List Colorings of $k$-Partite $k$-Graphs
A $k$-uniform hypergraph (or $k$-graph) $H = (V, E)$ is $k$-partite if $V$ can be partitioned into $k$ sets $V_1, \ldots, V_k$ such that each edge in $E$ contains precisely one vertex from each $V_i$. In this note, we consider list colorings for such hypergraphs. We show that for any $\varepsilon &g...
Saved in:
Published in | The Electronic journal of combinatorics Vol. 32; no. 2 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
25.04.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | A $k$-uniform hypergraph (or $k$-graph) $H = (V, E)$ is $k$-partite if $V$ can be partitioned into $k$ sets $V_1, \ldots, V_k$ such that each edge in $E$ contains precisely one vertex from each $V_i$. In this note, we consider list colorings for such hypergraphs. We show that for any $\varepsilon > 0$ if each vertex $v \in V(H)$ is assigned a list of size $|L(v)| \geq \left((k-1+\varepsilon)\Delta/\log \Delta\right)^{1/(k-1)}$, then $H$ admits a proper $L$-coloring, provided $\Delta$ is sufficiently large. Up to a constant factor, this matches the bound on the chromatic number of simple $k$-graphs shown by Frieze and Mubayi, and that on the list chromatic number of triangle free $k$-graphs shown by Li and Postle. Our results hold in the more general setting of "color-degree" as has been considered for graphs. Furthermore, we establish a number of asymmetric statements matching results of Alon, Cambie, and Kang for bipartite graphs. |
---|---|
AbstractList | A $k$-uniform hypergraph (or $k$-graph) $H = (V, E)$ is $k$-partite if $V$ can be partitioned into $k$ sets $V_1, \ldots, V_k$ such that each edge in $E$ contains precisely one vertex from each $V_i$. In this note, we consider list colorings for such hypergraphs. We show that for any $\varepsilon > 0$ if each vertex $v \in V(H)$ is assigned a list of size $|L(v)| \geq \left((k-1+\varepsilon)\Delta/\log \Delta\right)^{1/(k-1)}$, then $H$ admits a proper $L$-coloring, provided $\Delta$ is sufficiently large. Up to a constant factor, this matches the bound on the chromatic number of simple $k$-graphs shown by Frieze and Mubayi, and that on the list chromatic number of triangle free $k$-graphs shown by Li and Postle. Our results hold in the more general setting of "color-degree" as has been considered for graphs. Furthermore, we establish a number of asymmetric statements matching results of Alon, Cambie, and Kang for bipartite graphs. |
Author | Dhawan, Abhishek |
Author_xml | – sequence: 1 givenname: Abhishek surname: Dhawan fullname: Dhawan, Abhishek |
BookMark | eNpNjz1PwzAUAC1UJNoCvyFDhVhcnp_z7HhEERSkSGWAOTL-gECJKzsL_x4pMDDdTSfdii3GNAbGLgVspUapbgQq0idsKUBr3hhUi39-xlalfAAINIaW7LobylS16ZDyML6VKsVq87nhTzZPwxRm32V7fC_n7DTaQwkXf1yzl_u75_aBd_vdY3vbcYcIEw8O9auqvSBAa7zwjSQMXjlFQNhQrTQY7UhLT96YQGRdBBe9rRuQFuWaXf12XU6l5BD7Yx6-bP7uBfTzXz__yR9ZFECN |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.37236/12657 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1077-8926 |
ExternalDocumentID | 10_37236_12657 |
GroupedDBID | -~9 29G 2WC 5GY 5VS AAFWJ AAYXX ACGFO ACIPV ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION E3Z EBS EJD FRP GROUPED_DOAJ H13 KWQ M~E OK1 OVT P2P REM RNS TR2 XSB |
ID | FETCH-LOGICAL-c220t-ec27b64d1502a9d1d8352ed6c6505285467097c573d5d99e55acf0cfda4803a23 |
ISSN | 1077-8926 |
IngestDate | Tue Jul 01 05:05:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c220t-ec27b64d1502a9d1d8352ed6c6505285467097c573d5d99e55acf0cfda4803a23 |
OpenAccessLink | https://www.combinatorics.org/ojs/index.php/eljc/article/download/v32i2p16/pdf |
ParticipantIDs | crossref_primary_10_37236_12657 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-25 |
PublicationDateYYYYMMDD | 2025-04-25 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | The Electronic journal of combinatorics |
PublicationYear | 2025 |
SSID | ssj0012995 |
Score | 2.3635645 |
Snippet | A $k$-uniform hypergraph (or $k$-graph) $H = (V, E)$ is $k$-partite if $V$ can be partitioned into $k$ sets $V_1, \ldots, V_k$ such that each edge in $E$... |
SourceID | crossref |
SourceType | Index Database |
Title | List Colorings of $k$-Partite $k$-Graphs |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA46L3oQP_Fz9jDBS7VNk7Q9DpkOceJhg91Gmg8GwiauInjwt_sm6dpuDPy4lDQkJc0TkudN3jwvQi2mQwY0NvWTjGjfqJv4iaSpH0nNFRNhKKx2Z--JdQfkYUiHVZxQe7skz67F58p7Jf9BFfIAV3NL9g_Ilh-FDEgDvvAEhOH5K4wfASNj-lsnOuuTcYkJTG_Efzalc1W-3xtd6lmdiZrx0ali4NQUJKClYC5zqx5ShZ0f8w-3V9rOxsaP_qW-X4CpOfpwd4uLKS6IYV1KcSFAvSKvmBerfce5ebo83UYxtgFhQsycyvSinvXSOlN6_4HdYWuObL11tIGB4pvoE72vTnkCBMskdf6irmUuLpStd2Pr1YhEjRH0d9B2QeW9tsNlF62pyR7a6pU6uLN9dGUQ8kqEvKn2Wi-tOTo27ZA5QIO7Tv-26xexKXyBcZD7SuA4Y0QCn8Y8laE0TFZJJpiJDJhQYnTxYkHjSFKZpopSLnQgtOQkCSKOo0PUmEwn6gh5gsRSGe7JI0pUwjIqYs1TraJUaJrRY3Qx_9HRq5MgGS124cmPJU7RZjUWzlAjf3tX58Cm8qxpdyGatvO_AbAgHIw |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=List+Colorings+of+%24k%24-Partite+%24k%24-Graphs&rft.jtitle=The+Electronic+journal+of+combinatorics&rft.au=Dhawan%2C+Abhishek&rft.date=2025-04-25&rft.issn=1077-8926&rft.eissn=1077-8926&rft.volume=32&rft.issue=2&rft_id=info:doi/10.37236%2F12657&rft.externalDBID=n%2Fa&rft.externalDocID=10_37236_12657 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-8926&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-8926&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-8926&client=summon |