib90 article-title: Recent advances in the application of selectfluor as a “fluorine-free” functional reagent in organic synthesis publication-title: Chem. Asian J. doi: 10.1002/asia.202000011 – volume: 10 start-page: 755 year: 2018 ident: 10.1016/j.checat.2024.101009_bib81 article-title: Controlling Pd(IV) reductive elimination pathways enables Pd(II)-catalysed enantioselective C(sp3)−H fluorination publication-title: Nat. Chem. doi: 10.1038/s41557-018-0048-1 – volume: 24 start-page: 1809 year: 2022 ident: 10.1016/j.checat.2024.101009_bib10 article-title: Sustainable protocols for direct C–H bond arylation of (hetero)arenes publication-title: Green Chem. doi: 10.1039/D1GC03168F – volume: 2 start-page: 165 year: 2021 ident: 10.1016/j.checat.2024.101009_bib121 article-title: Electrochemical generation of nitrogen-centered radicals for organic synthesis publication-title: Green Synth. Catal. – volume: 2 start-page: 216 year: 2021 ident: 10.1016/j.checat.2024.101009_bib17 article-title: Synthesis of indoles, indolines, and carbazoles via palladium-catalyzed C–H activation publication-title: Green Synth. Catal. – volume: 13 start-page: 5938 year: 2022 ident: 10.1016/j.checat.2024.101009_bib75 article-title: Ligand-promoted palladium-catalyzed β-methylene C–H arylation of primary aldehydes publication-title: Chem. Sci. doi: 10.1039/D2SC01677J – volume: 58 start-page: 14824 year: 2019 ident: 10.1016/j.checat.2024.101009_bib33 article-title: The fluorination of C−H bonds: developments and perspectives publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201814457 – volume: 120 start-page: 1788 year: 2020 ident: 10.1016/j.checat.2024.101009_bib58 article-title: Bidentate directing groups: an efficient tool in C–H bond functionalization chemistry for the expedient construction of C–C bonds publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00495 – volume: 57 start-page: 14085 year: 2018 ident: 10.1016/j.checat.2024.101009_bib66 article-title: Selective C(sp3)−H and C(sp2)−H fluorination of alcohols using practical auxiliaries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201808021 – volume: 12 start-page: 841 year: 2020 ident: 10.1016/j.checat.2024.101009_bib16 article-title: Site-selective functionalization of remote aliphatic C–H bonds via C–H metalation publication-title: Chem. Sci. doi: 10.1039/D0SC05944G – volume: 84 start-page: 3735 year: 2019 ident: 10.1016/j.checat.2024.101009_bib44 article-title: Palladium-catalyzed difluoromethylation of aryl chlorides and bromides with TMSCF2H publication-title: J. Org. Chem. doi: 10.1021/acs.joc.9b00324 – volume: 145 start-page: 9928 year: 2023 ident: 10.1016/j.checat.2024.101009_bib37 article-title: Strategies for nucleophilic C(sp3)–(radio)fluorination publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c01824 – volume: 11 year: 2022 ident: 10.1016/j.checat.2024.101009_bib91 article-title: Recent advances in copper-catalyzed functionalization of unactivated C(sp3)−H bonds publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.202200532 – volume: 337 start-page: 1322 year: 2012 ident: 10.1016/j.checat.2024.101009_bib103 article-title: Oxidative aliphatic C–H fluorination with fluoride ion catalyzed by a manganese porphyrin publication-title: Science doi: 10.1126/science.1222327 – volume: 5 start-page: 10633 year: 2020 ident: 10.1016/j.checat.2024.101009_bib1 article-title: Contribution of organofluorine compounds to pharmaceuticals publication-title: ACS Omega doi: 10.1021/acsomega.0c00830 – volume: 12 start-page: 10835 year: 2022 ident: 10.1016/j.checat.2024.101009_bib57 article-title: Transition-metal-catalyzed remote C–H functionalization of thioethers publication-title: RSC Adv. doi: 10.1039/D2RA01268E – volume: 137 start-page: 7067 year: 2015 ident: 10.1016/j.checat.2024.101009_bib65 article-title: Ligand-enabled Stereoselective β-C(sp3)–H fluorination: synthesis of unnatural enantiopure anti-β-fluoro-α-amino acids publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04088 – volume: 2 start-page: 233 year: 2021 ident: 10.1016/j.checat.2024.101009_bib122 article-title: Electrochemical transient iodination and coupling for selenylated 4-anilinocoumarin synthesis publication-title: Green Synth. Catal. – volume: 6 start-page: 3996 year: 2019 ident: 10.1016/j.checat.2024.101009_bib20 article-title: The decarboxylative C–H heteroarylation of azoles catalysed by nickel catalysts to access unsymmetrical biheteroaryls publication-title: Org. Chem. Front. doi: 10.1039/C9QO01073D – volume: 5 start-page: 571 year: 2004 ident: 10.1016/j.checat.2024.101009_bib7 article-title: The unique Role of fluorine in the design of active ingredients for modern crop protection publication-title: Chembiochem doi: 10.1002/cbic.200300833 – volume: 17 start-page: 3798 year: 2015 ident: 10.1016/j.checat.2024.101009_bib64 article-title: Efficient palladium-catalyzed C–H fluorination of C(sp3)–H bonds: synthesis of β-fluorinated carboxylic acids publication-title: Org. Lett. doi: 10.1021/acs.orglett.5b01774 – volume: 22 start-page: 5749 year: 2020 ident: 10.1016/j.checat.2024.101009_bib95 article-title: Copper-catalyzed functionalization of benzylic C–H bonds with N-fluorobenzenesulfonimide: Switch from C–N to C–F bond formation promoted by a redox buffer and brønsted base publication-title: Org. Lett. doi: 10.1021/acs.orglett.0c02239 – volume: 40 start-page: 3620 year: 2020 ident: 10.1016/j.checat.2024.101009_bib111 article-title: Photoinduced decatungstate-catalyzed C-H functionalization publication-title: Chin. J. Org. Chem. doi: 10.6023/cjoc202006068 – volume: 5 start-page: 4545 year: 2014 ident: 10.1016/j.checat.2024.101009_bib5 article-title: Late-stage [18F]fluorination: new solutions to old problems publication-title: Chem. Sci. doi: 10.1039/C4SC02099E – volume: 51 start-page: 10580 year: 2012 ident: 10.1016/j.checat.2024.101009_bib93 article-title: A polycomponent metal-catalyzed aliphatic, allylic, and benzylic fluorination publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201203642 – volume: 1 start-page: 434 year: 2014 ident: 10.1016/j.checat.2024.101009_bib29 article-title: Recent advances in C–H fluorination publication-title: Org. Chem. Front. doi: 10.1039/C4QO00020J – volume: 3 start-page: 203 year: 2022 ident: 10.1016/j.checat.2024.101009_bib12 article-title: Recent advances in direct α-C(sp3)–H bond functionalization of thioethers publication-title: Green Synth. Catal. – volume: 6 start-page: 2591 year: 2020 ident: 10.1016/j.checat.2024.101009_bib18 article-title: Recent advances in using transition-metal-catalyzed C–H functionalization to build fluorescent materials publication-title: Chem doi: 10.1016/j.chempr.2020.08.017 – volume: 116 start-page: 422 year: 2016 ident: 10.1016/j.checat.2024.101009_bib4 article-title: Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II−III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00392 – volume: 84 start-page: 14045 year: 2019 ident: 10.1016/j.checat.2024.101009_bib21 article-title: Silver-promoted site-selective ontramolecular cyclization of 2-methylthiobenzamide through α-C(sp3)–H functionalization publication-title: J. Org. Chem. doi: 10.1021/acs.joc.9b02202 – volume: 142 start-page: 8514 year: 2020 ident: 10.1016/j.checat.2024.101009_bib125 article-title: C(sp3)–H fluorination with a copper(II)/(III) redox couple publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c02583 – volume: 9 start-page: 4016 year: 2022 ident: 10.1016/j.checat.2024.101009_bib25 article-title: Metal-free and selectfluor-mediated diverse transformations of 2-alkylthiobenzamides to access 2,3-dihydrobenzothiazin-4-ones, benzoisothiazol-3-ones and 2-alkylthiobenzonitriles publication-title: Org. Chem. Front. doi: 10.1039/D2QO00663D – volume: 1 start-page: 468 year: 2014 ident: 10.1016/j.checat.2024.101009_bib107 article-title: Vanadium-catalyzed C(sp3)–H fluorination reactions publication-title: Org. Chem. Front. doi: 10.1039/C4QO00057A – volume: 32 start-page: 146 year: 2021 ident: 10.1016/j.checat.2024.101009_bib27 article-title: Metal-free direct C(sp3)−H functionalization of 2-alkylthiobenzoic acid to access 1,3-benzooxathiin-4-one publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.11.036 – volume: 60 start-page: 12170 year: 2021 ident: 10.1016/j.checat.2024.101009_bib15 article-title: Radical-promoted distal C−H functionalization of C(sp3) centers with fluorinated moieties publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202009995 – volume: 117 start-page: 8754 year: 2017 ident: 10.1016/j.checat.2024.101009_bib53 article-title: Palladium-catalyzed transformations of alkyl C–H bonds publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00622 – volume: 20 start-page: 7241 year: 2014 ident: 10.1016/j.checat.2024.101009_bib23 article-title: Nickel-catalyzed decarboxylative acylation of heteroarenes by sp2 C–H functionalization publication-title: Chem. Eur J. doi: 10.1002/chem.201402516 – volume: 17 start-page: 3738 year: 2015 ident: 10.1016/j.checat.2024.101009_bib62 article-title: Palladium-catalyzed site-selective fluorination of unactivated C(sp3)–H Bonds publication-title: Org. Lett. doi: 10.1021/acs.orglett.5b01710 – volume: 57 start-page: 11413 year: 2018 ident: 10.1016/j.checat.2024.101009_bib101 article-title: Iron(II)-catalyzed site-selective functionalization of unactivated C(sp3)−H bonds guided by alkoxyl radicals publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806434 – volume: 8 start-page: 4974 year: 2021 ident: 10.1016/j.checat.2024.101009_bib26 article-title: Amide-assisted α-C(sp3)–H acyloxyation of organic sulfides to access α-acyloxy sulfides publication-title: Org. Chem. Front. doi: 10.1039/D1QO00774B – volume: 54 start-page: 2759 year: 2018 ident: 10.1016/j.checat.2024.101009_bib78 article-title: Palladium-catalyzed site-selective arylation of aliphatic ketones enabled by a transient ligand publication-title: Chem. Commun. doi: 10.1039/C8CC00980E – volume: 25 start-page: 7916 year: 2023 ident: 10.1016/j.checat.2024.101009_bib9 article-title: Classic vs. C–H functionalization strategies in the synthesis of APIs: a sustainability comparison publication-title: Green Chem. doi: 10.1039/D3GC02516K – volume: 1 start-page: 42 year: 2020 ident: 10.1016/j.checat.2024.101009_bib109 article-title: Recent advances in visible-light photoredox-catalyzed nitrogen radical cyclization publication-title: Green Synth. Catal. – volume: 88 start-page: 1865 year: 2023 ident: 10.1016/j.checat.2024.101009_bib89 article-title: Amide-ligand-promoted silver-catalyzed C–H fluorination via radical/polar crossover publication-title: J. Org. Chem. doi: 10.1021/acs.joc.2c02575 – volume: 4 start-page: 199 year: 2018 ident: 10.1016/j.checat.2024.101009_bib42 article-title: Transient directing groups for transformative C–H activation by synergistic metal catalysis publication-title: Chem doi: 10.1016/j.chempr.2017.11.002 – volume: 54 start-page: 1723 year: 2021 ident: 10.1016/j.checat.2024.101009_bib14 article-title: From C4 to C7: innovative strategies for site-selective functionalization of indole C–H bonds publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00888 – volume: 142 start-page: 9966 year: 2020 ident: 10.1016/j.checat.2024.101009_bib82 article-title: Pd-catalyzed γ-C(sp3)–H fluorination of free amines publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13537 – volume: 18 start-page: 7291 year: 2020 ident: 10.1016/j.checat.2024.101009_bib69 article-title: Transient imine directing groups for the C–H functionalisation of aldehydes, ketones and amines: an update 2018–2020 publication-title: Org. Biomol. Chem. doi: 10.1039/D0OB01587C – start-page: 1003 year: 2007 ident: 10.1016/j.checat.2024.101009_bib8 article-title: Fluorinated organic materials for electronic and optoelectronic applications: the role of the fluorine atom publication-title: Chem. Commun. doi: 10.1039/B611336B – volume: 140 start-page: 2789 year: 2018 ident: 10.1016/j.checat.2024.101009_bib41 article-title: Pd-catalyzed, ortho C–H methylation and fluorination of benzaldehydes using orthanilic acids as transient directing groups publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00048 – volume: 10 start-page: 34429 year: 2020 ident: 10.1016/j.checat.2024.101009_bib92 article-title: Progress and prospects in copper-catalyzed C–H functionalization publication-title: RSC Adv. doi: 10.1039/D0RA06518H – volume: 48 start-page: 1727 year: 2015 ident: 10.1016/j.checat.2024.101009_bib102 article-title: Manganese catalyzed C–H halogenation publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00062 – volume: 59 start-page: 3078 year: 2020 ident: 10.1016/j.checat.2024.101009_bib76 article-title: Ligand-controlled direct γ-C−H arylation of aldehydes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201913126 – volume: 13 start-page: 14041 year: 2022 ident: 10.1016/j.checat.2024.101009_bib46 article-title: Benzoates as photosensitization catalysts and auxiliaries in efficient, practical, light-powered direct C(sp3)–H fluorinations publication-title: Chem. Sci. doi: 10.1039/D2SC05735B – volume: 167 start-page: 16 year: 2014 ident: 10.1016/j.checat.2024.101009_bib6 article-title: Successful fluorine-containing herbicide agrochemicals publication-title: J. Fluor. Chem. doi: 10.1016/j.jfluchem.2014.06.014 – volume: 356 start-page: 1412 year: 2014 ident: 10.1016/j.checat.2024.101009_bib31 article-title: Palladium-catalyzed C–F bond formation via directed C–H activation publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201400101 – volume: 36 start-page: 1218 year: 2016 ident: 10.1016/j.checat.2024.101009_bib32 article-title: Recent advances in transition-metal catalyzed C–H bond fluorination publication-title: Chin. J. Org. Chem. doi: 10.6023/cjoc201512040 – volume: 30 start-page: 1178 year: 2019 ident: 10.1016/j.checat.2024.101009_bib51 article-title: Electrochemical C(sp3)–H fluorination publication-title: Synlett doi: 10.1055/s-0037-1611737 – volume: 13 start-page: 7007 year: 2022 ident: 10.1016/j.checat.2024.101009_bib45 article-title: Hydroxy-directed fluorination of remote unactivated C(sp3)–H bonds: a new age of diastereoselective radical fluorination publication-title: Chem. Sci. doi: 10.1039/D2SC01907H – volume: 19 start-page: 2949 year: 2017 ident: 10.1016/j.checat.2024.101009_bib87 article-title: Radical C–H fluorination using unprotected amino acids as radical precursors publication-title: Org. Lett. doi: 10.1021/acs.orglett.7b01188 – volume: 8 start-page: 13671 year: 2018 ident: 10.1016/j.checat.2024.101009_bib28 article-title: Heterogeneous Co-catalyzed direct 2-alkylation of azoles with ethers publication-title: RSC Adv. doi: 10.1039/C8RA01796D – volume: 53 start-page: 4690 year: 2014 ident: 10.1016/j.checat.2024.101009_bib113 article-title: A convenient photocatalytic fluorination of unactivated C–H bonds publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201400420 – volume: 61 start-page: 5822 year: 2018 ident: 10.1016/j.checat.2024.101009_bib3 article-title: Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.7b01788 – volume: 372 year: 2021 ident: 10.1016/j.checat.2024.101009_bib13 article-title: Arene diversification through distal C(sp2)−H functionalization publication-title: Science doi: 10.1126/science.abd5992 – volume: 9 start-page: 1168 year: 2018 ident: 10.1016/j.checat.2024.101009_bib106 article-title: Site-selective 18F fluorination of unactivated C–H bonds mediated by a manganese porphyrin publication-title: Chem. Sci. doi: 10.1039/C7SC04545J – volume: 131 start-page: 7520 year: 2009 ident: 10.1016/j.checat.2024.101009_bib39 article-title: Versatile Pd(OTf)2·2H2O-catalyzed ortho-fluorination using NMP as a promoter publication-title: J. Am. Chem. Soc. doi: 10.1021/ja901352k – volume: 1 start-page: 1 year: 2020 ident: 10.1016/j.checat.2024.101009_bib108 article-title: Perspectives on green synthesis and catalysis publication-title: Green Synth. Catal. – volume: 48 start-page: 5094 year: 2009 ident: 10.1016/j.checat.2024.101009_bib55 article-title: Palladium(II)-catalyzed C–H activation/C–C cross-coupling reactions: versatility and practicality publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200806273 – volume: 63 start-page: 828 year: 2016 ident: 10.1016/j.checat.2024.101009_bib97 article-title: Iron-catalyzed C−H activation publication-title: J. Chin. Chem. Soc. doi: 10.1002/jccs.201600184 – volume: 12 start-page: 6950 year: 2021 ident: 10.1016/j.checat.2024.101009_bib118 article-title: A general strategy for C(sp3)–H functionalization with nucleophiles using methyl radical as a hydrogen atom abstractor publication-title: Nat. Commun. doi: 10.1038/s41467-021-27165-z – volume: 2 start-page: 292 year: 2022 ident: 10.1016/j.checat.2024.101009_bib119 article-title: A photoredox-catalyzed approach for formal hydride abstraction to enable Csp3–H functionalization with nucleophilic partners (F, C, O, N, and Br/Cl) publication-title: Chem Catal. – volume: 45 start-page: 15718 year: 2021 ident: 10.1016/j.checat.2024.101009_bib85 article-title: Silver-catalysed C–H bond activation: a recent review publication-title: New J. Chem. doi: 10.1039/D1NJ02156G – volume: 60 start-page: 3454 year: 2021 ident: 10.1016/j.checat.2024.101009_bib47 article-title: Photochemical radical C–H halogenation of benzyl N-methyliminodiacetyl (MIDA) boronates: synthesis of α-functionalized alkyl boronates publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202011872 – volume: 11 start-page: 12616 year: 2020 ident: 10.1016/j.checat.2024.101009_bib52 article-title: Palladium-catalyzed direct asymmetric C–H bond functionalization enabled by the directing group strategy publication-title: Chem. Sci. doi: 10.1039/D0SC03052J – volume: 53 start-page: 5955 year: 2014 ident: 10.1016/j.checat.2024.101009_bib86 article-title: Silver-catalyzed oxidative activation of benzylic C–H bonds for the synthesis of difluoromethylated arenes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201400225 – volume: 22 start-page: 5195 year: 2020 ident: 10.1016/j.checat.2024.101009_bib35 article-title: Catalytic C(sp3)–F bond formation: recent achievements and pertaining challenges publication-title: Green Chem. doi: 10.1039/D0GC02067B – volume: 49 start-page: 4808 year: 2017 ident: 10.1016/j.checat.2024.101009_bib71 article-title: The transient directing group strategy: a new trend in transition-metal-catalyzed C–H bond functionalization publication-title: Synthesis doi: 10.1055/s-0036-1590878 – volume: 55 start-page: 5408 year: 2019 ident: 10.1016/j.checat.2024.101009_bib110 article-title: Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations publication-title: Chem. Commun. doi: 10.1039/C9CC01047E – volume: 52 start-page: 3309 year: 2019 ident: 10.1016/j.checat.2024.101009_bib123 article-title: Electrochemical oxidative cross-coupling with hydrogen evolution reactions publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00512 – volume: 137 start-page: 8219 year: 2015 ident: 10.1016/j.checat.2024.101009_bib63 article-title: Stereoselective synthesis of chiral β-fluoro α-amino acids via Pd(II)-catalyzed fluorination of unactivated methylene C(sp3)–H bonds: scope and mechanistic studies publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03989 – volume: 11 start-page: 10887 year: 2020 ident: 10.1016/j.checat.2024.101009_bib19 article-title: Diverse strategies for transition metal catalyzed distal C(sp3)–H functionalizations publication-title: Chem. Sci. doi: 10.1039/D0SC04676K – volume: 1 start-page: 461 year: 2019 ident: 10.1016/j.checat.2024.101009_bib34 article-title: New directions in C–H fluorination publication-title: Trends Chem. doi: 10.1016/j.trechm.2019.04.001 – volume: 22 start-page: 5753 year: 2020 ident: 10.1016/j.checat.2024.101009_bib96 article-title: Copper-catalyzed C–H fluorination/functionalization sequence enabling benzylic C–H cross coupling with diverse nucleophiles publication-title: Org. Lett. doi: 10.1021/acs.orglett.0c02238 – volume: 142 start-page: 2766 year: 2020 ident: 10.1016/j.checat.2024.101009_bib48 article-title: δ-C–H Mono- and dihalogenation of alcohols publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13171 – volume: 41 start-page: 543 year: 2021 ident: 10.1016/j.checat.2024.101009_bib36 article-title: Recent advances in C−H fluorination and amination with N-fluorobenzenesulfonimide publication-title: Chin. J. Org. Chem. doi: 10.6023/cjoc202006069 – volume: 57 start-page: 3401 year: 2018 ident: 10.1016/j.checat.2024.101009_bib77 article-title: Transient-ligand-enabled ortho-arylation of five-membered heterocycles: facile access to mechanochromic materials publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201713357 – volume: 551 start-page: 489 year: 2017 ident: 10.1016/j.checat.2024.101009_bib83 article-title: Ligand-accelerated non-directed C–H functionalization of arenes publication-title: Nature doi: 10.1038/nature24632 – volume: 15 start-page: 1722 year: 2013 ident: 10.1016/j.checat.2024.101009_bib98 article-title: Iron(II)-catalyzed benzylic fluorination publication-title: Org. Lett. doi: 10.1021/ol400424s – volume: 17 start-page: 5200 year: 2015 ident: 10.1016/j.checat.2024.101009_bib114 article-title: Development of a direct photocatalytic C–H fluorination for the preparative synthesis of odanacatib. Org publication-title: Lett. – volume: 88 start-page: 2557 year: 2023 ident: 10.1016/j.checat.2024.101009_bib50 article-title: An electrochemical approach to directed fluorination publication-title: J. Org. Chem. doi: 10.1021/acs.joc.2c01886 – volume: 52 start-page: 11726 year: 2013 ident: 10.1016/j.checat.2024.101009_bib60 article-title: Catalytic functionalization of C(sp2)–H and C(sp3)–H bonds by using bidentate directing groups publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201301451 – volume: 110 start-page: 1147 year: 2010 ident: 10.1016/j.checat.2024.101009_bib54 article-title: Palladium-catalyzed ligand-directed C−H functionalization reactions publication-title: Chem. Rev. doi: 10.1021/cr900184e – volume: 53 start-page: 10330 year: 2014 ident: 10.1016/j.checat.2024.101009_bib43 article-title: Mild and versatile nitrate-promoted C–H bond fluorination publication-title: Angew. Chem. Int. doi: 10.1002/anie.201404423 – volume: 138 start-page: 12771 year: 2016 ident: 10.1016/j.checat.2024.101009_bib99 article-title: Iron-catalyzed, fluoroamide-directed C–H fluorination publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08171 – volume: 9 start-page: 26 year: 2017 ident: 10.1016/j.checat.2024.101009_bib79 article-title: Site-selective C–H arylation of primary aliphatic amines enabled by a catalytic transient directing group publication-title: Nat. Chem. doi: 10.1038/nchem.2606 – volume: 12 start-page: 2955 year: 2019 ident: 10.1016/j.checat.2024.101009_bib70 article-title: Transient ligand-enabled transition metal-catalyzed C−H Functionalization publication-title: ChemSusChem doi: 10.1002/cssc.201900151 – volume: 11 start-page: 1102 year: 2019 ident: 10.1016/j.checat.2024.101009_bib100 article-title: N-Directed fluorination of unactivated Csp3–H bonds publication-title: Chem. Sci. doi: 10.1039/C9SC04055B – volume: 50 start-page: 9081 year: 2011 ident: 10.1016/j.checat.2024.101009_bib38 article-title: Palladium(II)-catalyzed selective monofluorination of benzoic acids using a practical auxiliary: a weak-coordination approach publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201102985 – volume: 46 start-page: 4 year: 2023 ident: 10.1016/j.checat.2024.101009_bib120 article-title: The future of organic electrochemistry current transfer publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(22)64197-4 – volume: 136 start-page: 1789 year: 2014 ident: 10.1016/j.checat.2024.101009_bib24 article-title: Nickel-catalyzed site-selective alkylation of unactivated C(sp3)–H bonds publication-title: J. Am. Chem. Soc. doi: 10.1021/ja413131m – volume: 127 start-page: 13154 year: 2005 ident: 10.1016/j.checat.2024.101009_bib61 article-title: Highly regioselective arylation of sp3 C−H Bonds catalyzed by palladium acetate publication-title: J. Am. Chem. Soc. doi: 10.1021/ja054549f – volume: 48 start-page: 1053 year: 2015 ident: 10.1016/j.checat.2024.101009_bib59 article-title: Bidentate, monoanionic auxiliary-directed functionalization of carbon–hydrogen bonds publication-title: Acc. Chem. Res. doi: 10.1021/ar5004626 – volume: 14 start-page: 4094 year: 2012 ident: 10.1016/j.checat.2024.101009_bib56 article-title: Pd-catalyzed C–H fluorination with nucleophilic fluoride publication-title: Org. Lett. doi: 10.1021/ol301739f – volume: 9 start-page: 8276 year: 2019 ident: 10.1016/j.checat.2024.101009_bib115 article-title: Electrostatic effects accelerate decatungstate-catalyzed C–H fluorination using [18F]- and [19F]NFSI in small molecules and peptide mimics publication-title: ACS Catal. doi: 10.1021/acscatal.9b02220 – volume: 8 start-page: 822 year: 2016 ident: 10.1016/j.checat.2024.101009_bib117 article-title: U can fluorinate unactivated bonds publication-title: Nat. Chem. doi: 10.1038/nchem.2604 – volume: 5 start-page: 646 year: 2021 ident: 10.1016/j.checat.2024.101009_bib67 article-title: Transient directing ligands for selective metal-catalysed C–H activation publication-title: Nat. Rev. Chem doi: 10.1038/s41570-021-00311-3 – volume: 16 start-page: 2151 year: 2020 ident: 10.1016/j.checat.2024.101009_bib49 article-title: Photosensitized direct C–H fluorination and trifluoromethylation in organic synthesis publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.16.183 – volume: 9 start-page: 3322 year: 2019 ident: 10.1016/j.checat.2024.101009_bib88 article-title: Experimental and theoretical evidence for nitrogen–fluorine halogen bonding in silver-initiated radical fluorinations publication-title: ACS Catal. doi: 10.1021/acscatal.9b00623 – volume: 59 start-page: 19773 year: 2020 ident: 10.1016/j.checat.2024.101009_bib68 article-title: Transition metal-catalyzed enantioselective C−H functionalization via chiral transient directing group strategies publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202008437 – volume: 25 start-page: 11797 year: 2019 ident: 10.1016/j.checat.2024.101009_bib2 article-title: Fluorine-containing drugs approved by the FDA in 2018 publication-title: Chem. Eur J. doi: 10.1002/chem.201901840 – volume: 55 start-page: 8923 year: 2016 ident: 10.1016/j.checat.2024.101009_bib116 article-title: The uranyl cation as a visible-light photocatalyst for C(sp3)−H fluorination publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201603149 – volume: 128 start-page: 7134 year: 2006 ident: 10.1016/j.checat.2024.101009_bib40 article-title: Palladium-catalyzed fluorination of carbon−hydrogen bonds publication-title: J. Am. Chem. Soc. doi: 10.1021/ja061943k – volume: 23 start-page: 9283 year: 2021 ident: 10.1016/j.checat.2024.101009_bib11 article-title: Recent advances in the incorporation of CO2 for C–H and C–C bond functionalization publication-title: Green Chem. doi: 10.1039/D1GC02737A – volume: 138 start-page: 12775 year: 2016 ident: 10.1016/j.checat.2024.101009_bib80 article-title: Catalytic C–H arylation of aliphatic aldehydes enabled by a transient ligand publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08478 – volume: 6 start-page: 6462 year: 2015 ident: 10.1016/j.checat.2024.101009_bib22 article-title: Cobalt-catalysed site-selective intra- and intermolecular dehydrogenative amination of unactivated sp3 carbons publication-title: Nat. Commun. doi: 10.1038/ncomms7462 |
SSID | ssj0002513252 |
Score | 2.3201993 |
SecondaryResourceType | review_article |
Snippet | Constructing C−F bonds via C−H activation has been a subject of considerable attention in the field of organic synthesis. Within this reaction class, the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 101009 |
SubjectTerms | C(sp3)–H bond electrochemistry fluorination photochemistry transition metal catalyzed |
Title | Transition-metal-catalyzed C(sp3)–H bond fluorination reactions |
URI | https://dx.doi.org/10.1016/j.checat.2024.101009 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b9swECUKZ-lStGiLpl_QkKFFQIOmJEocjSCNUKMd2gT1JpD0EXWQOEEiD82U_5B_2F-SO4mUHdT9yiIYhCjKfGfe4_Mdj7EdTW7aGsfBO8ANisl5qUrBfZalhSmKmW6PUvr0WVVH2cdpPo212kN2SWOH7mpjXsl9UMU2xJWyZP8D2f6h2ICfEV-8IsJ4_TeMydG0MVf8FJBF81aM-XFFqi0yx8tzklFjOENa7VpKVvEnSwq664BHyuhWkl08seA7nO52j7qc95z7AEIktp33xjBdtn9uzJvoAGn9CAr0BO72rMzcnq2LDDIj9TKsi63yFbNf7gRnom_Hu0RX4XAIG9rCCputGVKxcd3uJITjIRoqCa70CtQohF75qT568CsNQmNQ_Osop8T7LYm7BDlgW-PJl2-TXmRD8pbKtupS_14xfbKN8ft1uM30ZI1yHD5mj8JeIRl3wD9hD2DxlI1_D3qy9w4hf__z-qZKCOpkHeqkh_oZO_qwf7hX8VAHgzspRw0vhDdGziC31kpTapGDMsaKciaFFk4LZUZGKY9MGUaQeSdn2hdOAyjQroD0ORsszhbwgiU6F95bU2bSePxhFiZTVqfCGJ1BXiq1zdL49WsXDomnWiUndYwGPK67Satp0upu0rYZ73udd4ek_OX-Is5sHYheR-BqtIc_9nx5756v2MOVYb9mg-ZiCW-QTzb2bbCaWwwWc4Q |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transition-metal-catalyzed+C%28sp3%29%E2%80%93H+bond+fluorination+reactions&rft.jtitle=Chem+catalysis&rft.au=Ge%2C+Robbie&rft.au=Xu%2C+Ziting&rft.au=Yang%2C+Ke&rft.au=Ge%2C+Haibo&rft.date=2024-07-18&rft.pub=Elsevier+Inc&rft.issn=2667-1093&rft.eissn=2667-1093&rft.volume=4&rft.issue=7&rft_id=info:doi/10.1016%2Fj.checat.2024.101009&rft.externalDocID=S2667109324001581 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-1093&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-1093&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-1093&client=summon |