Aeration‐enhanced leaching mechanism and kinetics for column bioleaching of copper sulfide ores

BACKGROUND Artificial aeration plays a pivotal role in the bioleaching of sulfide ores by influencing microbial activity, oxygen supply, and mineral dissolution kinetics. However, the quantitative relationship between aeration rate and leaching efficiency for low‐grade copper sulfide ores, particula...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical technology and biotechnology (1986) Vol. 100; no. 9; pp. 1897 - 1908
Main Authors Huang, Mingqing, Li, Jia‐wei, Zhang, Ming, Li, Zhao‐lan
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.09.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUND Artificial aeration plays a pivotal role in the bioleaching of sulfide ores by influencing microbial activity, oxygen supply, and mineral dissolution kinetics. However, the quantitative relationship between aeration rate and leaching efficiency for low‐grade copper sulfide ores, particularly under column leaching conditions, remains insufficiently characterized. RESULTS Through systematic column leaching experiments conducted at 30–45 °C with aeration rates ranging from 0 to 150 L h−1, we observed that the Cu recovery rate throughout bioleaching was not entirely positively correlated with the aeration rate. Column leaching performance at 95 L h−1 aeration rate is comparable to that at 110–150 L h−1 in the initial leaching phase. By the end of leaching, Cu recovery rate reaches 80.1% at 150 L h−1 aeration rate, which is an increase of 11.4% from the 68.7% achieved without forced aeration. Analysis of the leaching mechanism indicates that artificial aeration (>95 L h−1) enhances the positive cycle among factors such as leaching microorganisms, Fe2+ and Fe3+, while also improving the temperature and pore structure of the leaching system. CONCLUSION These findings provide both fundamental insights and practical tools for industrial applications. The identified aeration threshold of 95 L h−1 offers a cost‐effective operational target, while the validated oxygen demand model serves as a predictive framework for scaling up bioleaching processes. This work advances the scientific understanding of aeration effects in bioleaching systems and enables more efficient design of industrial heap leaching operations through optimized oxygen management strategies. © 2025 Society of Chemical Industry (SCI).
AbstractList BACKGROUND Artificial aeration plays a pivotal role in the bioleaching of sulfide ores by influencing microbial activity, oxygen supply, and mineral dissolution kinetics. However, the quantitative relationship between aeration rate and leaching efficiency for low‐grade copper sulfide ores, particularly under column leaching conditions, remains insufficiently characterized. RESULTS Through systematic column leaching experiments conducted at 30–45 °C with aeration rates ranging from 0 to 150 L h−1, we observed that the Cu recovery rate throughout bioleaching was not entirely positively correlated with the aeration rate. Column leaching performance at 95 L h−1 aeration rate is comparable to that at 110–150 L h−1 in the initial leaching phase. By the end of leaching, Cu recovery rate reaches 80.1% at 150 L h−1 aeration rate, which is an increase of 11.4% from the 68.7% achieved without forced aeration. Analysis of the leaching mechanism indicates that artificial aeration (>95 L h−1) enhances the positive cycle among factors such as leaching microorganisms, Fe2+ and Fe3+, while also improving the temperature and pore structure of the leaching system. CONCLUSION These findings provide both fundamental insights and practical tools for industrial applications. The identified aeration threshold of 95 L h−1 offers a cost‐effective operational target, while the validated oxygen demand model serves as a predictive framework for scaling up bioleaching processes. This work advances the scientific understanding of aeration effects in bioleaching systems and enables more efficient design of industrial heap leaching operations through optimized oxygen management strategies. © 2025 Society of Chemical Industry (SCI).
Author Huang, Mingqing
Li, Zhao‐lan
Li, Jia‐wei
Zhang, Ming
Author_xml – sequence: 1
  givenname: Mingqing
  orcidid: 0000-0001-9449-1987
  surname: Huang
  fullname: Huang, Mingqing
  organization: Zijin School of Geology and Mining Fuzhou University Fuzhou China, State Key Laboratory of Nuclear Resources and Environment East China University of Technology Nanchang China
– sequence: 2
  givenname: Jia‐wei
  surname: Li
  fullname: Li, Jia‐wei
  organization: Zijin School of Geology and Mining Fuzhou University Fuzhou China
– sequence: 3
  givenname: Ming
  surname: Zhang
  fullname: Zhang, Ming
  organization: Key Laboratory of Ministry of Education for High‐Efficient Mining and Safety of Metal University of Science and Technology Beijing Beijing China
– sequence: 4
  givenname: Zhao‐lan
  surname: Li
  fullname: Li, Zhao‐lan
  organization: Zijin School of Geology and Mining Fuzhou University Fuzhou China
BookMark eNo9kMtKxDAYhYOM4MzoxicIuBM65tIm7XIYvMGAG12XNPnjZGyTmrQLdz6Cz-iT2HHE1YHDxznwLdDMBw8IXVKyooSwm70empUkhPATNKekklkuBJmhOWGizFghizO0SGk_EaJkYo7UGqIaXPDfn1_gd8prMLgFpXfOv-IO9FS51GHlDX5zHganE7YhYh3asfO4ceGfDnZq-x4iTmNrnQEcIqRzdGpVm-DiL5fo5e72efOQbZ_uHzfrbaYZI0NmrSGNZYQ3vJKFkdQwZqRuVFEpS_JCU8uUKKQArpUtJ4JrSgwYbUtVNRVfoqvjbh_D-whpqPdhjH66rDnLGRdS0HKiro-UjiGlCLbuo-tU_KgpqQ8K64PC-lch_wE1UGkH
Cites_doi 10.1016/j.biortech.2020.123181
10.3389/fmicb.2022.821635
10.4028/www.scientific.net/AMR.825.414
10.1016/j.biortech.2020.123273
10.1016/j.mineng.2010.01.006
10.13374/j.issn2095-9389.2017.10.006
10.1016/j.hydromet.2023.106148
10.1016/j.mineng.2024.108576
10.1016/S0304-386X(01)00224-9
10.1016/0301-7516(96)00004-X
10.12068/j.issn.1005-3026.2019.10.022
10.1016/j.hydromet.2006.03.049
10.1128/AEM.65.1.319-321.1999
10.1016/S0167-7799(02)00004-5
10.1016/S0301-7516(00)00057-0
10.1016/j.mineng.2021.107281
10.1016/j.hydromet.2016.07.007
10.1016/j.hydromet.2010.03.021
10.1007/s11771-020-4375-1
10.1016/j.hydromet.2020.105472
10.1021/es1019146
10.1111/wej.12925
10.1016/S1001-0521(08)60038-8
10.1016/j.ijmst.2018.06.001
10.1016/j.apgeochem.2004.08.003
10.1016/j.hydromet.2021.105574
10.1016/j.hydromet.2014.09.009
10.1016/j.mineng.2024.108792
10.1007/s12598-010-0167-3
10.1007/s11771-004-0008-3
10.1016/j.hydromet.2007.11.006
10.1016/j.mineng.2016.10.016
10.1016/j.hydromet.2019.02.018
10.1007/s12613-020-2125-x
10.1007/s11771-023-5276-x
10.1016/j.hydromet.2020.105363
10.1016/j.hydromet.2021.105613
10.4028/www.scientific.net/AMR.1130.400
10.52547/jcc.3.3.4
10.1016/j.mineng.2019.03.014
10.1016/j.hydromet.2021.105585
10.1016/j.hydromet.2020.105442
10.3389/fmicb.2019.01841
10.1016/S1003-6326(23)66398-8
10.1007/s11771-020-4379-x
ContentType Journal Article
Copyright 2025 Society of Chemical Industry
Copyright_xml – notice: 2025 Society of Chemical Industry
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1002/jctb.70003
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-4660
EndPage 1908
ExternalDocumentID 10_1002_jctb_70003
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29K
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
D-I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
V8K
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
XXG
ZXP
ZZTAW
~02
~IA
~KM
~WT
7QF
7QO
7QQ
7QR
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c220t-ffd0bf203b3975d71d22d7cba59af045c1f2a6576e3caf85d73c10dedcf8a9b93
ISSN 0268-2575
IngestDate Sat Aug 23 15:40:21 EDT 2025
Wed Aug 27 16:38:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c220t-ffd0bf203b3975d71d22d7cba59af045c1f2a6576e3caf85d73c10dedcf8a9b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9449-1987
PQID 3242367618
PQPubID 2034149
PageCount 12
ParticipantIDs proquest_journals_3242367618
crossref_primary_10_1002_jctb_70003
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Journal of chemical technology and biotechnology (1986)
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – ident: e_1_2_9_25_1
  doi: 10.1016/j.biortech.2020.123181
– ident: e_1_2_9_28_1
  doi: 10.3389/fmicb.2022.821635
– ident: e_1_2_9_31_1
  doi: 10.4028/www.scientific.net/AMR.825.414
– ident: e_1_2_9_16_1
  doi: 10.1016/j.biortech.2020.123273
– ident: e_1_2_9_12_1
  doi: 10.1016/j.mineng.2010.01.006
– ident: e_1_2_9_40_1
  doi: 10.13374/j.issn2095-9389.2017.10.006
– ident: e_1_2_9_2_1
  doi: 10.1016/j.hydromet.2023.106148
– ident: e_1_2_9_6_1
  doi: 10.1016/j.mineng.2024.108576
– ident: e_1_2_9_29_1
  doi: 10.1016/S0304-386X(01)00224-9
– ident: e_1_2_9_14_1
  doi: 10.1016/0301-7516(96)00004-X
– ident: e_1_2_9_42_1
  doi: 10.12068/j.issn.1005-3026.2019.10.022
– ident: e_1_2_9_20_1
  doi: 10.1016/j.hydromet.2006.03.049
– ident: e_1_2_9_35_1
  doi: 10.1128/AEM.65.1.319-321.1999
– ident: e_1_2_9_17_1
  doi: 10.1016/S0167-7799(02)00004-5
– ident: e_1_2_9_19_1
  doi: 10.1016/S0301-7516(00)00057-0
– ident: e_1_2_9_24_1
  doi: 10.1016/j.mineng.2021.107281
– ident: e_1_2_9_10_1
  doi: 10.1016/j.hydromet.2016.07.007
– ident: e_1_2_9_21_1
  doi: 10.1016/j.hydromet.2010.03.021
– ident: e_1_2_9_43_1
  doi: 10.1007/s11771-020-4375-1
– ident: e_1_2_9_8_1
  doi: 10.1016/j.hydromet.2020.105472
– ident: e_1_2_9_27_1
  doi: 10.1021/es1019146
– ident: e_1_2_9_36_1
  doi: 10.1111/wej.12925
– ident: e_1_2_9_22_1
  doi: 10.1016/S1001-0521(08)60038-8
– ident: e_1_2_9_41_1
  doi: 10.1016/j.ijmst.2018.06.001
– ident: e_1_2_9_11_1
  doi: 10.1016/j.apgeochem.2004.08.003
– ident: e_1_2_9_7_1
  doi: 10.1016/j.hydromet.2021.105574
– ident: e_1_2_9_30_1
  doi: 10.1016/j.hydromet.2014.09.009
– ident: e_1_2_9_4_1
  doi: 10.1016/j.mineng.2024.108792
– ident: e_1_2_9_34_1
  doi: 10.1007/s12598-010-0167-3
– ident: e_1_2_9_37_1
  doi: 10.1007/s11771-004-0008-3
– ident: e_1_2_9_44_1
  doi: 10.1016/j.hydromet.2007.11.006
– ident: e_1_2_9_26_1
  doi: 10.1016/j.mineng.2016.10.016
– ident: e_1_2_9_18_1
  doi: 10.1016/j.hydromet.2019.02.018
– ident: e_1_2_9_15_1
  doi: 10.1007/s12613-020-2125-x
– ident: e_1_2_9_46_1
  doi: 10.1007/s11771-023-5276-x
– ident: e_1_2_9_32_1
  doi: 10.1016/j.hydromet.2020.105363
– ident: e_1_2_9_5_1
  doi: 10.1016/j.hydromet.2021.105613
– ident: e_1_2_9_23_1
  doi: 10.4028/www.scientific.net/AMR.1130.400
– ident: e_1_2_9_45_1
  doi: 10.52547/jcc.3.3.4
– ident: e_1_2_9_38_1
  doi: 10.1016/j.mineng.2019.03.014
– ident: e_1_2_9_3_1
  doi: 10.1016/j.hydromet.2021.105585
– ident: e_1_2_9_9_1
  doi: 10.1016/j.hydromet.2020.105442
– ident: e_1_2_9_13_1
  doi: 10.3389/fmicb.2019.01841
– ident: e_1_2_9_33_1
  doi: 10.1016/S1003-6326(23)66398-8
– ident: e_1_2_9_39_1
  doi: 10.1007/s11771-020-4379-x
SSID ssj0006826
Score 2.449271
Snippet BACKGROUND Artificial aeration plays a pivotal role in the bioleaching of sulfide ores by influencing microbial activity, oxygen supply, and mineral...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 1897
SubjectTerms Aeration
Artificial aeration
Bacterial leaching
Biological activity
Copper
Copper ores
Copper sulfides
Heap leaching
Industrial applications
Kinetics
Leaching
Microbial activity
Microorganisms
Minerals
Ores
Oxygen
Oxygen demand
Recovery
Sulfides
Title Aeration‐enhanced leaching mechanism and kinetics for column bioleaching of copper sulfide ores
URI https://www.proquest.com/docview/3242367618
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKdjMuELAhBgNZgjuUkTiJk1xO-9E0rUNCrdS7yHZsUShpgVRIXPEIPBbPwZNw_JtMndDYTVTlx2l9vh6fY3_-DkKvUwW5f6539MhMRRnLacRzJaOiVCWjvKBC6Q3O4yt6Ps0uZvlsNPo9YC2tO34ofty4r-QuVoVzYFe9S_Y_LBsahRPwGewLR7AwHG9l4yNp7RcYC7L9YFf0F54k-Vnqrb2-EsYniCmNLrMmFwrtmNo3WobJ32045quVVnheL9S80VWfHMlwM4AVXmugC9Pz5iXQ4OCMFoKq9PJN1SPIzVGP4ZVf_NCpSUGGWXAxZ-H3fJfzjZnt8cYTcGkZHlk4uLuZDJIHqtZt_eXANxKAF3gbuyAure-OqyLKqC1PEJx7HA9QXA1cdVJaYrAb9iEwKm8cUqxE7UcBqCx0BtkPnJ4scPWuPpteXtaT09nkHtomkLDoWhon73shM1qawn_hawehXPK2b_l6aHQ9MjDhzuQheuDMjI8s6B6hkWwfo_sD9cpdxDz8_vz85YGHPZRwAB4GTGAPPAzAwxZ4eAA8vFTYAg874GENvD00PTudHJ9HrmJHJAiJu0ipJuaKxCmHMDdviqQhpCkEZ3nFFCQPIlGEUUhxZSqYKuGOVCRxIxsBnqHiVfoEbbXLVj5FuKAZI2maQxDHM8IaTnmpG6NcQJQr2T565TurXllhltpKcJNad2ltunQfHfh-rN0f91ttcgha0KR89u_Lz9FOj9MDtNV9XcsXEIN2_KUx71-aXIvm
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aeration%E2%80%90enhanced+leaching+mechanism+and+kinetics+for+column+bioleaching+of+copper+sulfide+ores&rft.jtitle=Journal+of+chemical+technology+and+biotechnology+%281986%29&rft.au=Huang%2C+Mingqing&rft.au=Li%2C+Jia%E2%80%90wei&rft.au=Zhang%2C+Ming&rft.au=Li%2C+Zhao%E2%80%90lan&rft.date=2025-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0268-2575&rft.eissn=1097-4660&rft.volume=100&rft.issue=9&rft.spage=1897&rft.epage=1908&rft_id=info:doi/10.1002%2Fjctb.70003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-2575&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-2575&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-2575&client=summon