A Hybrid Model and Learning-Based Adaptive Navigation Filter
The fusion between an inertial navigation system and global navigation satellite systems is regularly used in many platforms, such as drones, land vehicles, and marine vessels. The fusion is commonly carried out in a model-based extended Kalman filter framework. One of the critical parameters of the...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 71; pp. 1 - 11 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fusion between an inertial navigation system and global navigation satellite systems is regularly used in many platforms, such as drones, land vehicles, and marine vessels. The fusion is commonly carried out in a model-based extended Kalman filter framework. One of the critical parameters of the filter is the process noise covariance. It is responsible for the real-time solution accuracy, as it considers both vehicle dynamics uncertainty and the inertial sensors quality. In most situations, the process noise covariance is assumed to be constant. Yet, due to vehicle dynamics and sensor measurement variations throughout the trajectory, the process noise covariance is subject to change. To cope with such situations, several adaptive model-based Kalman filters were suggested in the literature. In this article, we propose a hybrid model and learning-based adaptive navigation filter. We rely on the model-based Kalman filter and design a deep neural network (DNN) model to tune the momentary system noise covariance, based only on the inertial sensor readings. Once the process noise covariance is learned, it is plugged into the well-established model-based Kalman filter. After deriving the proposed hybrid framework, field experiment results using a quadrotor are presented and a comparison to model-based adaptive approaches is given. We show that the proposed method obtained an improvement of 25% in the position error. Furthermore, the proposed hybrid learning method can be used in any navigation filter and also in any relevant estimation problem. |
---|---|
AbstractList | The fusion between an inertial navigation system and global navigation satellite systems is regularly used in many platforms, such as drones, land vehicles, and marine vessels. The fusion is commonly carried out in a model-based extended Kalman filter framework. One of the critical parameters of the filter is the process noise covariance. It is responsible for the real-time solution accuracy, as it considers both vehicle dynamics uncertainty and the inertial sensors quality. In most situations, the process noise covariance is assumed to be constant. Yet, due to vehicle dynamics and sensor measurement variations throughout the trajectory, the process noise covariance is subject to change. To cope with such situations, several adaptive model-based Kalman filters were suggested in the literature. In this article, we propose a hybrid model and learning-based adaptive navigation filter. We rely on the model-based Kalman filter and design a deep neural network (DNN) model to tune the momentary system noise covariance, based only on the inertial sensor readings. Once the process noise covariance is learned, it is plugged into the well-established model-based Kalman filter. After deriving the proposed hybrid framework, field experiment results using a quadrotor are presented and a comparison to model-based adaptive approaches is given. We show that the proposed method obtained an improvement of 25% in the position error. Furthermore, the proposed hybrid learning method can be used in any navigation filter and also in any relevant estimation problem. |
Author | Or, Barak Klein, Itzik |
Author_xml | – sequence: 1 givenname: Barak orcidid: 0000-0002-6615-7639 surname: Or fullname: Or, Barak email: barakorr@gmail.com organization: Department of Marine Technologies, Charney School of Marine Science, University of Haifa, Haifa, Israel – sequence: 2 givenname: Itzik orcidid: 0000-0001-7846-0654 surname: Klein fullname: Klein, Itzik email: kitzik@univ@haifa.ac.il organization: Department of Marine Technologies, Charney School of Marine Science, University of Haifa, Haifa, Israel |
BookMark | eNp9kE1PwkAQhjcGEwG9m3hp4rm4H92vxAsSERLQC5432-6ULKlb3BYS_j1FiAcPnubyPvPOPAPUC3UAhO4JHhGC9dNqvhxRTOmIES2l5FeoTziXqRaC9lAfY6JSnXFxgwZNs8EYS5HJPnoeJ7NDHr1LlrWDKrHBJQuwMfiwTl9sAy4ZO7tt_R6Sd7v3a9v6OiRTX7UQb9F1aasG7i5ziD6nr6vJLF18vM0n40VaUEraVGSayLxkLqMlVYw5ay0pKIc8y4gUpMAa6xy4JDhnkJdauUxpZ_NCcMWkYkP0eN67jfX3DprWbOpdDF2loRJzxakmpxQ-p4pYN02E0myj_7LxYAg2J0emc2ROjszFUYeIP0jh258P22h99R_4cAY9APz2aMW7gyk7AjmDc54 |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_1109_JSEN_2024_3384302 crossref_primary_10_1016_j_engappai_2023_106101 crossref_primary_10_1016_j_rineng_2024_103565 crossref_primary_10_1109_JSEN_2023_3288033 crossref_primary_10_1016_j_measurement_2025_116907 crossref_primary_10_3390_s24196186 crossref_primary_10_1109_TITS_2024_3422037 crossref_primary_10_1002_acs_3982 crossref_primary_10_1016_j_arcontrol_2023_100909 crossref_primary_10_1016_j_engappai_2025_110221 crossref_primary_10_3390_s25051624 crossref_primary_10_1016_j_engappai_2024_108466 crossref_primary_10_1109_TCST_2023_3339732 crossref_primary_10_1109_TIM_2024_3502825 |
Cites_doi | 10.1109/ACCESS.2022.3144076 10.1109/TIM.2019.2957848 10.1109/JSEN.2007.894148 10.1109/LRA.2020.3003256 10.1109/TIM.2021.3111971 10.1109/ROSE52750.2021.9611779 10.1109/ICRA40945.2020.9196860 10.1109/TIE.2020.2967671 10.1109/JIOT.2020.2966773 10.1109/TIM.2021.3083903 10.3390/s22041426 10.1109/ACCESS.2021.3083493 10.1109/JSEN.2014.2298896 10.1109/JSEN.2016.2637402 10.1109/TAC.1970.1099422 10.1002/0471221279 10.1109/JOE.2013.2278891 10.1109/TIM.2016.2575178 10.1109/TIM.2018.2805231 10.1109/TIM.2021.3097401 10.1109/JSEN.2021.3055846 10.1109/JSEN.2017.2787578 10.1109/SECon.2012.6196930 10.1007/978-3-030-01261-8_38 10.1109/JSEN.2021.3066840 10.1109/ICRA.2019.8794237 10.1109/TIM.2022.3144225 10.1109/TIM.2019.2955798 10.1109/ACCESS.2020.2982407 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2022.3197775 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) - NZ CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 11 |
ExternalDocumentID | 10_1109_TIM_2022_3197775 9855832 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c221t-64917bf3d42f2833daaa1c25eb441761c0909be5710b3ebf98d489dabc6583783 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:18:39 EDT 2025 Tue Jul 01 03:07:17 EDT 2025 Thu Apr 24 23:02:24 EDT 2025 Wed Aug 27 02:28:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c221t-64917bf3d42f2833daaa1c25eb441761c0909be5710b3ebf98d489dabc6583783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6615-7639 0000-0001-7846-0654 |
PQID | 2705852918 |
PQPubID | 85462 |
PageCount | 11 |
ParticipantIDs | ieee_primary_9855832 proquest_journals_2705852918 crossref_primary_10_1109_TIM_2022_3197775 crossref_citationtrail_10_1109_TIM_2022_3197775 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 Kingma (ref37) 2014 Groves (ref31) 2013 ref30 (ref38) 2021 Jwo (ref39) 2014; 22 ref11 ref33 ref10 ref2 Brown (ref32) 1992 ref17 ref16 ref19 ref18 Farrell (ref1) 2008 Or (ref28) 2022 ref24 ref23 ref26 Lei Ba (ref36) 2016 ref25 ref20 ref22 ref21 ref27 ref29 ref8 ref7 Lu (ref35) 2019 ref9 ref4 ref3 ref6 ref5 Maas (ref34); 30 |
References_xml | – ident: ref33 doi: 10.1109/ACCESS.2022.3144076 – ident: ref3 doi: 10.1109/TIM.2019.2957848 – year: 2022 ident: ref28 article-title: Learning vehicle trajectory uncertainty publication-title: arXiv:2206.04409 – ident: ref12 doi: 10.1109/JSEN.2007.894148 – volume: 30 start-page: 3 issue: 1 volume-title: Proc. ICML ident: ref34 article-title: Rectifier nonlinearities improve neural network acoustic models – ident: ref30 doi: 10.1109/LRA.2020.3003256 – start-page: 393 volume-title: Aided Navigation: GPS With High Rate Sensors year: 2008 ident: ref1 – ident: ref15 doi: 10.1109/TIM.2021.3111971 – ident: ref23 doi: 10.1109/ROSE52750.2021.9611779 – ident: ref19 doi: 10.1109/ICRA40945.2020.9196860 – ident: ref27 doi: 10.1109/TIE.2020.2967671 – ident: ref22 doi: 10.1109/JIOT.2020.2966773 – volume: 22 start-page: 381 issue: 3 year: 2014 ident: ref39 article-title: Development of a strapdown inertial navigation system simulation platform publication-title: J. Mar. Sci. Technol. – ident: ref7 doi: 10.1109/TIM.2021.3083903 – ident: ref26 doi: 10.3390/s22041426 – ident: ref24 doi: 10.1109/ACCESS.2021.3083493 – ident: ref13 doi: 10.1109/JSEN.2014.2298896 – volume-title: Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems year: 2013 ident: ref31 – ident: ref11 doi: 10.1109/JSEN.2016.2637402 – ident: ref16 doi: 10.1109/TAC.1970.1099422 – ident: ref8 doi: 10.1002/0471221279 – ident: ref4 doi: 10.1109/JOE.2013.2278891 – ident: ref10 doi: 10.1109/TIM.2016.2575178 – ident: ref6 doi: 10.1109/TIM.2018.2805231 – ident: ref29 doi: 10.1109/TIM.2021.3097401 – volume-title: Matrice 300 RTK, Aircraft Specifications year: 2021 ident: ref38 – year: 2016 ident: ref36 article-title: Layer normalization publication-title: arXiv:1607.06450 – ident: ref9 doi: 10.1109/JSEN.2021.3055846 – ident: ref14 doi: 10.1109/JSEN.2017.2787578 – ident: ref5 doi: 10.1109/SECon.2012.6196930 – ident: ref18 doi: 10.1007/978-3-030-01261-8_38 – volume-title: Introduction to Random Signals and Applied Kalman Filtering year: 1992 ident: ref32 – ident: ref20 doi: 10.1109/JSEN.2021.3066840 – ident: ref25 doi: 10.1109/ICRA.2019.8794237 – ident: ref21 doi: 10.1109/TIM.2022.3144225 – ident: ref2 doi: 10.1109/TIM.2019.2955798 – year: 2019 ident: ref35 article-title: Dying ReLU and initialization: Theory and numerical examples publication-title: arXiv:1903.06733 – year: 2014 ident: ref37 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref17 doi: 10.1109/ACCESS.2020.2982407 |
SSID | ssj0007647 |
Score | 2.4338412 |
Snippet | The fusion between an inertial navigation system and global navigation satellite systems is regularly used in many platforms, such as drones, land vehicles,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Adaptation models Adaptive algorithm Artificial neural networks Covariance deep neural network (DNN) Drone vehicles Extended Kalman filter Global navigation satellite system global navigation satellite system (GNSS) inertial measurement unit (IMU) Inertial navigation inertial navigation system (INS) Inertial sensing devices Kalman Filter Kalman filters Machine learning machine learning (ML) Navigation Navigation satellites Navigation systems Noise measurement Position errors quadcopter supervised learning (SL) unmanned autonomous vehicles Vehicle dynamics vehicle tracking |
Title | A Hybrid Model and Learning-Based Adaptive Navigation Filter |
URI | https://ieeexplore.ieee.org/document/9855832 https://www.proquest.com/docview/2705852918 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-mIOiD3-L8Ig--CHZr06ZNwJcpjinok4O9lXyKOLrhNkH_ei9tN4aK-FZKEkLukvwud_c7gHPORUYZSoArzYPEsCiQaSoCmlEnQ2e9r9NHWzymvX5yP2CDBlwucmGstWXwmW35z9KXb0Z65p_K2oIzhhq4AitouFW5WotTN0uTih8zwg2MqGDukgxF--nuAQ1BStE-RbTjIwqXrqCypsqPg7i8Xbpb8DCfVxVU8tqaTVVLf36jbPzvxLdhs4aZpFPpxQ40bLELG0vkg7uwVgZ_6skeXHVI78NnbhFfGW1IZGFIzbv6HFzjNWdIx8ixPxjJo3wvSTlGBem-eE_7PvS7t083vaCuqhBoSqNpkCZooSkXm4Q6xBaxkVJGmjKrfDWyNNKhCIWyDKGHiq1ygpuECyOVRrASZzw-gNViVNhDICkNdayccYaJJOVOMZ4JBARO4w8q4ya05wud65py3Fe-GOal6RGKHEWTe9HktWiacLHoMa7oNv5ou-dXetGuXuQmnMxlmdf7cZKjyqFdREXEj37vdQzrfuzqceUEVqdvM3uKcGOqzko9-wICKs3Z |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NSysxEB_6KvL04LdYv14OXgS33c1udhPwUsVSn7anCt6WfIooW9FW0L_eye62iMrj3ZYlISEzyfwmM_kNwBHnIqMMJcCV5kFiWBTINBUBzaiTobM-1umzLYZp_yb5e8tuG3AyfwtjrS2Tz2zbf5axfDPWU39V1hGcMdTAX7CAdp_R6rXW_NzN0qRiyIxwCyMumAUlQ9EZXQ7QFaQUPVTEOz6n8JMRKquqfDuKS_vSW4XBbGZVWslDezpRbf3-hbTxf6e-Bis10CTdSjPWoWGLDVj-RD-4AYtl-qd-2YTTLum_-bdbxNdGeySyMKRmXr0LztDQGdI18skfjWQoX0tajnFBevc-1r4FN72L0Xk_qOsqBJrSaBKkCfpoysUmoQ7RRWyklJGmzCpfjyyNdChCoSxD8KFiq5zgJuHCSKURrsQZj7ehWYwLuwMkpaGOlTPOMJGk3CnGM4GQwGn8QWXcgs5soXNdk4772hePeel8hCJH0eReNHktmhYcz3s8VYQb_2i76Vd63q5e5Bbsz2SZ1zvyJUelQ8-Iiojv_tzrD_zujwbX-fXl8GoPlvw41VXLPjQnz1N7gOBjog5LnfsA8FvRIw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Model+and+Learning-Based+Adaptive+Navigation+Filter&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Or%2C+Barak&rft.au=Klein%2C+Itzik&rft.date=2022&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=71&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2022.3197775&rft.externalDocID=9855832 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |