MiR-27b-3p Correlates with Arteriosclerosis Obliterans and Promotes the Proliferation and Migration of Arterial Smooth Muscle Cells by Targeting GAB1
Patients with atherosclerosis obliterans (ASO) are at risk of amputation or even death if timely treatment is not provided; current clinical treatments for ASO have certain disadvantages. This study aimed to ascertain the function of miR-27b-3p in ASO to provide novel insights for ASO treatment.The...
Saved in:
Published in | International Heart Journal Vol. 66; no. 4; pp. 690 - 698 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
International Heart Journal Association
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Patients with atherosclerosis obliterans (ASO) are at risk of amputation or even death if timely treatment is not provided; current clinical treatments for ASO have certain disadvantages. This study aimed to ascertain the function of miR-27b-3p in ASO to provide novel insights for ASO treatment.The expression of miR-27b-3p in the serum of 117 ASO subjects and 80 healthy individuals was assessed by polymerase chain reaction. Risk factors for coronary artery disease (CAD) in ASO were assessed by multivariate logistic regression analysis. The atherosclerosis cell model was conducted using human vascular smooth muscle cells (HVSMCs) induced with oxidized low-density lipoprotein (ox-LDL). The interaction relationship between miR-27b-3p and GAB1 was assessed using a dual-luciferase reporter assay. HVSMC proliferation and migration were analyzed using the cell counting kit-8 and transwell assay.MiR-27b-3p was upregulated in ASO; it was correlated with ASO severity indicators (ankle-brachial index level and Fontaine stage) and identified as a risk factor for CAD incidence in ASO. Ox-LDL induction in HVSMCs promoted HVSMC proliferation and migration. Overexpression of miR-27b-3p facilitated the proliferation and migration of ox-LDL-induced HVSMCs, which were attenuated by GAB1 overexpression.The upregulation of miR-27b-3p in ASO was correlated with ASO severity and served as a risk factor for CAD in patients with ASO. The potential regulatory mechanism of miR-27b-3p in ASO was the acceleration of vascular smooth muscle cell proliferation and migration by targeting GAB1. |
---|---|
AbstractList | Patients with atherosclerosis obliterans (ASO) are at risk of amputation or even death if timely treatment is not provided; current clinical treatments for ASO have certain disadvantages. This study aimed to ascertain the function of miR-27b-3p in ASO to provide novel insights for ASO treatment.The expression of miR-27b-3p in the serum of 117 ASO subjects and 80 healthy individuals was assessed by polymerase chain reaction. Risk factors for coronary artery disease (CAD) in ASO were assessed by multivariate logistic regression analysis. The atherosclerosis cell model was conducted using human vascular smooth muscle cells (HVSMCs) induced with oxidized low-density lipoprotein (ox-LDL). The interaction relationship between miR-27b-3p and GAB1 was assessed using a dual-luciferase reporter assay. HVSMC proliferation and migration were analyzed using the cell counting kit-8 and transwell assay.MiR-27b-3p was upregulated in ASO; it was correlated with ASO severity indicators (ankle-brachial index level and Fontaine stage) and identified as a risk factor for CAD incidence in ASO. Ox-LDL induction in HVSMCs promoted HVSMC proliferation and migration. Overexpression of miR-27b-3p facilitated the proliferation and migration of ox-LDL-induced HVSMCs, which were attenuated by GAB1 overexpression.The upregulation of miR-27b-3p in ASO was correlated with ASO severity and served as a risk factor for CAD in patients with ASO. The potential regulatory mechanism of miR-27b-3p in ASO was the acceleration of vascular smooth muscle cell proliferation and migration by targeting GAB1. |
ArticleNumber | 24-806 |
Author | Yongkang Wu Changwei Zheng Xiaodong Chen Tuo Xu Zhengde Chen |
Author_xml | – sequence: 1 givenname: Tuo surname: Xu fullname: Xu, Tuo – sequence: 2 givenname: Changwei surname: Zheng fullname: Zheng, Changwei – sequence: 3 givenname: Yongkang surname: Wu fullname: Wu, Yongkang – sequence: 4 givenname: Zhengde surname: Chen fullname: Chen, Zhengde – sequence: 5 givenname: Xiaodong surname: Chen fullname: Chen, Xiaodong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40738709$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kNFu2yAUhlHVqU2z3vQBJq4nuTsGjPHdsmhrJzXqtHXXFtiHhMgxEVBVfZC973CT5gY4_B-_xHdFzkc_IiE3JdyWFZdf3GZ7y0ShQJ6RWclFU3DWNOfHM-OyuiRXMW4BRFlBfUEuBdRc1dDMyL-V-12w2hR8T5c-BBx0wkhfXNrQRUgYnI_dgMFHF-mjGVy-0mOkeuzpr-B3fqLTBqdhcDaHyfnxLV659XHy9tilB_pn533uXj1PtXSJwxCpeaVPOqwxuXFN7xbfyo_kg9VDxOvjPid_f3x_Wt4XD493P5eLh6JjDFJheoNMaWDCoKgFGisrbGxXqU4ZxmsA1YAGq1QHda-1wUYwaUHJXkLPLJ-TT4fe_bPZYd_ug9vp8Nq--8nA5wPQZQMxoD0hJbST_DbLb5los_wMfz3A25j0Gk-oDsnlz76hUrZiWg5PTlG30aHFkf8HVtCQIA |
Cites_doi | 10.1016/0741-5214(84)90086-7 10.3389/fphys.2020.01090 10.1161/01.RES.0000021127.83364.7D 10.31662/jmaj.2021-0042 10.1161/CIRCULATIONAHA.109.865600 10.18632/aging.205154 10.1016/0002-9343(92)90620-Q 10.1016/j.cca.2010.09.029 10.2174/1573403X18666220411113112 10.1016/j.diabet.2018.08.004 10.1016/j.jvs.2021.10.051 10.1136/bmjopen-2023-079521 10.1016/S0003-3928(01)00009-9 10.2174/1871530321666211208152709 10.1038/s41419-017-0211-4 10.1186/s12933-018-0781-1 10.7717/peerj.16057 10.21037/apm-21-343 10.3389/fphys.2020.559396 10.1016/j.bbrc.2021.07.093 10.1136/bmj.j5842 10.1186/s12967-023-04755-7 10.1186/s12951-023-01942-y 10.3892/mmr.2015.3384 10.1007/s00441-020-03338-y 10.1002/jcp.27486 10.1161/CIRCULATIONAHA.117.024469 10.1042/BSR20193425 10.5483/BMBRep.2014.47.1.285 10.17116/kurort20219804154 10.1016/j.celrep.2022.111948 |
ContentType | Journal Article |
Copyright | 2025 by the International Heart Journal Association |
Copyright_xml | – notice: 2025 by the International Heart Journal Association |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.1536/ihj.24-806 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1349-3299 |
EndPage | 698 |
ExternalDocumentID | 40738709 10_1536_ihj_24_806 article_ihj_66_4_66_24_806_article_char_en |
Genre | Journal Article |
GroupedDBID | --- .55 29J 2WC 5GY AAFWJ ACPRK ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 E3Z EBS EJD F5P GX1 JSF JSH KQ8 OK1 RJT RZJ SDH TR2 X7M AAYXX CITATION CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c220t-bdbe28a024be474ebf65e9fc58c8b23700890a0f88c07daabe9426f086d60d2f3 |
ISSN | 1349-2365 |
IngestDate | Fri Aug 01 03:41:42 EDT 2025 Thu Aug 07 06:50:19 EDT 2025 Wed Sep 03 06:30:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Cell function Clinical significance Expression level Vascular smooth muscle cells |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c220t-bdbe28a024be474ebf65e9fc58c8b23700890a0f88c07daabe9426f086d60d2f3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/ihj/66/4/66_24-806/_article/-char/en |
PMID | 40738709 |
PageCount | 9 |
ParticipantIDs | pubmed_primary_40738709 crossref_primary_10_1536_ihj_24_806 jstage_primary_article_ihj_66_4_66_24_806_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | International Heart Journal |
PublicationTitleAlternate | Int. Heart J. |
PublicationYear | 2025 |
Publisher | International Heart Journal Association |
Publisher_xml | – name: International Heart Journal Association |
References | 33. Chen D, Si W, Shen J, et al. miR-27b-3p inhibits proliferation and potentially reverses multi-chemoresistance by targeting CBLB/GRB2 in breast cancer cells. Cell Death Dis 2018; 9: 188. 32. Lim S, Park S. Role of vascular smooth muscle cell in the inflammation of atherosclerosis. BMB Rep 2014; 47: 1-7. 13. Zhang M, Chen Y, Niu F, Luo X, Li J, Hu W. MicroRNA-30a-3p: a potential noncoding RNA target for the treatment of arteriosclerosis obliterans. Aging 2023; 15: 11875-90. 34. Chen Z, Wu H, Shi R, et al. miRNAomics analysis reveals the promoting effects of cigarette smoke extract-treated Beas-2B-derived exosomes on macrophage polarization. Biochem Biophys Res Commun 2021; 572: 157-63. 31. Qian X, Wang H, Wang Y, Chen J, Guo X, Deng H. Enhanced autophagy in GAB1-deficient vascular endothelial cells is responsible for atherosclerosis progression. Front Physiol 2021; 11: 559396. 5. Firnhaber JM, Powell CS. Lower extremity peripheral artery disease: diagnosis and treatment. Am Fam Physician 2019; 99: 362-9. 12. Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol 2019; 234: 5451-65. 1. Pu H, Huang Q, Zhang X, et al. A meta-analysis of randomized controlled trials on therapeutic efficacy and safety of autologous cell therapy for atherosclerosis obliterans. J Vasc Surg 2022; 75: 1440-9. 22. Wang X, Li H, Zhang Y, et al. Suppression of miR-4463 promotes phenotypic switching in VSMCs treated with Ox-LDL. Cell Tissue Res 2021; 383: 1155-65. 25. Prabu P, Rome S, Sathishkumar C, et al. MicroRNAs from urinary extracellular vesicles are non-invasive early biomarkers of diabetic nephropathy in type 2 diabetes patients with the "Asian Indian phenotype" . Diabetes Metab 2019; 45: 276-85. 24. Wang X, Lu Y, Zhu L, Zhang H, Feng L. Inhibition of miR-27b regulates lipid metabolism in skeletal muscle of obese rats during hypoxic exercise by increasing PPARγ expression. Front Physiol 2020; 11: 1090. 4. Nativel M, Potier L, Alexandre L, et al. Lower extremity arterial disease in patients with diabetes: a contemporary narrative review. Cardiovasc Diabetol 2018; 17: 1-14. 11. Hess CN, Norgren L, Ansel GM, et al. A structured review of antithrombotic therapy in peripheral artery disease with a focus on revascularization: a TASC (InterSociety consensus for the management of peripheral artery disease) initiative. Circulation 2017; 135: 2534-55. 16. Cheng F, Yang F, Wang Y, Zhou J, Qian H, Yan Y. Mesenchymal stem cell-derived exosomal miR-27b-3p alleviates liver fibrosis via downregulating YAP/LOXL2 pathway. J Nanobiotechnology 2023; 21: 195. 15. Li X, Yao N, Zhang J, Liu Z. MicroRNA-125b is involved in atherosclerosis obliterans in vitro by targeting podocalyxin. Mol Med Rep 2015; 12: 561-8. 26. Jin S, Liu J, Jia Y, Sun C, Na L. Temporal relationships between blood glucose, lipids and BMI, and their impacts on atherosclerosis: a prospective cohort study. BMJ Open 2024; 14: e079521. 27. Chen Y, Zhang F, Sun J, Zhang L. Identifying the natural products in the treatment of atherosclerosis by increasing HDL-C level based on bioinformatics analysis, molecular docking, and in vitro experiment. J Transl Med 2023; 21: 920. 3. Diehm C, Allenberg JR, Pittrow D, et al. Mortality and vascular morbidity in older adults with asymptomatic versus symptomatic peripheral artery disease. Circulation 2009; 120: 2053-61. 20. Li T, Cao H, Zhuang J, et al. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin Chim Acta 2011; 412: 66-70. 29. Klein LW. Pathophysiologic mechanisms of tobacco smoke producing atherosclerosis. Curr Cardiol Rev 2022; 18: e110422203389. 21. Takahara M. Diabetes mellitus and lower extremity peripheral artery disease. JMA J 2021; 4: 225-31. 8. Lakier JB. Smoking and cardiovascular disease. Am J Med 1992; 93: S8-S12. 6. Conte MS, Bradbury AW, Kolh P, et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. J Vasc Surg 2019; 58: S1-S109. 23. Marchand G. Epidemiology of and risk factors for lower limb arteriopathy obliterans. Ann Cardiol Angeiol (Paris) 2001; 50: 119-27. 14. Wang H, Wei Z, Li H, et al. MiR-377-3p inhibits atherosclerosis-associated vascular smooth muscle cell proliferation and migration via targeting neuropilin2. Biosci Rep 2020; 40: BSR20193425. 28. Białobrzeska-Paluszkiewicz J, Szostak WB. Risk factors for ischemic heart disease and glycosaminoglycans (GAG's) in plasma in atherosclerosis obliterans. Pol Arch Med Wewn 2003; 110: 951-7. 18. Li L, Guo X, Liu J, Chen B, Gao Z, Wang Q. The role of miR-27b-3p/HOXA10 axis in the pathogenesis of endometriosis. Ann Palliat Med 2021; 10: 3162-70. 2. Knyazeva TA, Badtieva VA, Trukhacheva NV. Basic principles and approaches to medical rehabilitation of patients with atherosclerosis obliterans of lower limb arteries. Vopr Kurortol Fizioter Lech Fiz Kult 2021; 98: 54-61. 19. Tang Y, Yang LJ, Liu H, et al. Exosomal miR-27b-3p secreted by visceral adipocytes contributes to endothelial inflammation and atherogenesis. Cell Rep 2023; 42: 111948. 7. Morley RL, Sharma A, Horsch AD, Hinchliffe RJ. Peripheral artery disease. Br Med J (Clin Res Ed) 2018; 360: j5842. 10. Su X, Yuan X, Li F, et al. Expression level and clinical significance of LncRNA PVT1 in the serum of patients with LEASO. PeerJ 2023; 11: e16057. 17. Yang Y, Tang F, Zhao X. miR-27b-3p is highly expressed in serum of patients with preeclampsia and has clinical significance. Endocr Metab Immune Disord Drug Targets 2022; 22: 612-9. 30. Che W, Lerner-Marmarosh N, Huang Q, et al. Insulin-like growth factor-1 enhances inflammatory responses in endothelial cells: role of Gab1 and MEKK3 in TNF-alpha-induced c-Jun and NF-kappaB activation and adhesion molecule expression. Circ Res 2002; 90: 1222-30. 9. Pairolero PC, Joyce JW, Skinner CR, Hollier LH, Cherry KJ Jr. Lower limb ischemia in young adults: prognostic implications. J Vasc Surg 1984; 1: 459-64. 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 26. Jin S, Liu J, Jia Y, Sun C, Na L. Temporal relationships between blood glucose, lipids and BMI, and their impacts on atherosclerosis: a prospective cohort study. BMJ Open 2024; 14: e079521. – reference: 5. Firnhaber JM, Powell CS. Lower extremity peripheral artery disease: diagnosis and treatment. Am Fam Physician 2019; 99: 362-9. – reference: 9. Pairolero PC, Joyce JW, Skinner CR, Hollier LH, Cherry KJ Jr. Lower limb ischemia in young adults: prognostic implications. J Vasc Surg 1984; 1: 459-64. – reference: 19. Tang Y, Yang LJ, Liu H, et al. Exosomal miR-27b-3p secreted by visceral adipocytes contributes to endothelial inflammation and atherogenesis. Cell Rep 2023; 42: 111948. – reference: 34. Chen Z, Wu H, Shi R, et al. miRNAomics analysis reveals the promoting effects of cigarette smoke extract-treated Beas-2B-derived exosomes on macrophage polarization. Biochem Biophys Res Commun 2021; 572: 157-63. – reference: 13. Zhang M, Chen Y, Niu F, Luo X, Li J, Hu W. MicroRNA-30a-3p: a potential noncoding RNA target for the treatment of arteriosclerosis obliterans. Aging 2023; 15: 11875-90. – reference: 17. Yang Y, Tang F, Zhao X. miR-27b-3p is highly expressed in serum of patients with preeclampsia and has clinical significance. Endocr Metab Immune Disord Drug Targets 2022; 22: 612-9. – reference: 15. Li X, Yao N, Zhang J, Liu Z. MicroRNA-125b is involved in atherosclerosis obliterans in vitro by targeting podocalyxin. Mol Med Rep 2015; 12: 561-8. – reference: 30. Che W, Lerner-Marmarosh N, Huang Q, et al. Insulin-like growth factor-1 enhances inflammatory responses in endothelial cells: role of Gab1 and MEKK3 in TNF-alpha-induced c-Jun and NF-kappaB activation and adhesion molecule expression. Circ Res 2002; 90: 1222-30. – reference: 2. Knyazeva TA, Badtieva VA, Trukhacheva NV. Basic principles and approaches to medical rehabilitation of patients with atherosclerosis obliterans of lower limb arteries. Vopr Kurortol Fizioter Lech Fiz Kult 2021; 98: 54-61. – reference: 33. Chen D, Si W, Shen J, et al. miR-27b-3p inhibits proliferation and potentially reverses multi-chemoresistance by targeting CBLB/GRB2 in breast cancer cells. Cell Death Dis 2018; 9: 188. – reference: 16. Cheng F, Yang F, Wang Y, Zhou J, Qian H, Yan Y. Mesenchymal stem cell-derived exosomal miR-27b-3p alleviates liver fibrosis via downregulating YAP/LOXL2 pathway. J Nanobiotechnology 2023; 21: 195. – reference: 18. Li L, Guo X, Liu J, Chen B, Gao Z, Wang Q. The role of miR-27b-3p/HOXA10 axis in the pathogenesis of endometriosis. Ann Palliat Med 2021; 10: 3162-70. – reference: 23. Marchand G. Epidemiology of and risk factors for lower limb arteriopathy obliterans. Ann Cardiol Angeiol (Paris) 2001; 50: 119-27. – reference: 11. Hess CN, Norgren L, Ansel GM, et al. A structured review of antithrombotic therapy in peripheral artery disease with a focus on revascularization: a TASC (InterSociety consensus for the management of peripheral artery disease) initiative. Circulation 2017; 135: 2534-55. – reference: 1. Pu H, Huang Q, Zhang X, et al. A meta-analysis of randomized controlled trials on therapeutic efficacy and safety of autologous cell therapy for atherosclerosis obliterans. J Vasc Surg 2022; 75: 1440-9. – reference: 10. Su X, Yuan X, Li F, et al. Expression level and clinical significance of LncRNA PVT1 in the serum of patients with LEASO. PeerJ 2023; 11: e16057. – reference: 21. Takahara M. Diabetes mellitus and lower extremity peripheral artery disease. JMA J 2021; 4: 225-31. – reference: 31. Qian X, Wang H, Wang Y, Chen J, Guo X, Deng H. Enhanced autophagy in GAB1-deficient vascular endothelial cells is responsible for atherosclerosis progression. Front Physiol 2021; 11: 559396. – reference: 24. Wang X, Lu Y, Zhu L, Zhang H, Feng L. Inhibition of miR-27b regulates lipid metabolism in skeletal muscle of obese rats during hypoxic exercise by increasing PPARγ expression. Front Physiol 2020; 11: 1090. – reference: 28. Białobrzeska-Paluszkiewicz J, Szostak WB. Risk factors for ischemic heart disease and glycosaminoglycans (GAG's) in plasma in atherosclerosis obliterans. Pol Arch Med Wewn 2003; 110: 951-7. – reference: 27. Chen Y, Zhang F, Sun J, Zhang L. Identifying the natural products in the treatment of atherosclerosis by increasing HDL-C level based on bioinformatics analysis, molecular docking, and in vitro experiment. J Transl Med 2023; 21: 920. – reference: 8. Lakier JB. Smoking and cardiovascular disease. Am J Med 1992; 93: S8-S12. – reference: 6. Conte MS, Bradbury AW, Kolh P, et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. J Vasc Surg 2019; 58: S1-S109. – reference: 25. Prabu P, Rome S, Sathishkumar C, et al. MicroRNAs from urinary extracellular vesicles are non-invasive early biomarkers of diabetic nephropathy in type 2 diabetes patients with the "Asian Indian phenotype" . Diabetes Metab 2019; 45: 276-85. – reference: 4. Nativel M, Potier L, Alexandre L, et al. Lower extremity arterial disease in patients with diabetes: a contemporary narrative review. Cardiovasc Diabetol 2018; 17: 1-14. – reference: 7. Morley RL, Sharma A, Horsch AD, Hinchliffe RJ. Peripheral artery disease. Br Med J (Clin Res Ed) 2018; 360: j5842. – reference: 14. Wang H, Wei Z, Li H, et al. MiR-377-3p inhibits atherosclerosis-associated vascular smooth muscle cell proliferation and migration via targeting neuropilin2. Biosci Rep 2020; 40: BSR20193425. – reference: 20. Li T, Cao H, Zhuang J, et al. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin Chim Acta 2011; 412: 66-70. – reference: 32. Lim S, Park S. Role of vascular smooth muscle cell in the inflammation of atherosclerosis. BMB Rep 2014; 47: 1-7. – reference: 3. Diehm C, Allenberg JR, Pittrow D, et al. Mortality and vascular morbidity in older adults with asymptomatic versus symptomatic peripheral artery disease. Circulation 2009; 120: 2053-61. – reference: 29. Klein LW. Pathophysiologic mechanisms of tobacco smoke producing atherosclerosis. Curr Cardiol Rev 2022; 18: e110422203389. – reference: 12. Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol 2019; 234: 5451-65. – reference: 22. Wang X, Li H, Zhang Y, et al. Suppression of miR-4463 promotes phenotypic switching in VSMCs treated with Ox-LDL. Cell Tissue Res 2021; 383: 1155-65. – ident: 9 doi: 10.1016/0741-5214(84)90086-7 – ident: 24 doi: 10.3389/fphys.2020.01090 – ident: 30 doi: 10.1161/01.RES.0000021127.83364.7D – ident: 21 doi: 10.31662/jmaj.2021-0042 – ident: 3 doi: 10.1161/CIRCULATIONAHA.109.865600 – ident: 13 doi: 10.18632/aging.205154 – ident: 8 doi: 10.1016/0002-9343(92)90620-Q – ident: 20 doi: 10.1016/j.cca.2010.09.029 – ident: 29 doi: 10.2174/1573403X18666220411113112 – ident: 28 – ident: 25 doi: 10.1016/j.diabet.2018.08.004 – ident: 1 doi: 10.1016/j.jvs.2021.10.051 – ident: 26 doi: 10.1136/bmjopen-2023-079521 – ident: 23 doi: 10.1016/S0003-3928(01)00009-9 – ident: 17 doi: 10.2174/1871530321666211208152709 – ident: 33 doi: 10.1038/s41419-017-0211-4 – ident: 4 doi: 10.1186/s12933-018-0781-1 – ident: 10 doi: 10.7717/peerj.16057 – ident: 5 – ident: 18 doi: 10.21037/apm-21-343 – ident: 31 doi: 10.3389/fphys.2020.559396 – ident: 34 doi: 10.1016/j.bbrc.2021.07.093 – ident: 7 doi: 10.1136/bmj.j5842 – ident: 27 doi: 10.1186/s12967-023-04755-7 – ident: 16 doi: 10.1186/s12951-023-01942-y – ident: 15 doi: 10.3892/mmr.2015.3384 – ident: 22 doi: 10.1007/s00441-020-03338-y – ident: 6 – ident: 12 doi: 10.1002/jcp.27486 – ident: 11 doi: 10.1161/CIRCULATIONAHA.117.024469 – ident: 14 doi: 10.1042/BSR20193425 – ident: 32 doi: 10.5483/BMBRep.2014.47.1.285 – ident: 2 doi: 10.17116/kurort20219804154 – ident: 19 doi: 10.1016/j.celrep.2022.111948 |
SSID | ssj0041507 |
Score | 2.3570983 |
Snippet | Patients with atherosclerosis obliterans (ASO) are at risk of amputation or even death if timely treatment is not provided; current clinical treatments for ASO... |
SourceID | pubmed crossref jstage |
SourceType | Index Database Publisher |
StartPage | 690 |
SubjectTerms | Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Aged Arteriosclerosis Obliterans - blood Arteriosclerosis Obliterans - genetics Arteriosclerosis Obliterans - metabolism Case-Control Studies Cell function Cell Movement - genetics Cell Proliferation - genetics Cells, Cultured Clinical significance Expression level Female Humans Lipoproteins, LDL Male MicroRNAs - blood MicroRNAs - genetics MicroRNAs - metabolism Middle Aged Muscle, Smooth, Vascular - cytology Muscle, Smooth, Vascular - metabolism Muscle, Smooth, Vascular - pathology Myocytes, Smooth Muscle - metabolism Up-Regulation Vascular smooth muscle cells |
Title | MiR-27b-3p Correlates with Arteriosclerosis Obliterans and Promotes the Proliferation and Migration of Arterial Smooth Muscle Cells by Targeting GAB1 |
URI | https://www.jstage.jst.go.jp/article/ihj/66/4/66_24-806/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/40738709 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | International Heart Journal, 2025/07/31, Vol.66(4), pp.690-698 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bjtMwELXKghAviDvlJkvwFqVkbceJH8sKqJC6rFBXVLxEcWK3WZZ01YsQ_Adfxg8xviRpd0Fa4MVqbcduc048M86MB6EXPFI5jZM8TBXYqkxSEQq5n4dKS015qWLFTTTy-JCPjtm7aTzt9X5ueS1t1nJQfP9tXMm_oAp1gKuJkv0LZNtBoQI-A75QAsJQXgrjcfUhJIkM6Rk810sblqJ8uNrQuGpWixVcAXKwWgXvpYs2rldNgACAZM53AJ4cmdQ9WnkyWNeLarZslUk3ljk25MsCgA3GGzNscKBOT1dGfZ1Yb3K7kzV8tb-t7u7uN47gqWpfgG_5FdSzr6oKPs2Vl6J2Eapnn6Eh-LjpPEAWwbT9ZnuX8CPmPpbN71y4-GZnx_558gusdMsyZSIk1GWVGKiujhKXXqlZy10GF89ZtrUwc5eU1Mt47jJfXxAfsc1vU81PBoSB7D53RreV-h7sDDplnGfMFIRl0Dlrmky8HNDzCrpKwHYx0uLttPU7YkYDt7sA_i_5M3Nh6pfdxDta0rUTMBTMCRA7ho9VgCa30E1_5_DQTX8b9VR9B10fe9-Mu-hHx0bcsREbNuLzbMQdGzHQDTdsxMBGvMNG29yyES80btiIHRuxYyO2bMTyG27ZiA0b76HjN68nB6PQJ_0IC0KidShLqUiag-ooFUuYkprHSugiTotUEpqAziqiPNJpWkRJmedSCVAyNVjmJY9Koul9tFcvavUQYQLWPMs1LEBJwbQoRCQKRalKU1DDI1700fPmJmdn7myXzNjEAIWF18HaR8Ld_7bP5SnQRw8cZO21DEQqiEjx6D9GfYxumMfJbQQ-QXvr5UY9BdV4LZ9ZqkF5eDT-BWKtyXI |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MiR-27b-3p+Correlates+with+Arteriosclerosis+Obliterans+and+Promotes+the+Proliferation+and+Migration+of+Arterial+Smooth+Muscle+Cells+by+Targeting+GAB1&rft.jtitle=International+Heart+Journal&rft.au=Changwei+Zheng&rft.au=Yongkang+Wu&rft.au=Tuo+Xu&rft.au=Zhengde+Chen&rft.date=2025&rft.pub=International+Heart+Journal+Association&rft.issn=1349-2365&rft.eissn=1349-3299&rft.volume=66&rft.issue=4&rft.spage=690&rft.epage=698&rft_id=info:doi/10.1536%2Fihj.24-806&rft.externalDocID=article_ihj_66_4_66_24_806_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1349-2365&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1349-2365&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1349-2365&client=summon |