List Colorings of $k$-Partite $k$-Graphs

A $k$-uniform hypergraph (or $k$-graph) $H = (V, E)$ is $k$-partite if $V$ can be partitioned into $k$ sets $V_1, \ldots, V_k$ such that each edge in $E$ contains precisely one vertex from each $V_i$. In this note, we consider list colorings for such hypergraphs. We show that for any $\varepsilon &g...

Full description

Saved in:
Bibliographic Details
Published inThe Electronic journal of combinatorics Vol. 32; no. 2
Main Author Dhawan, Abhishek
Format Journal Article
LanguageEnglish
Published 25.04.2025
Online AccessGet full text

Cover

Loading…
Abstract A $k$-uniform hypergraph (or $k$-graph) $H = (V, E)$ is $k$-partite if $V$ can be partitioned into $k$ sets $V_1, \ldots, V_k$ such that each edge in $E$ contains precisely one vertex from each $V_i$. In this note, we consider list colorings for such hypergraphs. We show that for any $\varepsilon > 0$ if each vertex $v \in V(H)$ is assigned a list of size $|L(v)| \geq \left((k-1+\varepsilon)\Delta/\log \Delta\right)^{1/(k-1)}$, then $H$ admits a proper $L$-coloring, provided $\Delta$ is sufficiently large. Up to a constant factor, this matches the bound on the chromatic number of simple $k$-graphs shown by Frieze and Mubayi, and that on the list chromatic number of triangle free $k$-graphs shown by Li and Postle. Our results hold in the more general setting of "color-degree" as has been considered for graphs. Furthermore, we establish a number of asymmetric statements matching results of Alon, Cambie, and Kang for bipartite graphs.
AbstractList A $k$-uniform hypergraph (or $k$-graph) $H = (V, E)$ is $k$-partite if $V$ can be partitioned into $k$ sets $V_1, \ldots, V_k$ such that each edge in $E$ contains precisely one vertex from each $V_i$. In this note, we consider list colorings for such hypergraphs. We show that for any $\varepsilon > 0$ if each vertex $v \in V(H)$ is assigned a list of size $|L(v)| \geq \left((k-1+\varepsilon)\Delta/\log \Delta\right)^{1/(k-1)}$, then $H$ admits a proper $L$-coloring, provided $\Delta$ is sufficiently large. Up to a constant factor, this matches the bound on the chromatic number of simple $k$-graphs shown by Frieze and Mubayi, and that on the list chromatic number of triangle free $k$-graphs shown by Li and Postle. Our results hold in the more general setting of "color-degree" as has been considered for graphs. Furthermore, we establish a number of asymmetric statements matching results of Alon, Cambie, and Kang for bipartite graphs.
Author Dhawan, Abhishek
Author_xml – sequence: 1
  givenname: Abhishek
  surname: Dhawan
  fullname: Dhawan, Abhishek
BookMark eNpNjz1PwzAUAC1UJNoCvyFDhVhcnp_z7HhEERSkSGWAOTL-gECJKzsL_x4pMDDdTSfdii3GNAbGLgVspUapbgQq0idsKUBr3hhUi39-xlalfAAINIaW7LobylS16ZDyML6VKsVq87nhTzZPwxRm32V7fC_n7DTaQwkXf1yzl_u75_aBd_vdY3vbcYcIEw8O9auqvSBAa7zwjSQMXjlFQNhQrTQY7UhLT96YQGRdBBe9rRuQFuWaXf12XU6l5BD7Yx6-bP7uBfTzXz__yR9ZFECN
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.37236/12657
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1077-8926
ExternalDocumentID 10_37236_12657
GroupedDBID -~9
29G
2WC
5GY
5VS
AAFWJ
AAYXX
ACGFO
ACIPV
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
E3Z
EBS
EJD
FRP
GROUPED_DOAJ
H13
KWQ
M~E
OK1
OVT
P2P
REM
RNS
TR2
XSB
ID FETCH-LOGICAL-c220t-ec27b64d1502a9d1d8352ed6c6505285467097c573d5d99e55acf0cfda4803a23
ISSN 1077-8926
IngestDate Tue Jul 01 05:05:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c220t-ec27b64d1502a9d1d8352ed6c6505285467097c573d5d99e55acf0cfda4803a23
OpenAccessLink https://www.combinatorics.org/ojs/index.php/eljc/article/download/v32i2p16/pdf
ParticipantIDs crossref_primary_10_37236_12657
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-25
PublicationDateYYYYMMDD 2025-04-25
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-25
  day: 25
PublicationDecade 2020
PublicationTitle The Electronic journal of combinatorics
PublicationYear 2025
SSID ssj0012995
Score 2.3635645
Snippet A $k$-uniform hypergraph (or $k$-graph) $H = (V, E)$ is $k$-partite if $V$ can be partitioned into $k$ sets $V_1, \ldots, V_k$ such that each edge in $E$...
SourceID crossref
SourceType Index Database
Title List Colorings of $k$-Partite $k$-Graphs
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA46L3oQP_Fz9jDBS7VNk7Q9DpkOceJhg91Gmg8GwiauInjwt_sm6dpuDPy4lDQkJc0TkudN3jwvQi2mQwY0NvWTjGjfqJv4iaSpH0nNFRNhKKx2Z--JdQfkYUiHVZxQe7skz67F58p7Jf9BFfIAV3NL9g_Ilh-FDEgDvvAEhOH5K4wfASNj-lsnOuuTcYkJTG_Efzalc1W-3xtd6lmdiZrx0ali4NQUJKClYC5zqx5ShZ0f8w-3V9rOxsaP_qW-X4CpOfpwd4uLKS6IYV1KcSFAvSKvmBerfce5ebo83UYxtgFhQsycyvSinvXSOlN6_4HdYWuObL11tIGB4pvoE72vTnkCBMskdf6irmUuLpStd2Pr1YhEjRH0d9B2QeW9tsNlF62pyR7a6pU6uLN9dGUQ8kqEvKn2Wi-tOTo27ZA5QIO7Tv-26xexKXyBcZD7SuA4Y0QCn8Y8laE0TFZJJpiJDJhQYnTxYkHjSFKZpopSLnQgtOQkCSKOo0PUmEwn6gh5gsRSGe7JI0pUwjIqYs1TraJUaJrRY3Qx_9HRq5MgGS124cmPJU7RZjUWzlAjf3tX58Cm8qxpdyGatvO_AbAgHIw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=List+Colorings+of+%24k%24-Partite+%24k%24-Graphs&rft.jtitle=The+Electronic+journal+of+combinatorics&rft.au=Dhawan%2C+Abhishek&rft.date=2025-04-25&rft.issn=1077-8926&rft.eissn=1077-8926&rft.volume=32&rft.issue=2&rft_id=info:doi/10.37236%2F12657&rft.externalDBID=n%2Fa&rft.externalDocID=10_37236_12657
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-8926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-8926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-8926&client=summon