Guiding electron transfer for selective C2H6 photoproduction from CO2
Unguided electron transfer presents challenges for selectively photo-reducing carbon dioxide (CO2) into C2 products. We constructed continuous inter- and intra-component electric fields within photocatalysts by in situ chemical encapsulation. The dual-tandem electric fields facilitate charge separat...
Saved in:
Published in | Chem Vol. 11; no. 1; p. 102295 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
09.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unguided electron transfer presents challenges for selectively photo-reducing carbon dioxide (CO2) into C2 products. We constructed continuous inter- and intra-component electric fields within photocatalysts by in situ chemical encapsulation. The dual-tandem electric fields facilitate charge separation and transfer photogenerated electrons accurately toward Cu2+-Cu+ sites for C–C coupling. We tracked the electron transport, observing directional electron migration between contacted heterostructure atoms, ligand carbon atoms, and Cu2+-Cu+ centers. The as-synthesized photocatalyst manifests a remarkable ethane (C2H6) production rate of 16.3 μmol g−1 h−1, a high electron selectivity of 64.4% for C2H6, and a stable electron consumption yield of 354.6 μmol g−1 h−1 in water vapor. These represent one of the best performances for CO2 photoreduction. This work promotes charge separation and manages precise control over electron migration via tandem built-in electric fields, opening a new prospect for selective CO2 photoreduction into high-value chemicals.
[Display omitted]
•Electron transfer is guided via dual-tandem electric fields toward Cu+-Cu2+•The transferring paths of electrons are unveiled from atom to atom•Remarkable C2H6 photoproduction rates and high selectivity are achieved
Solar energy is a plentiful and clean source of energy. Utilizing photocatalytic technology to convert water and CO2 into fuel shows great potential in terms of cost-effectiveness. However, current photoreduction processes often result in low-value C1 molecules like CO and CH4 due to unguided carrier transfer. To address this, we developed an encapsulation photocatalyst with tandem built-in electric fields. These sequential fields not only promote charge separation but also enable precise control over photogenerated electron transfer. By concentrating electrons on the Cu2+-Cu+ site, we successfully achieved the selective photosynthesis of ethane. This work introduces a pioneering and transferable idea for converting CO2 into high-value-added products, shedding light on controllable chemical conversion and precise photocatalysis.
Current photocatalytic CO2 reduction commonly results in low-value C1 products due to unguided carrier transfer. This work developed an encapsulation photocatalyst with tandem built-in electric fields. These sequential fields not only promote charge separation but also enable precise control over photogenerated electron transfer. By concentrating electrons on the Cu2+-Cu+ site, we successfully achieved the selective photosynthesis of ethane. |
---|---|
AbstractList | Unguided electron transfer presents challenges for selectively photo-reducing carbon dioxide (CO2) into C2 products. We constructed continuous inter- and intra-component electric fields within photocatalysts by in situ chemical encapsulation. The dual-tandem electric fields facilitate charge separation and transfer photogenerated electrons accurately toward Cu2+-Cu+ sites for C–C coupling. We tracked the electron transport, observing directional electron migration between contacted heterostructure atoms, ligand carbon atoms, and Cu2+-Cu+ centers. The as-synthesized photocatalyst manifests a remarkable ethane (C2H6) production rate of 16.3 μmol g−1 h−1, a high electron selectivity of 64.4% for C2H6, and a stable electron consumption yield of 354.6 μmol g−1 h−1 in water vapor. These represent one of the best performances for CO2 photoreduction. This work promotes charge separation and manages precise control over electron migration via tandem built-in electric fields, opening a new prospect for selective CO2 photoreduction into high-value chemicals.
[Display omitted]
•Electron transfer is guided via dual-tandem electric fields toward Cu+-Cu2+•The transferring paths of electrons are unveiled from atom to atom•Remarkable C2H6 photoproduction rates and high selectivity are achieved
Solar energy is a plentiful and clean source of energy. Utilizing photocatalytic technology to convert water and CO2 into fuel shows great potential in terms of cost-effectiveness. However, current photoreduction processes often result in low-value C1 molecules like CO and CH4 due to unguided carrier transfer. To address this, we developed an encapsulation photocatalyst with tandem built-in electric fields. These sequential fields not only promote charge separation but also enable precise control over photogenerated electron transfer. By concentrating electrons on the Cu2+-Cu+ site, we successfully achieved the selective photosynthesis of ethane. This work introduces a pioneering and transferable idea for converting CO2 into high-value-added products, shedding light on controllable chemical conversion and precise photocatalysis.
Current photocatalytic CO2 reduction commonly results in low-value C1 products due to unguided carrier transfer. This work developed an encapsulation photocatalyst with tandem built-in electric fields. These sequential fields not only promote charge separation but also enable precise control over photogenerated electron transfer. By concentrating electrons on the Cu2+-Cu+ site, we successfully achieved the selective photosynthesis of ethane. |
ArticleNumber | 102295 |
Author | Ren, Yuehong Zhu, Enwei Li, Wenting Jin, Hongqiang Zhu, Yongfa Liu, Liping Xu, Jingyi Chong, Meichi |
Author_xml | – sequence: 1 givenname: Jingyi surname: Xu fullname: Xu, Jingyi organization: Department of Chemistry, Tsinghua University, Beijing, P.R. China – sequence: 2 givenname: Meichi surname: Chong fullname: Chong, Meichi organization: Department of Chemistry, Tsinghua University, Beijing, P.R. China – sequence: 3 givenname: Wenting surname: Li fullname: Li, Wenting organization: Department of Chemistry, Tsinghua University, Beijing, P.R. China – sequence: 4 givenname: Enwei surname: Zhu fullname: Zhu, Enwei organization: Department of Chemistry, Jilin Normal University, Changchun, P.R. China – sequence: 5 givenname: Hongqiang surname: Jin fullname: Jin, Hongqiang organization: Institute of Chemistry, Chinese Academy of Sciences, Beijing, P.R. China – sequence: 6 givenname: Liping surname: Liu fullname: Liu, Liping organization: Department of Chemistry, Tsinghua University, Beijing, P.R. China – sequence: 7 givenname: Yuehong surname: Ren fullname: Ren, Yuehong email: yhrenbitipe@mail.tsinghua.edu.cn organization: Department of Chemistry, Tsinghua University, Beijing, P.R. China – sequence: 8 givenname: Yongfa surname: Zhu fullname: Zhu, Yongfa email: zhuyf@tsinghua.edu.cn organization: Department of Chemistry, Tsinghua University, Beijing, P.R. China |
BookMark | eNqFkEFPAjEUhHvARET-gYf9A7u-lnbZ9WBiNggmJFz03GzbVymB7aZdSPz3FuHkQU8vmbxvMjN3ZNT5Dgl5oFBQoOXjrtBbPPShYMB4AVUBtBqRMeOC5jWr-S2ZxrgDSDKjcwFjslgenXHdZ4Z71EPwXTaEtosWQ2Z9yOKP7E6YNWxVZv3WD74P3hyTmH5t8Ies2bB7cmPbfcTp9U7Ix-vivVnl683yrXlZ55oxOuScIQouQDDFtAIxM1bVpp3pOVeqBEANpahsW1FbcahNJUqsWUkNclWr0swm5Oniq4OPMaCV2g3tOUpK7faSgjzvIHfysoM87yChkqlwgvkvuA_u0Iav_7DnC4ap2MlhkFE77DQaF9I20nj3t8E3zdJ91g |
CitedBy_id | crossref_primary_10_1021_acscatal_4c08035 crossref_primary_10_1002_aenm_202500177 |
Cites_doi | 10.1021/acs.chemmater.9b04582 10.1021/jacs.1c00206 10.1021/jacs.9b13681 10.1016/j.apcatb.2021.120146 10.1016/j.chempr.2023.08.027 10.1039/D1EE02714J 10.1038/s41586-022-05399-1 10.1021/acsenergylett.8b02525 10.1021/acs.chemmater.9b03426 10.1021/jacs.1c11984 10.1038/s41560-023-01242-7 10.1038/s41467-022-34263-z 10.1039/C8TA09865D 10.1021/jacs.2c09424 10.1016/j.chempr.2020.06.010 10.1021/la901515r 10.1038/s41586-020-2738-2 10.1016/j.chempr.2020.01.005 10.1039/C4EE02914C 10.1002/anie.201912883 10.1021/acs.jpclett.6b02763 10.1021/jacs.0c02425 10.1021/ja803492q 10.1039/C8TA09412H 10.1038/s41467-020-18350-7 10.1038/s41560-018-0194-0 10.1021/ja067435s 10.1002/anie.201914925 10.1021/am301365h 10.1002/anie.202212243 10.1002/anie.202216613 10.1039/D0CS00445F 10.1021/jacs.1c05907 10.1002/anie.202302253 10.1021/jacs.3c02370 10.1016/j.chempr.2019.06.019 10.1038/s41560-021-00795-9 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. |
Copyright_xml | – notice: 2024 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.chempr.2024.08.018 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_chempr_2024_08_018 S2451929424004339 |
GroupedDBID | 0R~ AACTN AAEDW AALRI AAMRU AAVLU AAXUO ABJNI ABMAC ACGFS AFTJW AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS EBS FDB O9- OK1 AAYWO AAYXX ABDGV ACVFH ADBBV ADCNI ADVLN AEUPX AFPUW AGCQF AIGII AITUG AKBMS AKYEP AMRAJ APXCP CITATION EJD SSZ |
ID | FETCH-LOGICAL-c221t-42ee545052b2cb053dfb9da3c74bb600ec0658fa81f8409d856e9261de4b9b6d3 |
ISSN | 2451-9294 |
IngestDate | Tue Jul 01 01:02:53 EDT 2025 Thu Apr 24 22:57:17 EDT 2025 Sun Apr 06 06:53:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | C–C coupling ethane CO2 reduction photocatalysis SDG7: Affordable and clean energy tandem electric fields |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c221t-42ee545052b2cb053dfb9da3c74bb600ec0658fa81f8409d856e9261de4b9b6d3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_chempr_2024_08_018 crossref_primary_10_1016_j_chempr_2024_08_018 elsevier_sciencedirect_doi_10_1016_j_chempr_2024_08_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-09 |
PublicationDateYYYYMMDD | 2025-01-09 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-09 day: 09 |
PublicationDecade | 2020 |
PublicationTitle | Chem |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Yuan, Ruan, Barber, Joachim Loo, Xue (bib6) 2014; 7 Ma, Sun, Ambrogio, Fillinger, Parkin, Zhou (bib17) 2007; 129 Zhao, Wang, Dong, Huang, Chen, Xue, Shen, Guo (bib24) 2021; 6 Liédana, Galve, Rubio, Téllez, Coronas (bib21) 2012; 4 Wang, Deng, Xie, Li, Zhang, Sheng, Chen, Zhao (bib36) 2021; 143 Xu, Zhang, Cheng, Fan, Yu (bib25) 2020; 6 Qin, Dai, Hadjiev, Wang, Xie, Ni, Wu, Yang, Chen, Deng (bib19) 2019; 31 Zhang, Li, Xin, Wang, Guo, Wang, Wang, Huang, Sobrido, Li (bib23) 2023; 8 Zhang, Mohamed, Ong (bib5) 2020; 59 Xu, Si, Zhao, Wu, Wang, Liu, Zhao, Cao, Huang (bib30) 2023; 145 Zhou, Navid, Ma, Xiao, Wang, Ye, Zhou, Sun, Mi (bib33) 2023; 613 Zhu, Li, Cai, Shao (bib38) 2019; 4 Jiang, Xu, Ma, Cho, Ding, Wang, Wu, Oleynikov, Jia, Cheng (bib1) 2020; 586 Jiang, Liao, Chen, Zhang, Li, Wang, Kuang (bib12) 2020; 6 Ning, Ou, Li, Lv, Wang, Wang, Ye (bib14) 2023; 62 Xu, Meng, Cheng, Wang, Xu, Yu (bib34) 2020; 11 Yang, Peng, Luo, Dan, Ye, Zhou, Zou (bib2) 2021; 50 Ou, Li, Ren, Pan, Luo, Hu, Wang, Li (bib13) 2022; 144 Wang, Sun, Zheng, Hu (bib10) 2019; 7 Chakraborty, Das, Riyaz, Das, Singh, Bagchi, Vinod, Peter (bib35) 2023; 62 Ma, Eckert, Forster, Yoon, Hwang, Chang, Collier, Parise, Zhou (bib15) 2008; 130 Zhang, Wu, Liu, Chen, Wang, Bao, Xu, Liu, Zhang, Yu (bib27) 2020; 142 Benseghir, Lemarchand, Duguet, Mialane, Gomez-Mingot, Roch-Marchal, Pino, Ha-Thi, Haouas, Fontecave (bib22) 2020; 142 Xu, Li, Liu, Jing, Zhang, Liu, Yang, Zhu, Li, Zhu (bib9) 2022; 61 Gong, Ali, Hiragond, Kim, Powar, Kim, Kim, In (bib4) 2022; 15 Qiao, Guan, Yuan, Rao, Chen, Wang, Qin, Xu, Yu (bib16) 2021; 143 Babarao, Jiang, Sandler (bib18) 2009; 25 Wang, Chen, Wang, Wang, Mao (bib37) 2022; 61 Cai, Sun, Yang, Ju, Chen, Gu, Huang, Yang (bib7) 2024; 10 Chen, Hu, Wang, Shen, Zhang, Ding, Bai, Jiang, Li, Gaponik (bib28) 2020; 32 Guo, Liang, Li, Gao, Huang, Wang, Xia, Gao, Gan, Lin (bib3) 2019; 5 Chen, Pang, An, Zhu, Ye, Gao, Fan, Li (bib8) 2018; 3 Wisser, Duguet, Perrinet, Ghosh, Alves-Favaro, Mohr, Lorentz, Quadrelli, Palkovits, Farrusseng (bib11) 2020; 59 Cha, Han, Yin, Park, Park, Ahn, Cho, Jung (bib20) 2017; 8 Li, Cheng, Yang, Wei (bib29) 2022; 13 Kou, Liu, Wang, Huang, Chen, Zhou, Chen, Ma, Lei, Xie (bib31) 2021; 291 Martin, Park, Leith, Yu, Mathur, Wilson, Gange, Barth, Ly, Manley (bib26) 2022; 144 Chen, Chen, Fang, Chen, Li, Xie, Kuang, Zheng (bib32) 2019; 7 Jiang (10.1016/j.chempr.2024.08.018_bib12) 2020; 6 Kou (10.1016/j.chempr.2024.08.018_bib31) 2021; 291 Gong (10.1016/j.chempr.2024.08.018_bib4) 2022; 15 Xu (10.1016/j.chempr.2024.08.018_bib9) 2022; 61 Ning (10.1016/j.chempr.2024.08.018_bib14) 2023; 62 Martin (10.1016/j.chempr.2024.08.018_bib26) 2022; 144 Chen (10.1016/j.chempr.2024.08.018_bib8) 2018; 3 Zhang (10.1016/j.chempr.2024.08.018_bib27) 2020; 142 Xu (10.1016/j.chempr.2024.08.018_bib34) 2020; 11 Chakraborty (10.1016/j.chempr.2024.08.018_bib35) 2023; 62 Zhou (10.1016/j.chempr.2024.08.018_bib33) 2023; 613 Zhang (10.1016/j.chempr.2024.08.018_bib23) 2023; 8 Babarao (10.1016/j.chempr.2024.08.018_bib18) 2009; 25 Xu (10.1016/j.chempr.2024.08.018_bib25) 2020; 6 Zhu (10.1016/j.chempr.2024.08.018_bib38) 2019; 4 Yuan (10.1016/j.chempr.2024.08.018_bib6) 2014; 7 Ou (10.1016/j.chempr.2024.08.018_bib13) 2022; 144 Ma (10.1016/j.chempr.2024.08.018_bib15) 2008; 130 Wang (10.1016/j.chempr.2024.08.018_bib10) 2019; 7 Qiao (10.1016/j.chempr.2024.08.018_bib16) 2021; 143 Yang (10.1016/j.chempr.2024.08.018_bib2) 2021; 50 Wang (10.1016/j.chempr.2024.08.018_bib37) 2022; 61 Guo (10.1016/j.chempr.2024.08.018_bib3) 2019; 5 Wisser (10.1016/j.chempr.2024.08.018_bib11) 2020; 59 Chen (10.1016/j.chempr.2024.08.018_bib32) 2019; 7 Cai (10.1016/j.chempr.2024.08.018_bib7) 2024; 10 Liédana (10.1016/j.chempr.2024.08.018_bib21) 2012; 4 Benseghir (10.1016/j.chempr.2024.08.018_bib22) 2020; 142 Zhao (10.1016/j.chempr.2024.08.018_bib24) 2021; 6 Chen (10.1016/j.chempr.2024.08.018_bib28) 2020; 32 Cha (10.1016/j.chempr.2024.08.018_bib20) 2017; 8 Ma (10.1016/j.chempr.2024.08.018_bib17) 2007; 129 Li (10.1016/j.chempr.2024.08.018_bib29) 2022; 13 Jiang (10.1016/j.chempr.2024.08.018_bib1) 2020; 586 Xu (10.1016/j.chempr.2024.08.018_bib30) 2023; 145 Qin (10.1016/j.chempr.2024.08.018_bib19) 2019; 31 Zhang (10.1016/j.chempr.2024.08.018_bib5) 2020; 59 Wang (10.1016/j.chempr.2024.08.018_bib36) 2021; 143 |
References_xml | – volume: 145 start-page: 8261 year: 2023 end-page: 8270 ident: bib30 article-title: Tandem photocatalysis of CO publication-title: J. Am. Chem. Soc. – volume: 129 start-page: 1858 year: 2007 end-page: 1859 ident: bib17 article-title: Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 6590 year: 2009 ident: bib18 article-title: Molecular simulations for adsorptive separation of CO publication-title: Langmuir – volume: 144 start-page: 4457 year: 2022 end-page: 4468 ident: bib26 article-title: Stimuli-modulated metal oxidation states in photochromic MOFs publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 14253 year: 2021 end-page: 14260 ident: bib16 article-title: Perovskite quantum dots encapsulated in a mesoporous metal-organic framework as synergistic photocathode materials publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 4464 year: 2020 end-page: 4471 ident: bib27 article-title: Heterostructural CsPbX publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 655 year: 2018 end-page: 663 ident: bib8 article-title: Charge separation via asymmetric illumination in photocatalytic Cu publication-title: Nat. Energy – volume: 130 start-page: 15896 year: 2008 end-page: 15902 ident: bib15 article-title: Further investigation of the effect of framework catenation on hydrogen uptake in metal-organic frameworks publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 2605 year: 2019 end-page: 2616 ident: bib3 article-title: Efficient and selective CO publication-title: Chem – volume: 15 start-page: 880 year: 2022 end-page: 937 ident: bib4 article-title: Solar fuels: research and development strategies to accelerate photocatalytic CO publication-title: Energy Environ. Sci. – volume: 31 start-page: 9098 year: 2019 end-page: 9104 ident: bib19 article-title: Revealing the origin of luminescence center in 0D Cs publication-title: Chem. Mater. – volume: 142 start-page: 9428 year: 2020 end-page: 9438 ident: bib22 article-title: Co-immobilization of a Rh catalyst and a Keggin polyoxometalate in the UiO-67 Zr-based metal-organic framework: in depth structural characterization and photocatalytic properties for CO publication-title: J. Am. Chem. Soc. – volume: 61 year: 2022 ident: bib9 article-title: Efficient photocatalytic hydrogen and oxygen evolution by side-group engineered benzodiimidazole oligomers with strong built-in electric fields and short-range crystallinity publication-title: Angew. Chem. Int. Ed. Engl. – volume: 143 start-page: 2984 year: 2021 end-page: 2993 ident: bib36 article-title: Photocatalytic C-C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II) publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 4613 year: 2020 ident: bib34 article-title: Unique S-scheme heterojunctions in self-assembled TiO publication-title: Nat. Commun. – volume: 6 start-page: 766 year: 2020 end-page: 780 ident: bib12 article-title: All-solid-state Z-scheme α-Fe publication-title: Chem – volume: 586 start-page: 549 year: 2020 end-page: 554 ident: bib1 article-title: Filling metal-organic framework mesopores with TiO publication-title: Nature – volume: 10 start-page: 211 year: 2024 end-page: 233 ident: bib7 article-title: Engineering Cu(I)/Cu(0) interfaces for efficient ethanol production from CO publication-title: Chem – volume: 291 year: 2021 ident: bib31 article-title: Photocatalytic CO publication-title: Appl. Catal. B-Environ. – volume: 4 start-page: 682 year: 2019 end-page: 689 ident: bib38 article-title: CO publication-title: ACS Energy Lett. – volume: 59 start-page: 5116 year: 2020 end-page: 5122 ident: bib11 article-title: Molecular porous photosystems tailored for long-term photocatalytic CO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 7 start-page: 3934 year: 2014 end-page: 3951 ident: bib6 article-title: Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion publication-title: Energy Environ. Sci. – volume: 50 start-page: 2147 year: 2021 end-page: 2172 ident: bib2 article-title: Beyond C publication-title: Chem. Soc. Rev. – volume: 62 year: 2023 ident: bib14 article-title: Co publication-title: Angew. Chem. Int. Ed. Engl. – volume: 32 start-page: 1517 year: 2020 end-page: 1525 ident: bib28 article-title: Boosting photocatalytic CO publication-title: Chem. Mater. – volume: 8 start-page: 565 year: 2017 end-page: 570 ident: bib20 article-title: Photoresponse of CsPbBr publication-title: J. Phys. Chem. Lett. – volume: 59 start-page: 22894 year: 2020 end-page: 22915 ident: bib5 article-title: Z-scheme photocatalytic systems for carbon dioxide reduction: where are we now? publication-title: Angew. Chem. Int. Ed. Engl. – volume: 4 start-page: 5016 year: 2012 end-page: 5021 ident: bib21 article-title: CAF@ZIF-8: one-step encapsulation of caffeine in MOF publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 1334 year: 2019 end-page: 1340 ident: bib32 article-title: Photo-induced Au-Pd alloying at TiO publication-title: J. Mater. Chem. A – volume: 144 start-page: 22075 year: 2022 end-page: 22082 ident: bib13 article-title: Atomically dispersed Au-assisted C-C coupling on red phosphorus for CO publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 388 year: 2021 end-page: 397 ident: bib24 article-title: Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting publication-title: Nat. Energy – volume: 6 start-page: 1543 year: 2020 end-page: 1559 ident: bib25 article-title: S-scheme heterojunction photocatalyst publication-title: Chem – volume: 7 start-page: 865 year: 2019 end-page: 887 ident: bib10 article-title: Recent progress in visible light photocatalytic conversion of carbon dioxide publication-title: J. Mater. Chem. A – volume: 13 start-page: 6466 year: 2022 ident: bib29 article-title: Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO publication-title: Nat. Commun. – volume: 613 start-page: 66 year: 2023 end-page: 70 ident: bib33 article-title: Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting publication-title: Nature – volume: 62 year: 2023 ident: bib35 article-title: Wurtzite CuGaS publication-title: Angew. Chem. Int. Ed. Engl. – volume: 61 year: 2022 ident: bib37 article-title: P and Cu dual sites on graphitic carbon nitride for photocatalytic CO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 8 start-page: 504 year: 2023 end-page: 514 ident: bib23 article-title: Internal quantum efficiency higher than 100% achieved by combining doping and quantum effects for photocatalytic overall water splitting publication-title: Nat. Energy – volume: 32 start-page: 1517 year: 2020 ident: 10.1016/j.chempr.2024.08.018_bib28 article-title: Boosting photocatalytic CO2 reduction on CsPbBr3 perovskite nanocrystals by immobilizing metal complexes publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04582 – volume: 143 start-page: 2984 year: 2021 ident: 10.1016/j.chempr.2024.08.018_bib36 article-title: Photocatalytic C-C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II) publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c00206 – volume: 142 start-page: 4464 year: 2020 ident: 10.1016/j.chempr.2024.08.018_bib27 article-title: Heterostructural CsPbX3-PbS (X = Cl, Br, I) quantum dots with tunable Vis–NIR dual emission publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13681 – volume: 291 year: 2021 ident: 10.1016/j.chempr.2024.08.018_bib31 article-title: Photocatalytic CO2 conversion over single-atom MoN2 sites of covalent organic framework publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2021.120146 – volume: 10 start-page: 211 year: 2024 ident: 10.1016/j.chempr.2024.08.018_bib7 article-title: Engineering Cu(I)/Cu(0) interfaces for efficient ethanol production from CO2 electroreduction publication-title: Chem doi: 10.1016/j.chempr.2023.08.027 – volume: 15 start-page: 880 year: 2022 ident: 10.1016/j.chempr.2024.08.018_bib4 article-title: Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels publication-title: Energy Environ. Sci. doi: 10.1039/D1EE02714J – volume: 613 start-page: 66 year: 2023 ident: 10.1016/j.chempr.2024.08.018_bib33 article-title: Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting publication-title: Nature doi: 10.1038/s41586-022-05399-1 – volume: 4 start-page: 682 year: 2019 ident: 10.1016/j.chempr.2024.08.018_bib38 article-title: CO2 electrochemical reduction as probed through infrared spectroscopy publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b02525 – volume: 31 start-page: 9098 year: 2019 ident: 10.1016/j.chempr.2024.08.018_bib19 article-title: Revealing the origin of luminescence center in 0D Cs4PbBr6 perovskite publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b03426 – volume: 144 start-page: 4457 year: 2022 ident: 10.1016/j.chempr.2024.08.018_bib26 article-title: Stimuli-modulated metal oxidation states in photochromic MOFs publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c11984 – volume: 8 start-page: 504 year: 2023 ident: 10.1016/j.chempr.2024.08.018_bib23 article-title: Internal quantum efficiency higher than 100% achieved by combining doping and quantum effects for photocatalytic overall water splitting publication-title: Nat. Energy doi: 10.1038/s41560-023-01242-7 – volume: 13 start-page: 6466 year: 2022 ident: 10.1016/j.chempr.2024.08.018_bib29 article-title: Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction publication-title: Nat. Commun. doi: 10.1038/s41467-022-34263-z – volume: 7 start-page: 865 year: 2019 ident: 10.1016/j.chempr.2024.08.018_bib10 article-title: Recent progress in visible light photocatalytic conversion of carbon dioxide publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09865D – volume: 144 start-page: 22075 year: 2022 ident: 10.1016/j.chempr.2024.08.018_bib13 article-title: Atomically dispersed Au-assisted C-C coupling on red phosphorus for CO2 photoreduction to C2H6 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c09424 – volume: 6 start-page: 1543 year: 2020 ident: 10.1016/j.chempr.2024.08.018_bib25 article-title: S-scheme heterojunction photocatalyst publication-title: Chem doi: 10.1016/j.chempr.2020.06.010 – volume: 25 start-page: 6590 year: 2009 ident: 10.1016/j.chempr.2024.08.018_bib18 article-title: Molecular simulations for adsorptive separation of CO2/CH4 mixture in metal-exposed, catenated, and charged metal-organic frameworks publication-title: Langmuir doi: 10.1021/la901515r – volume: 586 start-page: 549 year: 2020 ident: 10.1016/j.chempr.2024.08.018_bib1 article-title: Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction publication-title: Nature doi: 10.1038/s41586-020-2738-2 – volume: 6 start-page: 766 year: 2020 ident: 10.1016/j.chempr.2024.08.018_bib12 article-title: All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible- light-driven photocatalytic CO2 reduction publication-title: Chem doi: 10.1016/j.chempr.2020.01.005 – volume: 7 start-page: 3934 year: 2014 ident: 10.1016/j.chempr.2024.08.018_bib6 article-title: Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02914C – volume: 59 start-page: 5116 year: 2020 ident: 10.1016/j.chempr.2024.08.018_bib11 article-title: Molecular porous photosystems tailored for long-term photocatalytic CO2 reduction publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201912883 – volume: 8 start-page: 565 year: 2017 ident: 10.1016/j.chempr.2024.08.018_bib20 article-title: Photoresponse of CsPbBr3 and Cs4PbBr6 perovskite single crystals publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02763 – volume: 142 start-page: 9428 year: 2020 ident: 10.1016/j.chempr.2024.08.018_bib22 article-title: Co-immobilization of a Rh catalyst and a Keggin polyoxometalate in the UiO-67 Zr-based metal-organic framework: in depth structural characterization and photocatalytic properties for CO2 reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c02425 – volume: 61 year: 2022 ident: 10.1016/j.chempr.2024.08.018_bib37 article-title: P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 Evolution publication-title: Angew. Chem. Int. Ed. Engl. – volume: 130 start-page: 15896 year: 2008 ident: 10.1016/j.chempr.2024.08.018_bib15 article-title: Further investigation of the effect of framework catenation on hydrogen uptake in metal-organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/ja803492q – volume: 7 start-page: 1334 year: 2019 ident: 10.1016/j.chempr.2024.08.018_bib32 article-title: Photo-induced Au-Pd alloying at TiO2 {101} facets enables robust CO2 photocatalytic reduction into hydrocarbon fuels publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09412H – volume: 11 start-page: 4613 year: 2020 ident: 10.1016/j.chempr.2024.08.018_bib34 article-title: Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction publication-title: Nat. Commun. doi: 10.1038/s41467-020-18350-7 – volume: 3 start-page: 655 year: 2018 ident: 10.1016/j.chempr.2024.08.018_bib8 article-title: Charge separation via asymmetric illumination in photocatalytic Cu2O particles publication-title: Nat. Energy doi: 10.1038/s41560-018-0194-0 – volume: 129 start-page: 1858 year: 2007 ident: 10.1016/j.chempr.2024.08.018_bib17 article-title: Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake publication-title: J. Am. Chem. Soc. doi: 10.1021/ja067435s – volume: 59 start-page: 22894 year: 2020 ident: 10.1016/j.chempr.2024.08.018_bib5 article-title: Z-scheme photocatalytic systems for carbon dioxide reduction: where are we now? publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201914925 – volume: 4 start-page: 5016 year: 2012 ident: 10.1016/j.chempr.2024.08.018_bib21 article-title: CAF@ZIF-8: one-step encapsulation of caffeine in MOF publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am301365h – volume: 61 year: 2022 ident: 10.1016/j.chempr.2024.08.018_bib9 article-title: Efficient photocatalytic hydrogen and oxygen evolution by side-group engineered benzodiimidazole oligomers with strong built-in electric fields and short-range crystallinity publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202212243 – volume: 62 year: 2023 ident: 10.1016/j.chempr.2024.08.018_bib35 article-title: Wurtzite CuGaS2 with an in-situ-formed CuO layer photocatalyzes CO2 conversion to ethylene with high selectivity publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202216613 – volume: 50 start-page: 2147 year: 2021 ident: 10.1016/j.chempr.2024.08.018_bib2 article-title: Beyond C3N4 π-conjugated metal-free polymeric semiconductors for photocatalytic chemical transformations publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00445F – volume: 143 start-page: 14253 year: 2021 ident: 10.1016/j.chempr.2024.08.018_bib16 article-title: Perovskite quantum dots encapsulated in a mesoporous metal-organic framework as synergistic photocathode materials publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c05907 – volume: 62 year: 2023 ident: 10.1016/j.chempr.2024.08.018_bib14 article-title: Co0-Coδ+ interface double-site-mediated C-C coupling for the photothermal conversion of CO2 into light olefins publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202302253 – volume: 145 start-page: 8261 year: 2023 ident: 10.1016/j.chempr.2024.08.018_bib30 article-title: Tandem photocatalysis of CO2 to C2H4 via a synergistic Rhenium-(I) bipyridine/copper-porphyrinic triazine framework publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c02370 – volume: 5 start-page: 2605 year: 2019 ident: 10.1016/j.chempr.2024.08.018_bib3 article-title: Efficient and selective CO2 reduction integrated with organic synthesis by solar energy publication-title: Chem doi: 10.1016/j.chempr.2019.06.019 – volume: 6 start-page: 388 year: 2021 ident: 10.1016/j.chempr.2024.08.018_bib24 article-title: Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting publication-title: Nat. Energy doi: 10.1038/s41560-021-00795-9 |
SSID | ssj0001821750 |
Score | 2.3674579 |
Snippet | Unguided electron transfer presents challenges for selectively photo-reducing carbon dioxide (CO2) into C2 products. We constructed continuous inter- and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102295 |
SubjectTerms | CO2 reduction C–C coupling ethane photocatalysis tandem electric fields |
Title | Guiding electron transfer for selective C2H6 photoproduction from CO2 |
URI | https://dx.doi.org/10.1016/j.chempr.2024.08.018 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYLnBArGKXD9xQqsZx0uSIqkJFWSQWtbcodmy1CNqqpELw9cw4W1sqtktUWbUd-bnTN6M3M4ScaI_78IIYAgP6xhX8FH3b4ZYjwUxqF_5kOSY4X994zUd-2XE7ZX9Ck12SiIr8mJtX8h9UYQxwxSzZPyBbLAoD8BnwhScgDM9fYXwx7pmclLyXDTZ8ABqqRkY8-GqGURlUZ03vdNgdJINhWuDV6AsxsaR-yybpKZYPyCHojA3CsP57rxQBZArea9WT3WL4ykgC2sp0nShD0WaBRv9N9SZjC8w1sYXSghVJL1OaTMZd2wJWxaeMqD17Wb7Y5jRM8FSBy_gyxFKsjJvqqZn9na56fY-74CaoceWOEyySZQaeAJiy5bPWXbtVBtJ88KpMJ97ixfIUSaPj-7rdfAoyQSse1sla5g_QsxTcDbKg-ptkdaJK5BZpZDDTHGaaw0wBZlrATBFmOgMzRZgpwLxNHs8bD_WmlXW_sCRjdmJxphTQ26rLBJMCbGWsRRBHjqxxIYCmKonsUUe-rdFJj33XUwH4w7HiIhBe7OyQpf6gr3YJjSNlV4WII-Eo7lWl0CJiOgikZgLomd4jTn4gocxKw2OHkucw1wA-hekxhniMITYutf09YhWzhmlplB--X8vPOszoXUrbQrgh387c__fMA7JS3utDspSMxuoIWGQijrN79AkBQ3KV |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guiding+electron+transfer+for+selective+C2H6+photoproduction+from+CO2&rft.jtitle=Chem&rft.au=Xu%2C+Jingyi&rft.au=Chong%2C+Meichi&rft.au=Li%2C+Wenting&rft.au=Zhu%2C+Enwei&rft.date=2025-01-09&rft.pub=Elsevier+Inc&rft.issn=2451-9294&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1016%2Fj.chempr.2024.08.018&rft.externalDocID=S2451929424004339 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-9294&client=summon |