Aeration‐enhanced leaching mechanism and kinetics for column bioleaching of copper sulfide ores
BACKGROUND Artificial aeration plays a pivotal role in the bioleaching of sulfide ores by influencing microbial activity, oxygen supply, and mineral dissolution kinetics. However, the quantitative relationship between aeration rate and leaching efficiency for low‐grade copper sulfide ores, particula...
Saved in:
Published in | Journal of chemical technology and biotechnology (1986) Vol. 100; no. 9; pp. 1897 - 1908 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.09.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BACKGROUND Artificial aeration plays a pivotal role in the bioleaching of sulfide ores by influencing microbial activity, oxygen supply, and mineral dissolution kinetics. However, the quantitative relationship between aeration rate and leaching efficiency for low‐grade copper sulfide ores, particularly under column leaching conditions, remains insufficiently characterized. RESULTS Through systematic column leaching experiments conducted at 30–45 °C with aeration rates ranging from 0 to 150 L h−1, we observed that the Cu recovery rate throughout bioleaching was not entirely positively correlated with the aeration rate. Column leaching performance at 95 L h−1 aeration rate is comparable to that at 110–150 L h−1 in the initial leaching phase. By the end of leaching, Cu recovery rate reaches 80.1% at 150 L h−1 aeration rate, which is an increase of 11.4% from the 68.7% achieved without forced aeration. Analysis of the leaching mechanism indicates that artificial aeration (>95 L h−1) enhances the positive cycle among factors such as leaching microorganisms, Fe2+ and Fe3+, while also improving the temperature and pore structure of the leaching system. CONCLUSION These findings provide both fundamental insights and practical tools for industrial applications. The identified aeration threshold of 95 L h−1 offers a cost‐effective operational target, while the validated oxygen demand model serves as a predictive framework for scaling up bioleaching processes. This work advances the scientific understanding of aeration effects in bioleaching systems and enables more efficient design of industrial heap leaching operations through optimized oxygen management strategies. © 2025 Society of Chemical Industry (SCI). |
---|---|
AbstractList | BACKGROUND Artificial aeration plays a pivotal role in the bioleaching of sulfide ores by influencing microbial activity, oxygen supply, and mineral dissolution kinetics. However, the quantitative relationship between aeration rate and leaching efficiency for low‐grade copper sulfide ores, particularly under column leaching conditions, remains insufficiently characterized. RESULTS Through systematic column leaching experiments conducted at 30–45 °C with aeration rates ranging from 0 to 150 L h−1, we observed that the Cu recovery rate throughout bioleaching was not entirely positively correlated with the aeration rate. Column leaching performance at 95 L h−1 aeration rate is comparable to that at 110–150 L h−1 in the initial leaching phase. By the end of leaching, Cu recovery rate reaches 80.1% at 150 L h−1 aeration rate, which is an increase of 11.4% from the 68.7% achieved without forced aeration. Analysis of the leaching mechanism indicates that artificial aeration (>95 L h−1) enhances the positive cycle among factors such as leaching microorganisms, Fe2+ and Fe3+, while also improving the temperature and pore structure of the leaching system. CONCLUSION These findings provide both fundamental insights and practical tools for industrial applications. The identified aeration threshold of 95 L h−1 offers a cost‐effective operational target, while the validated oxygen demand model serves as a predictive framework for scaling up bioleaching processes. This work advances the scientific understanding of aeration effects in bioleaching systems and enables more efficient design of industrial heap leaching operations through optimized oxygen management strategies. © 2025 Society of Chemical Industry (SCI). |
Author | Huang, Mingqing Li, Zhao‐lan Li, Jia‐wei Zhang, Ming |
Author_xml | – sequence: 1 givenname: Mingqing orcidid: 0000-0001-9449-1987 surname: Huang fullname: Huang, Mingqing organization: Zijin School of Geology and Mining Fuzhou University Fuzhou China, State Key Laboratory of Nuclear Resources and Environment East China University of Technology Nanchang China – sequence: 2 givenname: Jia‐wei surname: Li fullname: Li, Jia‐wei organization: Zijin School of Geology and Mining Fuzhou University Fuzhou China – sequence: 3 givenname: Ming surname: Zhang fullname: Zhang, Ming organization: Key Laboratory of Ministry of Education for High‐Efficient Mining and Safety of Metal University of Science and Technology Beijing Beijing China – sequence: 4 givenname: Zhao‐lan surname: Li fullname: Li, Zhao‐lan organization: Zijin School of Geology and Mining Fuzhou University Fuzhou China |
BookMark | eNo9kMtKxDAYhYOM4MzoxicIuBM65tIm7XIYvMGAG12XNPnjZGyTmrQLdz6Cz-iT2HHE1YHDxznwLdDMBw8IXVKyooSwm70empUkhPATNKekklkuBJmhOWGizFghizO0SGk_EaJkYo7UGqIaXPDfn1_gd8prMLgFpXfOv-IO9FS51GHlDX5zHganE7YhYh3asfO4ceGfDnZq-x4iTmNrnQEcIqRzdGpVm-DiL5fo5e72efOQbZ_uHzfrbaYZI0NmrSGNZYQ3vJKFkdQwZqRuVFEpS_JCU8uUKKQArpUtJ4JrSgwYbUtVNRVfoqvjbh_D-whpqPdhjH66rDnLGRdS0HKiro-UjiGlCLbuo-tU_KgpqQ8K64PC-lch_wE1UGkH |
Cites_doi | 10.1016/j.biortech.2020.123181 10.3389/fmicb.2022.821635 10.4028/www.scientific.net/AMR.825.414 10.1016/j.biortech.2020.123273 10.1016/j.mineng.2010.01.006 10.13374/j.issn2095-9389.2017.10.006 10.1016/j.hydromet.2023.106148 10.1016/j.mineng.2024.108576 10.1016/S0304-386X(01)00224-9 10.1016/0301-7516(96)00004-X 10.12068/j.issn.1005-3026.2019.10.022 10.1016/j.hydromet.2006.03.049 10.1128/AEM.65.1.319-321.1999 10.1016/S0167-7799(02)00004-5 10.1016/S0301-7516(00)00057-0 10.1016/j.mineng.2021.107281 10.1016/j.hydromet.2016.07.007 10.1016/j.hydromet.2010.03.021 10.1007/s11771-020-4375-1 10.1016/j.hydromet.2020.105472 10.1021/es1019146 10.1111/wej.12925 10.1016/S1001-0521(08)60038-8 10.1016/j.ijmst.2018.06.001 10.1016/j.apgeochem.2004.08.003 10.1016/j.hydromet.2021.105574 10.1016/j.hydromet.2014.09.009 10.1016/j.mineng.2024.108792 10.1007/s12598-010-0167-3 10.1007/s11771-004-0008-3 10.1016/j.hydromet.2007.11.006 10.1016/j.mineng.2016.10.016 10.1016/j.hydromet.2019.02.018 10.1007/s12613-020-2125-x 10.1007/s11771-023-5276-x 10.1016/j.hydromet.2020.105363 10.1016/j.hydromet.2021.105613 10.4028/www.scientific.net/AMR.1130.400 10.52547/jcc.3.3.4 10.1016/j.mineng.2019.03.014 10.1016/j.hydromet.2021.105585 10.1016/j.hydromet.2020.105442 10.3389/fmicb.2019.01841 10.1016/S1003-6326(23)66398-8 10.1007/s11771-020-4379-x |
ContentType | Journal Article |
Copyright | 2025 Society of Chemical Industry |
Copyright_xml | – notice: 2025 Society of Chemical Industry |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
DOI | 10.1002/jctb.70003 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-4660 |
EndPage | 1908 |
ExternalDocumentID | 10_1002_jctb_70003 |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29K 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F D-I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TUS UB1 V2E V8K W8V W99 WBFHL WBKPD WIB WIH WIK WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 XXG ZXP ZZTAW ~02 ~IA ~KM ~WT 7QF 7QO 7QQ 7QR 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
ID | FETCH-LOGICAL-c220t-ffd0bf203b3975d71d22d7cba59af045c1f2a6576e3caf85d73c10dedcf8a9b93 |
ISSN | 0268-2575 |
IngestDate | Sat Aug 23 15:40:21 EDT 2025 Wed Aug 27 16:38:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c220t-ffd0bf203b3975d71d22d7cba59af045c1f2a6576e3caf85d73c10dedcf8a9b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9449-1987 |
PQID | 3242367618 |
PQPubID | 2034149 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3242367618 crossref_primary_10_1002_jctb_70003 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-01 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Journal of chemical technology and biotechnology (1986) |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – ident: e_1_2_9_25_1 doi: 10.1016/j.biortech.2020.123181 – ident: e_1_2_9_28_1 doi: 10.3389/fmicb.2022.821635 – ident: e_1_2_9_31_1 doi: 10.4028/www.scientific.net/AMR.825.414 – ident: e_1_2_9_16_1 doi: 10.1016/j.biortech.2020.123273 – ident: e_1_2_9_12_1 doi: 10.1016/j.mineng.2010.01.006 – ident: e_1_2_9_40_1 doi: 10.13374/j.issn2095-9389.2017.10.006 – ident: e_1_2_9_2_1 doi: 10.1016/j.hydromet.2023.106148 – ident: e_1_2_9_6_1 doi: 10.1016/j.mineng.2024.108576 – ident: e_1_2_9_29_1 doi: 10.1016/S0304-386X(01)00224-9 – ident: e_1_2_9_14_1 doi: 10.1016/0301-7516(96)00004-X – ident: e_1_2_9_42_1 doi: 10.12068/j.issn.1005-3026.2019.10.022 – ident: e_1_2_9_20_1 doi: 10.1016/j.hydromet.2006.03.049 – ident: e_1_2_9_35_1 doi: 10.1128/AEM.65.1.319-321.1999 – ident: e_1_2_9_17_1 doi: 10.1016/S0167-7799(02)00004-5 – ident: e_1_2_9_19_1 doi: 10.1016/S0301-7516(00)00057-0 – ident: e_1_2_9_24_1 doi: 10.1016/j.mineng.2021.107281 – ident: e_1_2_9_10_1 doi: 10.1016/j.hydromet.2016.07.007 – ident: e_1_2_9_21_1 doi: 10.1016/j.hydromet.2010.03.021 – ident: e_1_2_9_43_1 doi: 10.1007/s11771-020-4375-1 – ident: e_1_2_9_8_1 doi: 10.1016/j.hydromet.2020.105472 – ident: e_1_2_9_27_1 doi: 10.1021/es1019146 – ident: e_1_2_9_36_1 doi: 10.1111/wej.12925 – ident: e_1_2_9_22_1 doi: 10.1016/S1001-0521(08)60038-8 – ident: e_1_2_9_41_1 doi: 10.1016/j.ijmst.2018.06.001 – ident: e_1_2_9_11_1 doi: 10.1016/j.apgeochem.2004.08.003 – ident: e_1_2_9_7_1 doi: 10.1016/j.hydromet.2021.105574 – ident: e_1_2_9_30_1 doi: 10.1016/j.hydromet.2014.09.009 – ident: e_1_2_9_4_1 doi: 10.1016/j.mineng.2024.108792 – ident: e_1_2_9_34_1 doi: 10.1007/s12598-010-0167-3 – ident: e_1_2_9_37_1 doi: 10.1007/s11771-004-0008-3 – ident: e_1_2_9_44_1 doi: 10.1016/j.hydromet.2007.11.006 – ident: e_1_2_9_26_1 doi: 10.1016/j.mineng.2016.10.016 – ident: e_1_2_9_18_1 doi: 10.1016/j.hydromet.2019.02.018 – ident: e_1_2_9_15_1 doi: 10.1007/s12613-020-2125-x – ident: e_1_2_9_46_1 doi: 10.1007/s11771-023-5276-x – ident: e_1_2_9_32_1 doi: 10.1016/j.hydromet.2020.105363 – ident: e_1_2_9_5_1 doi: 10.1016/j.hydromet.2021.105613 – ident: e_1_2_9_23_1 doi: 10.4028/www.scientific.net/AMR.1130.400 – ident: e_1_2_9_45_1 doi: 10.52547/jcc.3.3.4 – ident: e_1_2_9_38_1 doi: 10.1016/j.mineng.2019.03.014 – ident: e_1_2_9_3_1 doi: 10.1016/j.hydromet.2021.105585 – ident: e_1_2_9_9_1 doi: 10.1016/j.hydromet.2020.105442 – ident: e_1_2_9_13_1 doi: 10.3389/fmicb.2019.01841 – ident: e_1_2_9_33_1 doi: 10.1016/S1003-6326(23)66398-8 – ident: e_1_2_9_39_1 doi: 10.1007/s11771-020-4379-x |
SSID | ssj0006826 |
Score | 2.449271 |
Snippet | BACKGROUND Artificial aeration plays a pivotal role in the bioleaching of sulfide ores by influencing microbial activity, oxygen supply, and mineral... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 1897 |
SubjectTerms | Aeration Artificial aeration Bacterial leaching Biological activity Copper Copper ores Copper sulfides Heap leaching Industrial applications Kinetics Leaching Microbial activity Microorganisms Minerals Ores Oxygen Oxygen demand Recovery Sulfides |
Title | Aeration‐enhanced leaching mechanism and kinetics for column bioleaching of copper sulfide ores |
URI | https://www.proquest.com/docview/3242367618 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKdjMuELAhBgNZgjuUkTiJk1xO-9E0rUNCrdS7yHZsUShpgVRIXPEIPBbPwZNw_JtMndDYTVTlx2l9vh6fY3_-DkKvUwW5f6539MhMRRnLacRzJaOiVCWjvKBC6Q3O4yt6Ps0uZvlsNPo9YC2tO34ofty4r-QuVoVzYFe9S_Y_LBsahRPwGewLR7AwHG9l4yNp7RcYC7L9YFf0F54k-Vnqrb2-EsYniCmNLrMmFwrtmNo3WobJ32045quVVnheL9S80VWfHMlwM4AVXmugC9Pz5iXQ4OCMFoKq9PJN1SPIzVGP4ZVf_NCpSUGGWXAxZ-H3fJfzjZnt8cYTcGkZHlk4uLuZDJIHqtZt_eXANxKAF3gbuyAure-OqyLKqC1PEJx7HA9QXA1cdVJaYrAb9iEwKm8cUqxE7UcBqCx0BtkPnJ4scPWuPpteXtaT09nkHtomkLDoWhon73shM1qawn_hawehXPK2b_l6aHQ9MjDhzuQheuDMjI8s6B6hkWwfo_sD9cpdxDz8_vz85YGHPZRwAB4GTGAPPAzAwxZ4eAA8vFTYAg874GENvD00PTudHJ9HrmJHJAiJu0ipJuaKxCmHMDdviqQhpCkEZ3nFFCQPIlGEUUhxZSqYKuGOVCRxIxsBnqHiVfoEbbXLVj5FuKAZI2maQxDHM8IaTnmpG6NcQJQr2T565TurXllhltpKcJNad2ltunQfHfh-rN0f91ttcgha0KR89u_Lz9FOj9MDtNV9XcsXEIN2_KUx71-aXIvm |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aeration%E2%80%90enhanced+leaching+mechanism+and+kinetics+for+column+bioleaching+of+copper+sulfide+ores&rft.jtitle=Journal+of+chemical+technology+and+biotechnology+%281986%29&rft.au=Huang%2C+Mingqing&rft.au=Li%2C+Jia%E2%80%90wei&rft.au=Zhang%2C+Ming&rft.au=Li%2C+Zhao%E2%80%90lan&rft.date=2025-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0268-2575&rft.eissn=1097-4660&rft.volume=100&rft.issue=9&rft.spage=1897&rft.epage=1908&rft_id=info:doi/10.1002%2Fjctb.70003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-2575&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-2575&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-2575&client=summon |