A Hybrid Model and Learning-Based Adaptive Navigation Filter

The fusion between an inertial navigation system and global navigation satellite systems is regularly used in many platforms, such as drones, land vehicles, and marine vessels. The fusion is commonly carried out in a model-based extended Kalman filter framework. One of the critical parameters of the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 71; pp. 1 - 11
Main Authors Or, Barak, Klein, Itzik
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fusion between an inertial navigation system and global navigation satellite systems is regularly used in many platforms, such as drones, land vehicles, and marine vessels. The fusion is commonly carried out in a model-based extended Kalman filter framework. One of the critical parameters of the filter is the process noise covariance. It is responsible for the real-time solution accuracy, as it considers both vehicle dynamics uncertainty and the inertial sensors quality. In most situations, the process noise covariance is assumed to be constant. Yet, due to vehicle dynamics and sensor measurement variations throughout the trajectory, the process noise covariance is subject to change. To cope with such situations, several adaptive model-based Kalman filters were suggested in the literature. In this article, we propose a hybrid model and learning-based adaptive navigation filter. We rely on the model-based Kalman filter and design a deep neural network (DNN) model to tune the momentary system noise covariance, based only on the inertial sensor readings. Once the process noise covariance is learned, it is plugged into the well-established model-based Kalman filter. After deriving the proposed hybrid framework, field experiment results using a quadrotor are presented and a comparison to model-based adaptive approaches is given. We show that the proposed method obtained an improvement of 25% in the position error. Furthermore, the proposed hybrid learning method can be used in any navigation filter and also in any relevant estimation problem.
AbstractList The fusion between an inertial navigation system and global navigation satellite systems is regularly used in many platforms, such as drones, land vehicles, and marine vessels. The fusion is commonly carried out in a model-based extended Kalman filter framework. One of the critical parameters of the filter is the process noise covariance. It is responsible for the real-time solution accuracy, as it considers both vehicle dynamics uncertainty and the inertial sensors quality. In most situations, the process noise covariance is assumed to be constant. Yet, due to vehicle dynamics and sensor measurement variations throughout the trajectory, the process noise covariance is subject to change. To cope with such situations, several adaptive model-based Kalman filters were suggested in the literature. In this article, we propose a hybrid model and learning-based adaptive navigation filter. We rely on the model-based Kalman filter and design a deep neural network (DNN) model to tune the momentary system noise covariance, based only on the inertial sensor readings. Once the process noise covariance is learned, it is plugged into the well-established model-based Kalman filter. After deriving the proposed hybrid framework, field experiment results using a quadrotor are presented and a comparison to model-based adaptive approaches is given. We show that the proposed method obtained an improvement of 25% in the position error. Furthermore, the proposed hybrid learning method can be used in any navigation filter and also in any relevant estimation problem.
Author Or, Barak
Klein, Itzik
Author_xml – sequence: 1
  givenname: Barak
  orcidid: 0000-0002-6615-7639
  surname: Or
  fullname: Or, Barak
  email: barakorr@gmail.com
  organization: Department of Marine Technologies, Charney School of Marine Science, University of Haifa, Haifa, Israel
– sequence: 2
  givenname: Itzik
  orcidid: 0000-0001-7846-0654
  surname: Klein
  fullname: Klein, Itzik
  email: kitzik@univ@haifa.ac.il
  organization: Department of Marine Technologies, Charney School of Marine Science, University of Haifa, Haifa, Israel
BookMark eNp9kE1PwkAQhjcGEwG9m3hp4rm4H92vxAsSERLQC5432-6ULKlb3BYS_j1FiAcPnubyPvPOPAPUC3UAhO4JHhGC9dNqvhxRTOmIES2l5FeoTziXqRaC9lAfY6JSnXFxgwZNs8EYS5HJPnoeJ7NDHr1LlrWDKrHBJQuwMfiwTl9sAy4ZO7tt_R6Sd7v3a9v6OiRTX7UQb9F1aasG7i5ziD6nr6vJLF18vM0n40VaUEraVGSayLxkLqMlVYw5ay0pKIc8y4gUpMAa6xy4JDhnkJdauUxpZ_NCcMWkYkP0eN67jfX3DprWbOpdDF2loRJzxakmpxQ-p4pYN02E0myj_7LxYAg2J0emc2ROjszFUYeIP0jh258P22h99R_4cAY9APz2aMW7gyk7AjmDc54
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_JSEN_2024_3384302
crossref_primary_10_1016_j_engappai_2023_106101
crossref_primary_10_1016_j_rineng_2024_103565
crossref_primary_10_1109_JSEN_2023_3288033
crossref_primary_10_1016_j_measurement_2025_116907
crossref_primary_10_3390_s24196186
crossref_primary_10_1109_TITS_2024_3422037
crossref_primary_10_1002_acs_3982
crossref_primary_10_1016_j_arcontrol_2023_100909
crossref_primary_10_1016_j_engappai_2025_110221
crossref_primary_10_3390_s25051624
crossref_primary_10_1016_j_engappai_2024_108466
crossref_primary_10_1109_TCST_2023_3339732
crossref_primary_10_1109_TIM_2024_3502825
Cites_doi 10.1109/ACCESS.2022.3144076
10.1109/TIM.2019.2957848
10.1109/JSEN.2007.894148
10.1109/LRA.2020.3003256
10.1109/TIM.2021.3111971
10.1109/ROSE52750.2021.9611779
10.1109/ICRA40945.2020.9196860
10.1109/TIE.2020.2967671
10.1109/JIOT.2020.2966773
10.1109/TIM.2021.3083903
10.3390/s22041426
10.1109/ACCESS.2021.3083493
10.1109/JSEN.2014.2298896
10.1109/JSEN.2016.2637402
10.1109/TAC.1970.1099422
10.1002/0471221279
10.1109/JOE.2013.2278891
10.1109/TIM.2016.2575178
10.1109/TIM.2018.2805231
10.1109/TIM.2021.3097401
10.1109/JSEN.2021.3055846
10.1109/JSEN.2017.2787578
10.1109/SECon.2012.6196930
10.1007/978-3-030-01261-8_38
10.1109/JSEN.2021.3066840
10.1109/ICRA.2019.8794237
10.1109/TIM.2022.3144225
10.1109/TIM.2019.2955798
10.1109/ACCESS.2020.2982407
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2022.3197775
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 11
ExternalDocumentID 10_1109_TIM_2022_3197775
9855832
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c221t-64917bf3d42f2833daaa1c25eb441761c0909be5710b3ebf98d489dabc6583783
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:18:39 EDT 2025
Tue Jul 01 03:07:17 EDT 2025
Thu Apr 24 23:02:24 EDT 2025
Wed Aug 27 02:28:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c221t-64917bf3d42f2833daaa1c25eb441761c0909be5710b3ebf98d489dabc6583783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6615-7639
0000-0001-7846-0654
PQID 2705852918
PQPubID 85462
PageCount 11
ParticipantIDs ieee_primary_9855832
proquest_journals_2705852918
crossref_primary_10_1109_TIM_2022_3197775
crossref_citationtrail_10_1109_TIM_2022_3197775
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
Kingma (ref37) 2014
Groves (ref31) 2013
ref30
(ref38) 2021
Jwo (ref39) 2014; 22
ref11
ref33
ref10
ref2
Brown (ref32) 1992
ref17
ref16
ref19
ref18
Farrell (ref1) 2008
Or (ref28) 2022
ref24
ref23
ref26
Lei Ba (ref36) 2016
ref25
ref20
ref22
ref21
ref27
ref29
ref8
ref7
Lu (ref35) 2019
ref9
ref4
ref3
ref6
ref5
Maas (ref34); 30
References_xml – ident: ref33
  doi: 10.1109/ACCESS.2022.3144076
– ident: ref3
  doi: 10.1109/TIM.2019.2957848
– year: 2022
  ident: ref28
  article-title: Learning vehicle trajectory uncertainty
  publication-title: arXiv:2206.04409
– ident: ref12
  doi: 10.1109/JSEN.2007.894148
– volume: 30
  start-page: 3
  issue: 1
  volume-title: Proc. ICML
  ident: ref34
  article-title: Rectifier nonlinearities improve neural network acoustic models
– ident: ref30
  doi: 10.1109/LRA.2020.3003256
– start-page: 393
  volume-title: Aided Navigation: GPS With High Rate Sensors
  year: 2008
  ident: ref1
– ident: ref15
  doi: 10.1109/TIM.2021.3111971
– ident: ref23
  doi: 10.1109/ROSE52750.2021.9611779
– ident: ref19
  doi: 10.1109/ICRA40945.2020.9196860
– ident: ref27
  doi: 10.1109/TIE.2020.2967671
– ident: ref22
  doi: 10.1109/JIOT.2020.2966773
– volume: 22
  start-page: 381
  issue: 3
  year: 2014
  ident: ref39
  article-title: Development of a strapdown inertial navigation system simulation platform
  publication-title: J. Mar. Sci. Technol.
– ident: ref7
  doi: 10.1109/TIM.2021.3083903
– ident: ref26
  doi: 10.3390/s22041426
– ident: ref24
  doi: 10.1109/ACCESS.2021.3083493
– ident: ref13
  doi: 10.1109/JSEN.2014.2298896
– volume-title: Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems
  year: 2013
  ident: ref31
– ident: ref11
  doi: 10.1109/JSEN.2016.2637402
– ident: ref16
  doi: 10.1109/TAC.1970.1099422
– ident: ref8
  doi: 10.1002/0471221279
– ident: ref4
  doi: 10.1109/JOE.2013.2278891
– ident: ref10
  doi: 10.1109/TIM.2016.2575178
– ident: ref6
  doi: 10.1109/TIM.2018.2805231
– ident: ref29
  doi: 10.1109/TIM.2021.3097401
– volume-title: Matrice 300 RTK, Aircraft Specifications
  year: 2021
  ident: ref38
– year: 2016
  ident: ref36
  article-title: Layer normalization
  publication-title: arXiv:1607.06450
– ident: ref9
  doi: 10.1109/JSEN.2021.3055846
– ident: ref14
  doi: 10.1109/JSEN.2017.2787578
– ident: ref5
  doi: 10.1109/SECon.2012.6196930
– ident: ref18
  doi: 10.1007/978-3-030-01261-8_38
– volume-title: Introduction to Random Signals and Applied Kalman Filtering
  year: 1992
  ident: ref32
– ident: ref20
  doi: 10.1109/JSEN.2021.3066840
– ident: ref25
  doi: 10.1109/ICRA.2019.8794237
– ident: ref21
  doi: 10.1109/TIM.2022.3144225
– ident: ref2
  doi: 10.1109/TIM.2019.2955798
– year: 2019
  ident: ref35
  article-title: Dying ReLU and initialization: Theory and numerical examples
  publication-title: arXiv:1903.06733
– year: 2014
  ident: ref37
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref17
  doi: 10.1109/ACCESS.2020.2982407
SSID ssj0007647
Score 2.4338412
Snippet The fusion between an inertial navigation system and global navigation satellite systems is regularly used in many platforms, such as drones, land vehicles,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptation models
Adaptive algorithm
Artificial neural networks
Covariance
deep neural network (DNN)
Drone vehicles
Extended Kalman filter
Global navigation satellite system
global navigation satellite system (GNSS)
inertial measurement unit (IMU)
Inertial navigation
inertial navigation system (INS)
Inertial sensing devices
Kalman Filter
Kalman filters
Machine learning
machine learning (ML)
Navigation
Navigation satellites
Navigation systems
Noise measurement
Position errors
quadcopter
supervised learning (SL)
unmanned autonomous vehicles
Vehicle dynamics
vehicle tracking
Title A Hybrid Model and Learning-Based Adaptive Navigation Filter
URI https://ieeexplore.ieee.org/document/9855832
https://www.proquest.com/docview/2705852918
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-mIOiD3-L8Ig--CHZr06ZNwJcpjinok4O9lXyKOLrhNkH_ei9tN4aK-FZKEkLukvwud_c7gHPORUYZSoArzYPEsCiQaSoCmlEnQ2e9r9NHWzymvX5yP2CDBlwucmGstWXwmW35z9KXb0Z65p_K2oIzhhq4AitouFW5WotTN0uTih8zwg2MqGDukgxF--nuAQ1BStE-RbTjIwqXrqCypsqPg7i8Xbpb8DCfVxVU8tqaTVVLf36jbPzvxLdhs4aZpFPpxQ40bLELG0vkg7uwVgZ_6skeXHVI78NnbhFfGW1IZGFIzbv6HFzjNWdIx8ixPxjJo3wvSTlGBem-eE_7PvS7t083vaCuqhBoSqNpkCZooSkXm4Q6xBaxkVJGmjKrfDWyNNKhCIWyDKGHiq1ygpuECyOVRrASZzw-gNViVNhDICkNdayccYaJJOVOMZ4JBARO4w8q4ya05wud65py3Fe-GOal6RGKHEWTe9HktWiacLHoMa7oNv5ou-dXetGuXuQmnMxlmdf7cZKjyqFdREXEj37vdQzrfuzqceUEVqdvM3uKcGOqzko9-wICKs3Z
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NSysxEB_6KvL04LdYv14OXgS33c1udhPwUsVSn7anCt6WfIooW9FW0L_eye62iMrj3ZYlISEzyfwmM_kNwBHnIqMMJcCV5kFiWBTINBUBzaiTobM-1umzLYZp_yb5e8tuG3AyfwtjrS2Tz2zbf5axfDPWU39V1hGcMdTAX7CAdp_R6rXW_NzN0qRiyIxwCyMumAUlQ9EZXQ7QFaQUPVTEOz6n8JMRKquqfDuKS_vSW4XBbGZVWslDezpRbf3-hbTxf6e-Bis10CTdSjPWoWGLDVj-RD-4AYtl-qd-2YTTLum_-bdbxNdGeySyMKRmXr0LztDQGdI18skfjWQoX0tajnFBevc-1r4FN72L0Xk_qOsqBJrSaBKkCfpoysUmoQ7RRWyklJGmzCpfjyyNdChCoSxD8KFiq5zgJuHCSKURrsQZj7ehWYwLuwMkpaGOlTPOMJGk3CnGM4GQwGn8QWXcgs5soXNdk4772hePeel8hCJH0eReNHktmhYcz3s8VYQb_2i76Vd63q5e5Bbsz2SZ1zvyJUelQ8-Iiojv_tzrD_zujwbX-fXl8GoPlvw41VXLPjQnz1N7gOBjog5LnfsA8FvRIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Model+and+Learning-Based+Adaptive+Navigation+Filter&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Or%2C+Barak&rft.au=Klein%2C+Itzik&rft.date=2022&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=71&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2022.3197775&rft.externalDocID=9855832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon