On the Hyperdeterminants of Steiner Distance Hypermatrices

Let $G$ be a graph on $n$ vertices. The Steiner distance of a collection of $k$ vertices in $G$ is the fewest number of edges in any connected subgraph containing those vertices. The order $k$ Steiner distance hypermatrix of $G$ is the $n$-dimensional array indexed by vertices, whose entries are the...

Full description

Saved in:
Bibliographic Details
Published inThe Electronic journal of combinatorics Vol. 32; no. 2
Main Author Zheng, Ya-Nan
Format Journal Article
LanguageEnglish
Published 23.05.2025
Online AccessGet full text

Cover

Loading…
Abstract Let $G$ be a graph on $n$ vertices. The Steiner distance of a collection of $k$ vertices in $G$ is the fewest number of edges in any connected subgraph containing those vertices. The order $k$ Steiner distance hypermatrix of $G$ is the $n$-dimensional array indexed by vertices, whose entries are the Steiner distances of their corresponding indices. In this paper, we confirm a conjecture on the Steiner distance hypermatrices proposed by Cooper and Du [Electron. J. Combin. 31(3):\#P3.4, 2024]. Furthermore, we also compute the hyperdeterminant of the order $k$ Steiner distance hypermatrix of $P_{3}$.
AbstractList Let $G$ be a graph on $n$ vertices. The Steiner distance of a collection of $k$ vertices in $G$ is the fewest number of edges in any connected subgraph containing those vertices. The order $k$ Steiner distance hypermatrix of $G$ is the $n$-dimensional array indexed by vertices, whose entries are the Steiner distances of their corresponding indices. In this paper, we confirm a conjecture on the Steiner distance hypermatrices proposed by Cooper and Du [Electron. J. Combin. 31(3):\#P3.4, 2024]. Furthermore, we also compute the hyperdeterminant of the order $k$ Steiner distance hypermatrix of $P_{3}$.
Author Zheng, Ya-Nan
Author_xml – sequence: 1
  givenname: Ya-Nan
  surname: Zheng
  fullname: Zheng, Ya-Nan
BookMark eNpNj7tOAzEURC0UJJIA3-CKbsGv9YMOBUKQIqUA6tXFvhZGrDey3eTvQSEF1UwxOpqzILM8ZSTkmrNbaYTUd1waxc_InDNjOuuEnv3rF2RR6xdjXDjXz8n9LtP2iXRz2GMJ2LCMKUNulU6RvjZMGQt9TLVB9qfVCK0kj_WSnEf4rnh1yiV5Xz-9rTbddvf8snrYdl4I1rpoPdMSbG-DMgysCyo6jdKiEhDN7xNQnnkZYnA9oufeORY-HAaQRhsll-Tmj-vLVGvBOOxLGqEcBs6Go_FwNJY_k4NJ0w
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.37236/13741
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1077-8926
ExternalDocumentID 10_37236_13741
GroupedDBID -~9
29G
2WC
5GY
5VS
AAFWJ
AAYXX
ACGFO
ACIPV
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
E3Z
EBS
EJD
FRP
GROUPED_DOAJ
H13
KWQ
M~E
OK1
OVT
P2P
REM
RNS
TR2
XSB
ID FETCH-LOGICAL-c220t-f8c063a858d470a89d4f96e38e42af7001a4c0c3dfd95eec1c990db9eda376743
ISSN 1077-8926
IngestDate Sun Jul 06 05:07:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c220t-f8c063a858d470a89d4f96e38e42af7001a4c0c3dfd95eec1c990db9eda376743
OpenAccessLink https://www.combinatorics.org/ojs/index.php/eljc/article/download/v32i2p30/pdf
ParticipantIDs crossref_primary_10_37236_13741
PublicationCentury 2000
PublicationDate 2025-05-23
PublicationDateYYYYMMDD 2025-05-23
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-23
  day: 23
PublicationDecade 2020
PublicationTitle The Electronic journal of combinatorics
PublicationYear 2025
SSID ssj0012995
Score 2.3722513
Snippet Let $G$ be a graph on $n$ vertices. The Steiner distance of a collection of $k$ vertices in $G$ is the fewest number of edges in any connected subgraph...
SourceID crossref
SourceType Index Database
Title On the Hyperdeterminants of Steiner Distance Hypermatrices
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagLDAgnuJZMrAGEtupYzaEiiqktgOtVFgqxw8hJFpUwsLAb-diu0lbKvFYosSyIyff6Xxn332H0HnEFUtMZEKQFhJSHNMw01SGgrKMpgobnNko306j1ad3g2RQVfy02SV5diE_luaV_AdVaANciyzZPyBbvhQa4B7whSsgDNdfYdx1MYot8CUnaiGu5b4oY6knBb1mbtMCbK8Xy8jv4wafK0lpVtVwZrgkYM7gOAvLI1La3o9P2umHBxF2vGz5bQOcFCfeLrPXa7qIwfLEseehXtLm1WO1_Tj1Uhe1LmHY1oWJCXMkVvO01gvLTRkECO6HHTm041bRGgZLvyhC0f5slgdBsFomLmzUzcyVh7LjLu24GXtixjDobaFNb9EH1w6ebbSiRztoo13S4b7toqvuKIDH4BtQwdgEHqhgClQwB9Qe6t82ezet0BetCCXGUR6aVILVJ9IkVZRFIuWKGt7QJNUUC1Oc8gsqI0mUUTzRWsYS7AGVca1EQaxDyT6qjcYjfYACIyVlXGAeC0LTiHDdkA1jREwZIybODtHZ9NOHr46bZDj_U49-7HGM1ivpOEG1fPKuT8HMyrO63Z6oWzi-AAbBKfM
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Hyperdeterminants+of+Steiner+Distance+Hypermatrices&rft.jtitle=The+Electronic+journal+of+combinatorics&rft.au=Zheng%2C+Ya-Nan&rft.date=2025-05-23&rft.issn=1077-8926&rft.eissn=1077-8926&rft.volume=32&rft.issue=2&rft_id=info:doi/10.37236%2F13741&rft.externalDBID=n%2Fa&rft.externalDocID=10_37236_13741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-8926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-8926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-8926&client=summon