Guiding electron transfer for selective C2H6 photoproduction from CO2

Unguided electron transfer presents challenges for selectively photo-reducing carbon dioxide (CO2) into C2 products. We constructed continuous inter- and intra-component electric fields within photocatalysts by in situ chemical encapsulation. The dual-tandem electric fields facilitate charge separat...

Full description

Saved in:
Bibliographic Details
Published inChem Vol. 11; no. 1; p. 102295
Main Authors Xu, Jingyi, Chong, Meichi, Li, Wenting, Zhu, Enwei, Jin, Hongqiang, Liu, Liping, Ren, Yuehong, Zhu, Yongfa
Format Journal Article
LanguageEnglish
Published Elsevier Inc 09.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Unguided electron transfer presents challenges for selectively photo-reducing carbon dioxide (CO2) into C2 products. We constructed continuous inter- and intra-component electric fields within photocatalysts by in situ chemical encapsulation. The dual-tandem electric fields facilitate charge separation and transfer photogenerated electrons accurately toward Cu2+-Cu+ sites for C–C coupling. We tracked the electron transport, observing directional electron migration between contacted heterostructure atoms, ligand carbon atoms, and Cu2+-Cu+ centers. The as-synthesized photocatalyst manifests a remarkable ethane (C2H6) production rate of 16.3 μmol g−1 h−1, a high electron selectivity of 64.4% for C2H6, and a stable electron consumption yield of 354.6 μmol g−1 h−1 in water vapor. These represent one of the best performances for CO2 photoreduction. This work promotes charge separation and manages precise control over electron migration via tandem built-in electric fields, opening a new prospect for selective CO2 photoreduction into high-value chemicals. [Display omitted] •Electron transfer is guided via dual-tandem electric fields toward Cu+-Cu2+•The transferring paths of electrons are unveiled from atom to atom•Remarkable C2H6 photoproduction rates and high selectivity are achieved Solar energy is a plentiful and clean source of energy. Utilizing photocatalytic technology to convert water and CO2 into fuel shows great potential in terms of cost-effectiveness. However, current photoreduction processes often result in low-value C1 molecules like CO and CH4 due to unguided carrier transfer. To address this, we developed an encapsulation photocatalyst with tandem built-in electric fields. These sequential fields not only promote charge separation but also enable precise control over photogenerated electron transfer. By concentrating electrons on the Cu2+-Cu+ site, we successfully achieved the selective photosynthesis of ethane. This work introduces a pioneering and transferable idea for converting CO2 into high-value-added products, shedding light on controllable chemical conversion and precise photocatalysis. Current photocatalytic CO2 reduction commonly results in low-value C1 products due to unguided carrier transfer. This work developed an encapsulation photocatalyst with tandem built-in electric fields. These sequential fields not only promote charge separation but also enable precise control over photogenerated electron transfer. By concentrating electrons on the Cu2+-Cu+ site, we successfully achieved the selective photosynthesis of ethane.
AbstractList Unguided electron transfer presents challenges for selectively photo-reducing carbon dioxide (CO2) into C2 products. We constructed continuous inter- and intra-component electric fields within photocatalysts by in situ chemical encapsulation. The dual-tandem electric fields facilitate charge separation and transfer photogenerated electrons accurately toward Cu2+-Cu+ sites for C–C coupling. We tracked the electron transport, observing directional electron migration between contacted heterostructure atoms, ligand carbon atoms, and Cu2+-Cu+ centers. The as-synthesized photocatalyst manifests a remarkable ethane (C2H6) production rate of 16.3 μmol g−1 h−1, a high electron selectivity of 64.4% for C2H6, and a stable electron consumption yield of 354.6 μmol g−1 h−1 in water vapor. These represent one of the best performances for CO2 photoreduction. This work promotes charge separation and manages precise control over electron migration via tandem built-in electric fields, opening a new prospect for selective CO2 photoreduction into high-value chemicals. [Display omitted] •Electron transfer is guided via dual-tandem electric fields toward Cu+-Cu2+•The transferring paths of electrons are unveiled from atom to atom•Remarkable C2H6 photoproduction rates and high selectivity are achieved Solar energy is a plentiful and clean source of energy. Utilizing photocatalytic technology to convert water and CO2 into fuel shows great potential in terms of cost-effectiveness. However, current photoreduction processes often result in low-value C1 molecules like CO and CH4 due to unguided carrier transfer. To address this, we developed an encapsulation photocatalyst with tandem built-in electric fields. These sequential fields not only promote charge separation but also enable precise control over photogenerated electron transfer. By concentrating electrons on the Cu2+-Cu+ site, we successfully achieved the selective photosynthesis of ethane. This work introduces a pioneering and transferable idea for converting CO2 into high-value-added products, shedding light on controllable chemical conversion and precise photocatalysis. Current photocatalytic CO2 reduction commonly results in low-value C1 products due to unguided carrier transfer. This work developed an encapsulation photocatalyst with tandem built-in electric fields. These sequential fields not only promote charge separation but also enable precise control over photogenerated electron transfer. By concentrating electrons on the Cu2+-Cu+ site, we successfully achieved the selective photosynthesis of ethane.
ArticleNumber 102295
Author Ren, Yuehong
Zhu, Enwei
Li, Wenting
Jin, Hongqiang
Zhu, Yongfa
Liu, Liping
Xu, Jingyi
Chong, Meichi
Author_xml – sequence: 1
  givenname: Jingyi
  surname: Xu
  fullname: Xu, Jingyi
  organization: Department of Chemistry, Tsinghua University, Beijing, P.R. China
– sequence: 2
  givenname: Meichi
  surname: Chong
  fullname: Chong, Meichi
  organization: Department of Chemistry, Tsinghua University, Beijing, P.R. China
– sequence: 3
  givenname: Wenting
  surname: Li
  fullname: Li, Wenting
  organization: Department of Chemistry, Tsinghua University, Beijing, P.R. China
– sequence: 4
  givenname: Enwei
  surname: Zhu
  fullname: Zhu, Enwei
  organization: Department of Chemistry, Jilin Normal University, Changchun, P.R. China
– sequence: 5
  givenname: Hongqiang
  surname: Jin
  fullname: Jin, Hongqiang
  organization: Institute of Chemistry, Chinese Academy of Sciences, Beijing, P.R. China
– sequence: 6
  givenname: Liping
  surname: Liu
  fullname: Liu, Liping
  organization: Department of Chemistry, Tsinghua University, Beijing, P.R. China
– sequence: 7
  givenname: Yuehong
  surname: Ren
  fullname: Ren, Yuehong
  email: yhrenbitipe@mail.tsinghua.edu.cn
  organization: Department of Chemistry, Tsinghua University, Beijing, P.R. China
– sequence: 8
  givenname: Yongfa
  surname: Zhu
  fullname: Zhu, Yongfa
  email: zhuyf@tsinghua.edu.cn
  organization: Department of Chemistry, Tsinghua University, Beijing, P.R. China
BookMark eNqFkEFPAjEUhHvARET-gYf9A7u-lnbZ9WBiNggmJFz03GzbVymB7aZdSPz3FuHkQU8vmbxvMjN3ZNT5Dgl5oFBQoOXjrtBbPPShYMB4AVUBtBqRMeOC5jWr-S2ZxrgDSDKjcwFjslgenXHdZ4Z71EPwXTaEtosWQ2Z9yOKP7E6YNWxVZv3WD74P3hyTmH5t8Ies2bB7cmPbfcTp9U7Ix-vivVnl683yrXlZ55oxOuScIQouQDDFtAIxM1bVpp3pOVeqBEANpahsW1FbcahNJUqsWUkNclWr0swm5Oniq4OPMaCV2g3tOUpK7faSgjzvIHfysoM87yChkqlwgvkvuA_u0Iav_7DnC4ap2MlhkFE77DQaF9I20nj3t8E3zdJ91g
CitedBy_id crossref_primary_10_1021_acscatal_4c08035
crossref_primary_10_1002_aenm_202500177
Cites_doi 10.1021/acs.chemmater.9b04582
10.1021/jacs.1c00206
10.1021/jacs.9b13681
10.1016/j.apcatb.2021.120146
10.1016/j.chempr.2023.08.027
10.1039/D1EE02714J
10.1038/s41586-022-05399-1
10.1021/acsenergylett.8b02525
10.1021/acs.chemmater.9b03426
10.1021/jacs.1c11984
10.1038/s41560-023-01242-7
10.1038/s41467-022-34263-z
10.1039/C8TA09865D
10.1021/jacs.2c09424
10.1016/j.chempr.2020.06.010
10.1021/la901515r
10.1038/s41586-020-2738-2
10.1016/j.chempr.2020.01.005
10.1039/C4EE02914C
10.1002/anie.201912883
10.1021/acs.jpclett.6b02763
10.1021/jacs.0c02425
10.1021/ja803492q
10.1039/C8TA09412H
10.1038/s41467-020-18350-7
10.1038/s41560-018-0194-0
10.1021/ja067435s
10.1002/anie.201914925
10.1021/am301365h
10.1002/anie.202212243
10.1002/anie.202216613
10.1039/D0CS00445F
10.1021/jacs.1c05907
10.1002/anie.202302253
10.1021/jacs.3c02370
10.1016/j.chempr.2019.06.019
10.1038/s41560-021-00795-9
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.chempr.2024.08.018
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_chempr_2024_08_018
S2451929424004339
GroupedDBID 0R~
AACTN
AAEDW
AALRI
AAMRU
AAVLU
AAXUO
ABJNI
ABMAC
ACGFS
AFTJW
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
EBS
FDB
O9-
OK1
AAYWO
AAYXX
ABDGV
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AIGII
AITUG
AKBMS
AKYEP
AMRAJ
APXCP
CITATION
EJD
SSZ
ID FETCH-LOGICAL-c221t-42ee545052b2cb053dfb9da3c74bb600ec0658fa81f8409d856e9261de4b9b6d3
ISSN 2451-9294
IngestDate Tue Jul 01 01:02:53 EDT 2025
Thu Apr 24 22:57:17 EDT 2025
Sun Apr 06 06:53:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords C–C coupling
ethane
CO2 reduction
photocatalysis
SDG7: Affordable and clean energy
tandem electric fields
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c221t-42ee545052b2cb053dfb9da3c74bb600ec0658fa81f8409d856e9261de4b9b6d3
ParticipantIDs crossref_citationtrail_10_1016_j_chempr_2024_08_018
crossref_primary_10_1016_j_chempr_2024_08_018
elsevier_sciencedirect_doi_10_1016_j_chempr_2024_08_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-09
PublicationDateYYYYMMDD 2025-01-09
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-09
  day: 09
PublicationDecade 2020
PublicationTitle Chem
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Yuan, Ruan, Barber, Joachim Loo, Xue (bib6) 2014; 7
Ma, Sun, Ambrogio, Fillinger, Parkin, Zhou (bib17) 2007; 129
Zhao, Wang, Dong, Huang, Chen, Xue, Shen, Guo (bib24) 2021; 6
Liédana, Galve, Rubio, Téllez, Coronas (bib21) 2012; 4
Wang, Deng, Xie, Li, Zhang, Sheng, Chen, Zhao (bib36) 2021; 143
Xu, Zhang, Cheng, Fan, Yu (bib25) 2020; 6
Qin, Dai, Hadjiev, Wang, Xie, Ni, Wu, Yang, Chen, Deng (bib19) 2019; 31
Zhang, Li, Xin, Wang, Guo, Wang, Wang, Huang, Sobrido, Li (bib23) 2023; 8
Zhang, Mohamed, Ong (bib5) 2020; 59
Xu, Si, Zhao, Wu, Wang, Liu, Zhao, Cao, Huang (bib30) 2023; 145
Zhou, Navid, Ma, Xiao, Wang, Ye, Zhou, Sun, Mi (bib33) 2023; 613
Zhu, Li, Cai, Shao (bib38) 2019; 4
Jiang, Xu, Ma, Cho, Ding, Wang, Wu, Oleynikov, Jia, Cheng (bib1) 2020; 586
Jiang, Liao, Chen, Zhang, Li, Wang, Kuang (bib12) 2020; 6
Ning, Ou, Li, Lv, Wang, Wang, Ye (bib14) 2023; 62
Xu, Meng, Cheng, Wang, Xu, Yu (bib34) 2020; 11
Yang, Peng, Luo, Dan, Ye, Zhou, Zou (bib2) 2021; 50
Ou, Li, Ren, Pan, Luo, Hu, Wang, Li (bib13) 2022; 144
Wang, Sun, Zheng, Hu (bib10) 2019; 7
Chakraborty, Das, Riyaz, Das, Singh, Bagchi, Vinod, Peter (bib35) 2023; 62
Ma, Eckert, Forster, Yoon, Hwang, Chang, Collier, Parise, Zhou (bib15) 2008; 130
Zhang, Wu, Liu, Chen, Wang, Bao, Xu, Liu, Zhang, Yu (bib27) 2020; 142
Benseghir, Lemarchand, Duguet, Mialane, Gomez-Mingot, Roch-Marchal, Pino, Ha-Thi, Haouas, Fontecave (bib22) 2020; 142
Xu, Li, Liu, Jing, Zhang, Liu, Yang, Zhu, Li, Zhu (bib9) 2022; 61
Gong, Ali, Hiragond, Kim, Powar, Kim, Kim, In (bib4) 2022; 15
Qiao, Guan, Yuan, Rao, Chen, Wang, Qin, Xu, Yu (bib16) 2021; 143
Babarao, Jiang, Sandler (bib18) 2009; 25
Wang, Chen, Wang, Wang, Mao (bib37) 2022; 61
Cai, Sun, Yang, Ju, Chen, Gu, Huang, Yang (bib7) 2024; 10
Chen, Hu, Wang, Shen, Zhang, Ding, Bai, Jiang, Li, Gaponik (bib28) 2020; 32
Guo, Liang, Li, Gao, Huang, Wang, Xia, Gao, Gan, Lin (bib3) 2019; 5
Chen, Pang, An, Zhu, Ye, Gao, Fan, Li (bib8) 2018; 3
Wisser, Duguet, Perrinet, Ghosh, Alves-Favaro, Mohr, Lorentz, Quadrelli, Palkovits, Farrusseng (bib11) 2020; 59
Cha, Han, Yin, Park, Park, Ahn, Cho, Jung (bib20) 2017; 8
Li, Cheng, Yang, Wei (bib29) 2022; 13
Kou, Liu, Wang, Huang, Chen, Zhou, Chen, Ma, Lei, Xie (bib31) 2021; 291
Martin, Park, Leith, Yu, Mathur, Wilson, Gange, Barth, Ly, Manley (bib26) 2022; 144
Chen, Chen, Fang, Chen, Li, Xie, Kuang, Zheng (bib32) 2019; 7
Jiang (10.1016/j.chempr.2024.08.018_bib12) 2020; 6
Kou (10.1016/j.chempr.2024.08.018_bib31) 2021; 291
Gong (10.1016/j.chempr.2024.08.018_bib4) 2022; 15
Xu (10.1016/j.chempr.2024.08.018_bib9) 2022; 61
Ning (10.1016/j.chempr.2024.08.018_bib14) 2023; 62
Martin (10.1016/j.chempr.2024.08.018_bib26) 2022; 144
Chen (10.1016/j.chempr.2024.08.018_bib8) 2018; 3
Zhang (10.1016/j.chempr.2024.08.018_bib27) 2020; 142
Xu (10.1016/j.chempr.2024.08.018_bib34) 2020; 11
Chakraborty (10.1016/j.chempr.2024.08.018_bib35) 2023; 62
Zhou (10.1016/j.chempr.2024.08.018_bib33) 2023; 613
Zhang (10.1016/j.chempr.2024.08.018_bib23) 2023; 8
Babarao (10.1016/j.chempr.2024.08.018_bib18) 2009; 25
Xu (10.1016/j.chempr.2024.08.018_bib25) 2020; 6
Zhu (10.1016/j.chempr.2024.08.018_bib38) 2019; 4
Yuan (10.1016/j.chempr.2024.08.018_bib6) 2014; 7
Ou (10.1016/j.chempr.2024.08.018_bib13) 2022; 144
Ma (10.1016/j.chempr.2024.08.018_bib15) 2008; 130
Wang (10.1016/j.chempr.2024.08.018_bib10) 2019; 7
Qiao (10.1016/j.chempr.2024.08.018_bib16) 2021; 143
Yang (10.1016/j.chempr.2024.08.018_bib2) 2021; 50
Wang (10.1016/j.chempr.2024.08.018_bib37) 2022; 61
Guo (10.1016/j.chempr.2024.08.018_bib3) 2019; 5
Wisser (10.1016/j.chempr.2024.08.018_bib11) 2020; 59
Chen (10.1016/j.chempr.2024.08.018_bib32) 2019; 7
Cai (10.1016/j.chempr.2024.08.018_bib7) 2024; 10
Liédana (10.1016/j.chempr.2024.08.018_bib21) 2012; 4
Benseghir (10.1016/j.chempr.2024.08.018_bib22) 2020; 142
Zhao (10.1016/j.chempr.2024.08.018_bib24) 2021; 6
Chen (10.1016/j.chempr.2024.08.018_bib28) 2020; 32
Cha (10.1016/j.chempr.2024.08.018_bib20) 2017; 8
Ma (10.1016/j.chempr.2024.08.018_bib17) 2007; 129
Li (10.1016/j.chempr.2024.08.018_bib29) 2022; 13
Jiang (10.1016/j.chempr.2024.08.018_bib1) 2020; 586
Xu (10.1016/j.chempr.2024.08.018_bib30) 2023; 145
Qin (10.1016/j.chempr.2024.08.018_bib19) 2019; 31
Zhang (10.1016/j.chempr.2024.08.018_bib5) 2020; 59
Wang (10.1016/j.chempr.2024.08.018_bib36) 2021; 143
References_xml – volume: 145
  start-page: 8261
  year: 2023
  end-page: 8270
  ident: bib30
  article-title: Tandem photocatalysis of CO
  publication-title: J. Am. Chem. Soc.
– volume: 129
  start-page: 1858
  year: 2007
  end-page: 1859
  ident: bib17
  article-title: Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 6590
  year: 2009
  ident: bib18
  article-title: Molecular simulations for adsorptive separation of CO
  publication-title: Langmuir
– volume: 144
  start-page: 4457
  year: 2022
  end-page: 4468
  ident: bib26
  article-title: Stimuli-modulated metal oxidation states in photochromic MOFs
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 14253
  year: 2021
  end-page: 14260
  ident: bib16
  article-title: Perovskite quantum dots encapsulated in a mesoporous metal-organic framework as synergistic photocathode materials
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 4464
  year: 2020
  end-page: 4471
  ident: bib27
  article-title: Heterostructural CsPbX
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 655
  year: 2018
  end-page: 663
  ident: bib8
  article-title: Charge separation via asymmetric illumination in photocatalytic Cu
  publication-title: Nat. Energy
– volume: 130
  start-page: 15896
  year: 2008
  end-page: 15902
  ident: bib15
  article-title: Further investigation of the effect of framework catenation on hydrogen uptake in metal-organic frameworks
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 2605
  year: 2019
  end-page: 2616
  ident: bib3
  article-title: Efficient and selective CO
  publication-title: Chem
– volume: 15
  start-page: 880
  year: 2022
  end-page: 937
  ident: bib4
  article-title: Solar fuels: research and development strategies to accelerate photocatalytic CO
  publication-title: Energy Environ. Sci.
– volume: 31
  start-page: 9098
  year: 2019
  end-page: 9104
  ident: bib19
  article-title: Revealing the origin of luminescence center in 0D Cs
  publication-title: Chem. Mater.
– volume: 142
  start-page: 9428
  year: 2020
  end-page: 9438
  ident: bib22
  article-title: Co-immobilization of a Rh catalyst and a Keggin polyoxometalate in the UiO-67 Zr-based metal-organic framework: in depth structural characterization and photocatalytic properties for CO
  publication-title: J. Am. Chem. Soc.
– volume: 61
  year: 2022
  ident: bib9
  article-title: Efficient photocatalytic hydrogen and oxygen evolution by side-group engineered benzodiimidazole oligomers with strong built-in electric fields and short-range crystallinity
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 143
  start-page: 2984
  year: 2021
  end-page: 2993
  ident: bib36
  article-title: Photocatalytic C-C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II)
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 4613
  year: 2020
  ident: bib34
  article-title: Unique S-scheme heterojunctions in self-assembled TiO
  publication-title: Nat. Commun.
– volume: 6
  start-page: 766
  year: 2020
  end-page: 780
  ident: bib12
  article-title: All-solid-state Z-scheme α-Fe
  publication-title: Chem
– volume: 586
  start-page: 549
  year: 2020
  end-page: 554
  ident: bib1
  article-title: Filling metal-organic framework mesopores with TiO
  publication-title: Nature
– volume: 10
  start-page: 211
  year: 2024
  end-page: 233
  ident: bib7
  article-title: Engineering Cu(I)/Cu(0) interfaces for efficient ethanol production from CO
  publication-title: Chem
– volume: 291
  year: 2021
  ident: bib31
  article-title: Photocatalytic CO
  publication-title: Appl. Catal. B-Environ.
– volume: 4
  start-page: 682
  year: 2019
  end-page: 689
  ident: bib38
  article-title: CO
  publication-title: ACS Energy Lett.
– volume: 59
  start-page: 5116
  year: 2020
  end-page: 5122
  ident: bib11
  article-title: Molecular porous photosystems tailored for long-term photocatalytic CO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 7
  start-page: 3934
  year: 2014
  end-page: 3951
  ident: bib6
  article-title: Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion
  publication-title: Energy Environ. Sci.
– volume: 50
  start-page: 2147
  year: 2021
  end-page: 2172
  ident: bib2
  article-title: Beyond C
  publication-title: Chem. Soc. Rev.
– volume: 62
  year: 2023
  ident: bib14
  article-title: Co
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 32
  start-page: 1517
  year: 2020
  end-page: 1525
  ident: bib28
  article-title: Boosting photocatalytic CO
  publication-title: Chem. Mater.
– volume: 8
  start-page: 565
  year: 2017
  end-page: 570
  ident: bib20
  article-title: Photoresponse of CsPbBr
  publication-title: J. Phys. Chem. Lett.
– volume: 59
  start-page: 22894
  year: 2020
  end-page: 22915
  ident: bib5
  article-title: Z-scheme photocatalytic systems for carbon dioxide reduction: where are we now?
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 4
  start-page: 5016
  year: 2012
  end-page: 5021
  ident: bib21
  article-title: CAF@ZIF-8: one-step encapsulation of caffeine in MOF
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 1334
  year: 2019
  end-page: 1340
  ident: bib32
  article-title: Photo-induced Au-Pd alloying at TiO
  publication-title: J. Mater. Chem. A
– volume: 144
  start-page: 22075
  year: 2022
  end-page: 22082
  ident: bib13
  article-title: Atomically dispersed Au-assisted C-C coupling on red phosphorus for CO
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 388
  year: 2021
  end-page: 397
  ident: bib24
  article-title: Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting
  publication-title: Nat. Energy
– volume: 6
  start-page: 1543
  year: 2020
  end-page: 1559
  ident: bib25
  article-title: S-scheme heterojunction photocatalyst
  publication-title: Chem
– volume: 7
  start-page: 865
  year: 2019
  end-page: 887
  ident: bib10
  article-title: Recent progress in visible light photocatalytic conversion of carbon dioxide
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 6466
  year: 2022
  ident: bib29
  article-title: Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO
  publication-title: Nat. Commun.
– volume: 613
  start-page: 66
  year: 2023
  end-page: 70
  ident: bib33
  article-title: Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting
  publication-title: Nature
– volume: 62
  year: 2023
  ident: bib35
  article-title: Wurtzite CuGaS
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 61
  year: 2022
  ident: bib37
  article-title: P and Cu dual sites on graphitic carbon nitride for photocatalytic CO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 8
  start-page: 504
  year: 2023
  end-page: 514
  ident: bib23
  article-title: Internal quantum efficiency higher than 100% achieved by combining doping and quantum effects for photocatalytic overall water splitting
  publication-title: Nat. Energy
– volume: 32
  start-page: 1517
  year: 2020
  ident: 10.1016/j.chempr.2024.08.018_bib28
  article-title: Boosting photocatalytic CO2 reduction on CsPbBr3 perovskite nanocrystals by immobilizing metal complexes
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b04582
– volume: 143
  start-page: 2984
  year: 2021
  ident: 10.1016/j.chempr.2024.08.018_bib36
  article-title: Photocatalytic C-C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II)
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c00206
– volume: 142
  start-page: 4464
  year: 2020
  ident: 10.1016/j.chempr.2024.08.018_bib27
  article-title: Heterostructural CsPbX3-PbS (X = Cl, Br, I) quantum dots with tunable Vis–NIR dual emission
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13681
– volume: 291
  year: 2021
  ident: 10.1016/j.chempr.2024.08.018_bib31
  article-title: Photocatalytic CO2 conversion over single-atom MoN2 sites of covalent organic framework
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2021.120146
– volume: 10
  start-page: 211
  year: 2024
  ident: 10.1016/j.chempr.2024.08.018_bib7
  article-title: Engineering Cu(I)/Cu(0) interfaces for efficient ethanol production from CO2 electroreduction
  publication-title: Chem
  doi: 10.1016/j.chempr.2023.08.027
– volume: 15
  start-page: 880
  year: 2022
  ident: 10.1016/j.chempr.2024.08.018_bib4
  article-title: Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE02714J
– volume: 613
  start-page: 66
  year: 2023
  ident: 10.1016/j.chempr.2024.08.018_bib33
  article-title: Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting
  publication-title: Nature
  doi: 10.1038/s41586-022-05399-1
– volume: 4
  start-page: 682
  year: 2019
  ident: 10.1016/j.chempr.2024.08.018_bib38
  article-title: CO2 electrochemical reduction as probed through infrared spectroscopy
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b02525
– volume: 31
  start-page: 9098
  year: 2019
  ident: 10.1016/j.chempr.2024.08.018_bib19
  article-title: Revealing the origin of luminescence center in 0D Cs4PbBr6 perovskite
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b03426
– volume: 144
  start-page: 4457
  year: 2022
  ident: 10.1016/j.chempr.2024.08.018_bib26
  article-title: Stimuli-modulated metal oxidation states in photochromic MOFs
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c11984
– volume: 8
  start-page: 504
  year: 2023
  ident: 10.1016/j.chempr.2024.08.018_bib23
  article-title: Internal quantum efficiency higher than 100% achieved by combining doping and quantum effects for photocatalytic overall water splitting
  publication-title: Nat. Energy
  doi: 10.1038/s41560-023-01242-7
– volume: 13
  start-page: 6466
  year: 2022
  ident: 10.1016/j.chempr.2024.08.018_bib29
  article-title: Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34263-z
– volume: 7
  start-page: 865
  year: 2019
  ident: 10.1016/j.chempr.2024.08.018_bib10
  article-title: Recent progress in visible light photocatalytic conversion of carbon dioxide
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09865D
– volume: 144
  start-page: 22075
  year: 2022
  ident: 10.1016/j.chempr.2024.08.018_bib13
  article-title: Atomically dispersed Au-assisted C-C coupling on red phosphorus for CO2 photoreduction to C2H6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c09424
– volume: 6
  start-page: 1543
  year: 2020
  ident: 10.1016/j.chempr.2024.08.018_bib25
  article-title: S-scheme heterojunction photocatalyst
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.06.010
– volume: 25
  start-page: 6590
  year: 2009
  ident: 10.1016/j.chempr.2024.08.018_bib18
  article-title: Molecular simulations for adsorptive separation of CO2/CH4 mixture in metal-exposed, catenated, and charged metal-organic frameworks
  publication-title: Langmuir
  doi: 10.1021/la901515r
– volume: 586
  start-page: 549
  year: 2020
  ident: 10.1016/j.chempr.2024.08.018_bib1
  article-title: Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction
  publication-title: Nature
  doi: 10.1038/s41586-020-2738-2
– volume: 6
  start-page: 766
  year: 2020
  ident: 10.1016/j.chempr.2024.08.018_bib12
  article-title: All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible- light-driven photocatalytic CO2 reduction
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.01.005
– volume: 7
  start-page: 3934
  year: 2014
  ident: 10.1016/j.chempr.2024.08.018_bib6
  article-title: Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02914C
– volume: 59
  start-page: 5116
  year: 2020
  ident: 10.1016/j.chempr.2024.08.018_bib11
  article-title: Molecular porous photosystems tailored for long-term photocatalytic CO2 reduction
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201912883
– volume: 8
  start-page: 565
  year: 2017
  ident: 10.1016/j.chempr.2024.08.018_bib20
  article-title: Photoresponse of CsPbBr3 and Cs4PbBr6 perovskite single crystals
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02763
– volume: 142
  start-page: 9428
  year: 2020
  ident: 10.1016/j.chempr.2024.08.018_bib22
  article-title: Co-immobilization of a Rh catalyst and a Keggin polyoxometalate in the UiO-67 Zr-based metal-organic framework: in depth structural characterization and photocatalytic properties for CO2 reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c02425
– volume: 61
  year: 2022
  ident: 10.1016/j.chempr.2024.08.018_bib37
  article-title: P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 Evolution
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 130
  start-page: 15896
  year: 2008
  ident: 10.1016/j.chempr.2024.08.018_bib15
  article-title: Further investigation of the effect of framework catenation on hydrogen uptake in metal-organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja803492q
– volume: 7
  start-page: 1334
  year: 2019
  ident: 10.1016/j.chempr.2024.08.018_bib32
  article-title: Photo-induced Au-Pd alloying at TiO2 {101} facets enables robust CO2 photocatalytic reduction into hydrocarbon fuels
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09412H
– volume: 11
  start-page: 4613
  year: 2020
  ident: 10.1016/j.chempr.2024.08.018_bib34
  article-title: Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18350-7
– volume: 3
  start-page: 655
  year: 2018
  ident: 10.1016/j.chempr.2024.08.018_bib8
  article-title: Charge separation via asymmetric illumination in photocatalytic Cu2O particles
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0194-0
– volume: 129
  start-page: 1858
  year: 2007
  ident: 10.1016/j.chempr.2024.08.018_bib17
  article-title: Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja067435s
– volume: 59
  start-page: 22894
  year: 2020
  ident: 10.1016/j.chempr.2024.08.018_bib5
  article-title: Z-scheme photocatalytic systems for carbon dioxide reduction: where are we now?
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201914925
– volume: 4
  start-page: 5016
  year: 2012
  ident: 10.1016/j.chempr.2024.08.018_bib21
  article-title: CAF@ZIF-8: one-step encapsulation of caffeine in MOF
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am301365h
– volume: 61
  year: 2022
  ident: 10.1016/j.chempr.2024.08.018_bib9
  article-title: Efficient photocatalytic hydrogen and oxygen evolution by side-group engineered benzodiimidazole oligomers with strong built-in electric fields and short-range crystallinity
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202212243
– volume: 62
  year: 2023
  ident: 10.1016/j.chempr.2024.08.018_bib35
  article-title: Wurtzite CuGaS2 with an in-situ-formed CuO layer photocatalyzes CO2 conversion to ethylene with high selectivity
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202216613
– volume: 50
  start-page: 2147
  year: 2021
  ident: 10.1016/j.chempr.2024.08.018_bib2
  article-title: Beyond C3N4 π-conjugated metal-free polymeric semiconductors for photocatalytic chemical transformations
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00445F
– volume: 143
  start-page: 14253
  year: 2021
  ident: 10.1016/j.chempr.2024.08.018_bib16
  article-title: Perovskite quantum dots encapsulated in a mesoporous metal-organic framework as synergistic photocathode materials
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c05907
– volume: 62
  year: 2023
  ident: 10.1016/j.chempr.2024.08.018_bib14
  article-title: Co0-Coδ+ interface double-site-mediated C-C coupling for the photothermal conversion of CO2 into light olefins
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202302253
– volume: 145
  start-page: 8261
  year: 2023
  ident: 10.1016/j.chempr.2024.08.018_bib30
  article-title: Tandem photocatalysis of CO2 to C2H4 via a synergistic Rhenium-(I) bipyridine/copper-porphyrinic triazine framework
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c02370
– volume: 5
  start-page: 2605
  year: 2019
  ident: 10.1016/j.chempr.2024.08.018_bib3
  article-title: Efficient and selective CO2 reduction integrated with organic synthesis by solar energy
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.06.019
– volume: 6
  start-page: 388
  year: 2021
  ident: 10.1016/j.chempr.2024.08.018_bib24
  article-title: Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00795-9
SSID ssj0001821750
Score 2.3674579
Snippet Unguided electron transfer presents challenges for selectively photo-reducing carbon dioxide (CO2) into C2 products. We constructed continuous inter- and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102295
SubjectTerms CO2 reduction
C–C coupling
ethane
photocatalysis
tandem electric fields
Title Guiding electron transfer for selective C2H6 photoproduction from CO2
URI https://dx.doi.org/10.1016/j.chempr.2024.08.018
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYLnBArGKXD9xQqsZx0uSIqkJFWSQWtbcodmy1CNqqpELw9cw4W1sqtktUWbUd-bnTN6M3M4ScaI_78IIYAgP6xhX8FH3b4ZYjwUxqF_5kOSY4X994zUd-2XE7ZX9Ck12SiIr8mJtX8h9UYQxwxSzZPyBbLAoD8BnwhScgDM9fYXwx7pmclLyXDTZ8ABqqRkY8-GqGURlUZ03vdNgdJINhWuDV6AsxsaR-yybpKZYPyCHojA3CsP57rxQBZArea9WT3WL4ykgC2sp0nShD0WaBRv9N9SZjC8w1sYXSghVJL1OaTMZd2wJWxaeMqD17Wb7Y5jRM8FSBy_gyxFKsjJvqqZn9na56fY-74CaoceWOEyySZQaeAJiy5bPWXbtVBtJ88KpMJ97ixfIUSaPj-7rdfAoyQSse1sla5g_QsxTcDbKg-ptkdaJK5BZpZDDTHGaaw0wBZlrATBFmOgMzRZgpwLxNHs8bD_WmlXW_sCRjdmJxphTQ26rLBJMCbGWsRRBHjqxxIYCmKonsUUe-rdFJj33XUwH4w7HiIhBe7OyQpf6gr3YJjSNlV4WII-Eo7lWl0CJiOgikZgLomd4jTn4gocxKw2OHkucw1wA-hekxhniMITYutf09YhWzhmlplB--X8vPOszoXUrbQrgh387c__fMA7JS3utDspSMxuoIWGQijrN79AkBQ3KV
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guiding+electron+transfer+for+selective+C2H6+photoproduction+from+CO2&rft.jtitle=Chem&rft.au=Xu%2C+Jingyi&rft.au=Chong%2C+Meichi&rft.au=Li%2C+Wenting&rft.au=Zhu%2C+Enwei&rft.date=2025-01-09&rft.pub=Elsevier+Inc&rft.issn=2451-9294&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1016%2Fj.chempr.2024.08.018&rft.externalDocID=S2451929424004339
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-9294&client=summon