Multifunctional hydrogel with self-healing and recyclability based on self-catalytic Fe3+/TA system for sustainable E-skin application
Hydrogel-based materials for e-skin applications have aroused tremendous attention due to their ability to simulate human skin's sensory capabilities and possess mechanical properties comparable to those of skin. When used as sensors attached to the skin, hydrogels are inevitably subject to dam...
Saved in:
Published in | Talanta (Oxford) Vol. 296; p. 128531 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2026
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogel-based materials for e-skin applications have aroused tremendous attention due to their ability to simulate human skin's sensory capabilities and possess mechanical properties comparable to those of skin. When used as sensors attached to the skin, hydrogels are inevitably subject to damage, highlighting the need for self-healing properties. Furthermore, the lack of recyclability in traditional hydrogel sensors is detrimental to sustainability. To address this issue, we developed a hydrogel based on multiple noncovalent bonds and ferric ion/tannic acid redox system, combined with polyvinyl alcohol as a reinforcing skeleton and low polymerization of polyacrylic acid. This design endows the hydrogel with excellent self-healing properties, easy recyclability and enhanced mechanical properties. Additionally, as a strain sensor, it exhibits competitive performance including high sensitivity, rapid response time and excellent sensing stability. With these remarkable characteristics, the hydrogel demonstrates significant potential as a sensor for sustainable e-skin applications.
[Display omitted]
•Hydrogel incorporated superior reversibility while maintain excellent mechanical properties.•Hydrogel possesses both self-healing ability and recyclability while this match is rare.•Hydrogel achieves a fast and excellent healing without external assistance.•Easy and low-cost way of recycling process compare to conventional recyclable way.•High gauge factor of hydrogel as strain sensor. |
---|---|
AbstractList | Hydrogel-based materials for e-skin applications have aroused tremendous attention due to their ability to simulate human skin's sensory capabilities and possess mechanical properties comparable to those of skin. When used as sensors attached to the skin, hydrogels are inevitably subject to damage, highlighting the need for self-healing properties. Furthermore, the lack of recyclability in traditional hydrogel sensors is detrimental to sustainability. To address this issue, we developed a hydrogel based on multiple noncovalent bonds and ferric ion/tannic acid redox system, combined with polyvinyl alcohol as a reinforcing skeleton and low polymerization of polyacrylic acid. This design endows the hydrogel with excellent self-healing properties, easy recyclability and enhanced mechanical properties. Additionally, as a strain sensor, it exhibits competitive performance including high sensitivity, rapid response time and excellent sensing stability. With these remarkable characteristics, the hydrogel demonstrates significant potential as a sensor for sustainable e-skin applications.
[Display omitted]
•Hydrogel incorporated superior reversibility while maintain excellent mechanical properties.•Hydrogel possesses both self-healing ability and recyclability while this match is rare.•Hydrogel achieves a fast and excellent healing without external assistance.•Easy and low-cost way of recycling process compare to conventional recyclable way.•High gauge factor of hydrogel as strain sensor. Hydrogel-based materials for e-skin applications have aroused tremendous attention due to their ability to simulate human skin's sensory capabilities and possess mechanical properties comparable to those of skin. When used as sensors attached to the skin, hydrogels are inevitably subject to damage, highlighting the need for self-healing properties. Furthermore, the lack of recyclability in traditional hydrogel sensors is detrimental to sustainability. To address this issue, we developed a hydrogel based on multiple noncovalent bonds and ferric ion/tannic acid redox system, combined with polyvinyl alcohol as a reinforcing skeleton and low polymerization of polyacrylic acid. This design endows the hydrogel with excellent self-healing properties, easy recyclability and enhanced mechanical properties. Additionally, as a strain sensor, it exhibits competitive performance including high sensitivity, rapid response time and excellent sensing stability. With these remarkable characteristics, the hydrogel demonstrates significant potential as a sensor for sustainable e-skin applications.Hydrogel-based materials for e-skin applications have aroused tremendous attention due to their ability to simulate human skin's sensory capabilities and possess mechanical properties comparable to those of skin. When used as sensors attached to the skin, hydrogels are inevitably subject to damage, highlighting the need for self-healing properties. Furthermore, the lack of recyclability in traditional hydrogel sensors is detrimental to sustainability. To address this issue, we developed a hydrogel based on multiple noncovalent bonds and ferric ion/tannic acid redox system, combined with polyvinyl alcohol as a reinforcing skeleton and low polymerization of polyacrylic acid. This design endows the hydrogel with excellent self-healing properties, easy recyclability and enhanced mechanical properties. Additionally, as a strain sensor, it exhibits competitive performance including high sensitivity, rapid response time and excellent sensing stability. With these remarkable characteristics, the hydrogel demonstrates significant potential as a sensor for sustainable e-skin applications. |
ArticleNumber | 128531 |
Author | Liang, Shangqing Yao, Baidong Yang, Guoqing Wang, Chenhao Lin, Jun Xin, Qing |
Author_xml | – sequence: 1 givenname: Chenhao surname: Wang fullname: Wang, Chenhao – sequence: 2 givenname: Qing orcidid: 0000-0003-4548-3555 surname: Xin fullname: Xin, Qing email: xinqing@hdu.edu.cn – sequence: 3 givenname: Shangqing surname: Liang fullname: Liang, Shangqing – sequence: 4 givenname: Jun surname: Lin fullname: Lin, Jun – sequence: 5 givenname: Baidong surname: Yao fullname: Yao, Baidong email: yao1984@mail.ustc.edu.cn – sequence: 6 givenname: Guoqing surname: Yang fullname: Yang, Guoqing |
BookMark | eNqFkMtuFDEQRS0UJCaBT0DyEgn1pGz3c4WiKAGkIDZhbVXb5YwHj3uw3aD-Ab6bjjp7VrW551bVuWQXcYrE2HsBewGivT7uCwaMBfcSZLMXsm-UeMV2ou9UpZpOXbAdgBqqQdTwhl3mfAQAqUDt2N9vcyjezdEUP0UM_LDYND1R4H98OfBMwVUHwuDjE8doeSKzmICjD74sfMRMlk9xyxlc71iKN_ye1Mfrxxuel1zoxN2UeJ5zQR9xDMTvqvzTR47nc_ArtC5-y147DJnevcwr9uP-7vH2S_Xw_fPX25uHykgJpepN3XZWorVQd8bV5Fo3yAaQBuMagbZTQzu2dV9DPyD2g22ooRHM4KAdO1BX7MPWe07Tr5ly0SefDYVVH01z1krKDpq6Fd0abbaoSVPOiZw-J3_CtGgB-tm7PuoX7_rZu968r9ynjaP1j9-eks7GUzRk_SqvaDv5_zT8A9X3kuc |
Cites_doi | 10.1002/app.54243 10.1016/j.cej.2025.162702 10.1016/j.compscitech.2022.109345 10.1021/acsami.3c02407 10.1016/j.colsurfa.2023.132132 10.1016/j.carbpol.2023.120702 10.1016/j.cej.2024.154883 10.1016/j.carbpol.2022.120229 10.1016/j.ijbiomac.2012.10.021 10.1038/s41928-023-01116-6 10.1039/D3TA08069B 10.1016/j.carbpol.2023.121621 10.1016/j.est.2024.112607 10.1007/s40820-023-01028-2 10.1016/j.carbpol.2024.122357 10.1038/s41467-019-09351-2 10.1021/acsami.3c05943 10.1007/s40820-023-01109-2 10.1016/j.indcrop.2023.117975 10.1016/j.est.2023.108619 10.1016/j.colsurfb.2022.112482 10.1016/j.cej.2023.144385 10.1016/j.ccr.2019.02.011 10.1021/acsami.2c21617 10.1007/s42114-022-00531-1 10.1016/j.cej.2025.159714 10.3390/polym15010190 10.1016/j.carbpol.2020.117508 10.1021/acs.chemrev.2c00215 10.1002/adma.202211385 10.1126/science.ade0086 10.1016/j.compositesb.2021.108965 10.1016/j.ijbiomac.2024.132494 10.1021/acsnano.3c05253 10.1016/j.ijbiomac.2021.06.037 10.1007/s10118-024-3248-8 10.1007/s10570-019-02668-7 10.1016/j.cej.2025.161793 10.1002/smll.202305875 10.1039/D3GC04952C |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. Copyright © 2025 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier B.V. – notice: Copyright © 2025 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.talanta.2025.128531 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3573 |
ExternalDocumentID | 10_1016_j_talanta_2025_128531 S0039914025010215 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ACDAQ ACGFS ACNCT ACRLP ACVFH ADBBV ADCNI ADECG ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AFZHZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SCH SDF SDG SDP SES SEW SPC SPCBC SSK SSZ T5K TN5 TWZ WH7 XPP YK3 YNT ZMT ~02 ~G- 29Q 3O- 53G AAQXK AAYJJ AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ADIYS ADMUD ADNMO AGQPQ AJQLL ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ M36 M41 R2- RIG SCB SSH WUQ XOL 7X8 |
ID | FETCH-LOGICAL-c220t-8c467d2add047cf4ef6f9250ae9cf51ad7396b6484089aa89d5e5eb0c9f06b703 |
IEDL.DBID | .~1 |
ISSN | 0039-9140 1873-3573 |
IngestDate | Fri Jul 11 17:04:30 EDT 2025 Thu Jul 10 08:51:41 EDT 2025 Sat Aug 09 17:31:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Self-healing Conductive hydrogel Recyclability Strain sensor Diverse functions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c220t-8c467d2add047cf4ef6f9250ae9cf51ad7396b6484089aa89d5e5eb0c9f06b703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4548-3555 |
PQID | 3227054617 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3227054617 crossref_primary_10_1016_j_talanta_2025_128531 elsevier_sciencedirect_doi_10_1016_j_talanta_2025_128531 |
PublicationCentury | 2000 |
PublicationDate | 2026-01-01 |
PublicationDateYYYYMMDD | 2026-01-01 |
PublicationDate_xml | – month: 01 year: 2026 text: 2026-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Talanta (Oxford) |
PublicationYear | 2026 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Jiang, Zhong, Zhang, Choudhury, Lai, Gong, Niu, Yan, Zheng, Shih, Ning, Lin, Li, Kim, Kim, Wang, Zhao, Xu, Ji, Nishio, Lyu, Tok, Bao (bib4) 2023; 380 Qi, Xu, Wang, Nie, Ma (bib32) 2013; 53 Shukla, Sharma, Basak, Ali (bib34) 2019; 26 Hu, Yu, Dong, Gong, Li, Zhao, Wang, Li, Wang, Liu, Zhang, Chen, Zhao (bib37) 2025; 512 Xu, Pei, Zhan, Du, Zhang (bib25) 2024; 194 Zhi, Shi, Zhang, Si, Yang, Meng, Fei, Hu (bib6) 2023; 15 Yang, Zhang, Zhang, Duan, Li, Li (bib7) 2024; 26 Kong, El-Bahy, Algadi, Li, El-Bahy, Nassan, Li, Faheim, Li, Xu, Huang, Cui, Wei (bib29) 2022; 5 He, Ren, Chen, Rong, Rong (bib21) 2023; 72 Xu, Ren, Song, Wu, Zeng (bib24) 2024; 209 Zhang, Liu, Qin, Lan, Wang, Liang, Li, Wei, Hu, Zhao, Lian, Huang (bib36) 2023; 309 Dong, Yu, Lu, Song, Chen, Zhang, Li, Wang, Liu (bib23) 2024; 326 Xu, Song, Sempionatto, Solomon, Yu, Nyein, Tay, Li, Heng, Min, Lao, Hsiai, Sumner, Gao (bib5) 2024; 7 Hameed, Al-Aizari, Thamer (bib28) 2024; 684 Luo, Li, Ding, Wang, Liu, Wu (bib9) 2023; 15 Dong, Yu, Liu (bib42) 2023; 470 Wang, Dai, Wu, Ye, Yuan, Jia (bib30) 2022; 221 Zhao, Wang, Liu, Gan, Lei, Shao, Wang, Wang, Dong (bib45) 2023; 15 Sun, Gao, Wang, Shao, Wang, Su (bib16) 2023; 15 Roy, Deo, Lee, Soukar, Namkoong, Tian, Jaiswal, Gaharwar (bib1) 2024; 34 Wu, Song, Gao, Pang, Li, Xu, Yu (bib38) 2025; 505 Chen, Peng, Peng, Zhang, Zeng (bib43) 2022; 122 Hu, Dong, Yu, Zhao, Chen, Song, Lu, Zhang, Wang, Liu, Wang, Liu, Li (bib12) 2024; 342 Li, Xin, Yang, Liang, Lin, Zhang (bib33) 2024; 95 Wu, Pang, Ji, Pang, Li, Yu (bib40) 2024; 497 Guo, Ma (bib8) 2024; 12 Liu, Liu, Shu, Lian, Wu, Wen, Wu, Yang, Zhou, Hu (bib26) 2023; 140 Fang, Xu, Gao, Du, Du, Cheng, Wang (bib20) 2021; 219 Zeng, Wang, Wen, Chen, Ni, Yu, Bai, Zhao, Hu (bib39) 2023; 300 Lu, Liu, Chen, Yu, Song, Wang, Li, Liu, Ge (bib13) 2024; 271 Prameswati, Entifar, Han, Wibowo, Kim, Sembiring, Park, Lee, Lee, Song, Kim, Lim, Eom, Heo, Moon, Kim, Kim (bib17) 2023; 15 Wu, Yan, Wang, Gao, Liu (bib18) 2021; 184 Gan, Xing, Jiang, Fang, Zhao, Ren, Fang, Wang, Lu (bib22) 2019; 10 Chen, Pang, Li, Yu (bib44) 2024; 20 Tao, Yu, Zhang, Bao, Hu, Ye, Ding, Wang, Lin, Wu, Chang, Zhang, Yuan (bib3) 2023; 17 Hu, Yu, Gong, Li, Zhao, Wang, Zhang, Li, Wang, Liu, Zhao, Li (bib10) 2025; 510 Chen, Zhang, Mensaha, Li, Wang, Wei (bib41) 2021; 255 Shu, Wang, Chen, Zhong, Tang, Wang (bib2) 2023; 35 Li, Lu, Ji, Xue, Zhao, Zhao, Jia, Wang, Wang, Zhang, Jiang (bib11) 2024; 36 Zhang, Wang, Liu, Li, Yan, Du (bib15) 2023; 76 Zhu, Man, Zhao, Chen, Yan, Zhang, Chen, Xiao (bib19) 2024; 43 Qin, Yuan, Zhang, Cheng, Xu, Wei, Chen, Huang (bib35) 2022; 214 Mahmudov, Gurbanov, Guseinov, da Silva (bib14) 2019; 387 Bao, Wang, Duan, Gao, Sun, Liu, Yu, Zhou, Wu, Li (bib31) 2023; 676 Song, Niu, Ma, Li, Feng, Liu (bib27) 2023; 15 Hu (10.1016/j.talanta.2025.128531_bib12) 2024; 342 Shukla (10.1016/j.talanta.2025.128531_bib34) 2019; 26 Xu (10.1016/j.talanta.2025.128531_bib25) 2024; 194 Song (10.1016/j.talanta.2025.128531_bib27) 2023; 15 Xu (10.1016/j.talanta.2025.128531_bib24) 2024; 209 Zhang (10.1016/j.talanta.2025.128531_bib36) 2023; 309 Li (10.1016/j.talanta.2025.128531_bib11) 2024; 36 Sun (10.1016/j.talanta.2025.128531_bib16) 2023; 15 Qin (10.1016/j.talanta.2025.128531_bib35) 2022; 214 Xu (10.1016/j.talanta.2025.128531_bib5) 2024; 7 Zhi (10.1016/j.talanta.2025.128531_bib6) 2023; 15 Qi (10.1016/j.talanta.2025.128531_bib32) 2013; 53 Chen (10.1016/j.talanta.2025.128531_bib44) 2024; 20 Zhang (10.1016/j.talanta.2025.128531_bib15) 2023; 76 Wu (10.1016/j.talanta.2025.128531_bib18) 2021; 184 Hameed (10.1016/j.talanta.2025.128531_bib28) 2024; 684 Zhao (10.1016/j.talanta.2025.128531_bib45) 2023; 15 Zeng (10.1016/j.talanta.2025.128531_bib39) 2023; 300 Wang (10.1016/j.talanta.2025.128531_bib30) 2022; 221 Wu (10.1016/j.talanta.2025.128531_bib38) 2025; 505 Kong (10.1016/j.talanta.2025.128531_bib29) 2022; 5 Wang (10.1016/j.talanta.2025.128531_bib4) 2023; 380 Yang (10.1016/j.talanta.2025.128531_bib7) 2024; 26 Dong (10.1016/j.talanta.2025.128531_bib23) 2024; 326 Liu (10.1016/j.talanta.2025.128531_bib26) 2023; 140 Bao (10.1016/j.talanta.2025.128531_bib31) 2023; 676 Prameswati (10.1016/j.talanta.2025.128531_bib17) 2023; 15 Tao (10.1016/j.talanta.2025.128531_bib3) 2023; 17 Guo (10.1016/j.talanta.2025.128531_bib8) 2024; 12 Chen (10.1016/j.talanta.2025.128531_bib43) 2022; 122 Gan (10.1016/j.talanta.2025.128531_bib22) 2019; 10 Hu (10.1016/j.talanta.2025.128531_bib37) 2025; 512 Li (10.1016/j.talanta.2025.128531_bib33) 2024; 95 Roy (10.1016/j.talanta.2025.128531_bib1) 2024; 34 Hu (10.1016/j.talanta.2025.128531_bib10) 2025; 510 He (10.1016/j.talanta.2025.128531_bib21) 2023; 72 Chen (10.1016/j.talanta.2025.128531_bib41) 2021; 255 Shu (10.1016/j.talanta.2025.128531_bib2) 2023; 35 Fang (10.1016/j.talanta.2025.128531_bib20) 2021; 219 Mahmudov (10.1016/j.talanta.2025.128531_bib14) 2019; 387 Luo (10.1016/j.talanta.2025.128531_bib9) 2023; 15 Lu (10.1016/j.talanta.2025.128531_bib13) 2024; 271 Zhu (10.1016/j.talanta.2025.128531_bib19) 2024; 43 Wu (10.1016/j.talanta.2025.128531_bib40) 2024; 497 Dong (10.1016/j.talanta.2025.128531_bib42) 2023; 470 |
References_xml | – volume: 684 year: 2024 ident: bib28 article-title: Synthesis of a novel clay/polyacrylic acid-tannic acid hydrogel composite for efficient removal of crystal violet dye with low swelling and high adsorption performance publication-title: Colloid Surf. A-Physicochem. Eng. Asp. – volume: 15 start-page: 136 year: 2023 ident: bib9 article-title: Functionalized hydrogel-based wearable gas and humidity sensors publication-title: Nano-Micro Lett. – volume: 76 year: 2023 ident: bib15 article-title: Enhancing self-healing efficiency of concrete using multifunctional granules and PVA fibers publication-title: J. Build. Eng. – volume: 72 year: 2023 ident: bib21 article-title: Full-device stretchable supercapacitors with superior thermal and self-healing stability based on recyclable polymeric eutectogels publication-title: J. Energy Storage – volume: 34 year: 2024 ident: bib1 article-title: 3D printed electronic skin for strain, pressure and temperature sensing publication-title: Adv. Funct. Mater. – volume: 15 start-page: 28664 year: 2023 end-page: 28674 ident: bib45 article-title: Underwater self-healing and recyclable ionogel sensor for physiological signal monitoring publication-title: ACS Appl. Mater. Interfaces – volume: 676 year: 2023 ident: bib31 article-title: Instant strong adhesion of ultrafast gelling tough nanocomposite hydrogels for antifogging coatings and soft electronics publication-title: Colloid Surf. A-Physicochem. Eng. Asp. – volume: 26 start-page: 8191 year: 2019 end-page: 8208 ident: bib34 article-title: Sodium lignin sulfonate: a bio-macromolecule for making fire retardant cotton fabric publication-title: Cellulose – volume: 122 start-page: 14594 year: 2022 end-page: 14678 ident: bib43 article-title: Probing and manipulating noncovalent interactions in functional polymeric systems publication-title: Chem. Rev. – volume: 342 year: 2024 ident: bib12 article-title: Highly stretchable, self-healing, antibacterial, conductive, and amylopectin-enhanced hydrogels with gallium droplets loading as strain sensors publication-title: Carbohydr. Polym. – volume: 43 start-page: 53 year: 2024 end-page: 60 ident: bib19 article-title: Recyclable and self-healable polydimethylsiloxane elastomers based on knoevenagel condensation publication-title: Chin. J. Polym. Sci. – volume: 497 year: 2024 ident: bib40 article-title: Strong adhesive, high conductive and environmentally stable eutectogel based on "Water in deep eutectic Solvent": ultrasensitive flexible temperature and strain sensors publication-title: Chem. Eng. J. – volume: 17 start-page: 16160 year: 2023 end-page: 16173 ident: bib3 article-title: Deep-learning enabled active biomimetic multifunctional hydrogel electronic skin publication-title: ACS Nano – volume: 512 year: 2025 ident: bib37 article-title: Antibacterial conductive hydrogels with freeze-directed microstructures reinforced by polyaniline-encapsulated bacterial cellulose for flexible sensors publication-title: Chem. Eng. J. – volume: 510 year: 2025 ident: bib10 article-title: Amylopectin-enhanced MXene/gallium hydrogels: high-performance flexible conductive materials for multifunctional sensing, EMI shielding, and energy storage applications publication-title: Chem. Eng. J. – volume: 255 year: 2021 ident: bib41 article-title: A plant-inspired long-lasting adhesive bilayer nanocomposite hydrogel based on redox-active Ag/Tannic acid-Cellulose nanofibers publication-title: Carbohydr. Polym. – volume: 219 year: 2021 ident: bib20 article-title: Self-healable and recyclable polyurethane-polyaniline hydrogel toward flexible strain sensor publication-title: Compos. Pt. B-Eng. – volume: 505 year: 2025 ident: bib38 article-title: High performance eutectogel-based thermocell with a wide operating temperature range through a water-containing deep eutectic solvent strategy publication-title: Chem. Eng. J. – volume: 10 start-page: 1487 year: 2019 ident: bib22 article-title: Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry publication-title: Nat. Commun. – volume: 209 year: 2024 ident: bib24 article-title: Homogeneous PVA/sodium lignosulfonate mulch films with improved mechanical and UV/water vapor barrier properties publication-title: Ind. Crop. Prod. – volume: 380 start-page: 735 year: 2023 end-page: 742 ident: bib4 article-title: Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin publication-title: Science – volume: 95 year: 2024 ident: bib33 article-title: Ultrafast gelation of multifunctional β-cyclodextrin based hydrogel electrolyte for self-healing supercapacitor publication-title: J. Energy Storage – volume: 194 year: 2024 ident: bib25 article-title: Electromagnetic shielding materials of highly conductive PVA/PAA/hydrogel cross-linked with MXene publication-title: Prog. Org. Coating – volume: 7 start-page: 168 year: 2024 end-page: 179 ident: bib5 article-title: A physicochemical-sensing electronic skin for stress response monitoring publication-title: Nat. Electron. – volume: 184 start-page: 9 year: 2021 end-page: 19 ident: bib18 article-title: Biomimetic structure of chitosan reinforced epoxy natural rubber with self-healed, recyclable and antimicrobial ability publication-title: Int. J. Biol. Macromol. – volume: 221 year: 2022 ident: bib30 article-title: Tannic acid-Fe publication-title: Compos. Sci. Technol. – volume: 309 year: 2023 ident: bib36 article-title: Abundant tannic acid modified gelatin/sodium alginate biocomposite hydrogels with high toughness, antifreezing, antioxidant and antibacterial properties publication-title: Carbohydr. Polym. – volume: 470 year: 2023 ident: bib42 article-title: Ultrastretchable, repairable and highly sensitive xanthan collagen nanosilver hydrogel for wide temperature flexible sensing publication-title: Chem. Eng. J. – volume: 20 year: 2024 ident: bib44 article-title: Ultrafast self-healing, superstretchable, and ultra-strong polymer cluster-based adhesive based on aromatic acid cross-linkers for excellent hydrogel strain sensors publication-title: Small – volume: 140 year: 2023 ident: bib26 article-title: One-pot preparation of tough, anti-swelling, antibacterial and conductive multiple-crosslinked hydrogels assisted by phytic acid and ferric trichloride publication-title: J. Appl. Polym. Sci. – volume: 15 start-page: 10006 year: 2023 end-page: 10017 ident: bib27 article-title: Rapid preparation of antifreezing conductive hydrogels for flexible strain sensors and supercapacitors publication-title: ACS Appl. Mater. Interfaces – volume: 53 start-page: 144 year: 2013 end-page: 149 ident: bib32 article-title: Preparation and properties of photo-crosslinkable hydrogel based on photopolymerizable chitosan derivative publication-title: Int. J. Biol. Macromol. – volume: 35 year: 2023 ident: bib2 article-title: Machine-learning assisted electronic skins capable of proprioception and exteroception in soft robotics publication-title: Adv. Mater. – volume: 15 start-page: 60 year: 2023 ident: bib6 article-title: Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing publication-title: Nano-Micro Lett. – volume: 387 start-page: 32 year: 2019 end-page: 46 ident: bib14 article-title: Noncovalent interactions in metal complex catalysis publication-title: Coord. Chem. Rev. – volume: 36 year: 2024 ident: bib11 article-title: Self-healing hydrogel bioelectronics publication-title: Adv. Mater. – volume: 271 year: 2024 ident: bib13 article-title: Hydrophobic association-improved multi-functional hydrogels with liquid metal droplets stabilized by xanthan gum and PEDOT:PSS for strain sensors publication-title: Int. J. Biol. Macromol. – volume: 5 start-page: 1976 year: 2022 end-page: 1987 ident: bib29 article-title: Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel publication-title: Adv. Compos. Hybrid Mater. – volume: 15 start-page: 24648 year: 2023 end-page: 24657 ident: bib17 article-title: Self-healable conductive hydrogels with high stretchability and ultralow hysteresis for soft electronics publication-title: ACS Appl. Mater. Interfaces – volume: 326 year: 2024 ident: bib23 article-title: TEMPO bacterial cellulose and MXene nanosheets synergistically promote tough hydrogels for intelligent wearable human-machine interaction publication-title: Carbohydr. Polym. – volume: 214 year: 2022 ident: bib35 article-title: Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor publication-title: Colloid Surf. B-Biointerfaces – volume: 300 year: 2023 ident: bib39 article-title: Anti-freezing dual-network hydrogels with high-strength, self-adhesive and strain-sensitive for flexible sensors publication-title: Carbohydr. Polym. – volume: 12 start-page: 9371 year: 2024 end-page: 9399 ident: bib8 article-title: Conductive nanocomposite hydrogels for flexible wearable sensors publication-title: J. Mater. Chem. A – volume: 26 start-page: 3329 year: 2024 end-page: 3337 ident: bib7 article-title: Natural polyphenolic nanodot-knotted conductive hydrogels for flexible wearable sensors publication-title: Green Chem. – volume: 15 start-page: 190 year: 2023 ident: bib16 article-title: Microstructure and self-healing capability of artificial skin composites using biomimetic fibers containing a healing agent publication-title: Polymers – volume: 140 issue: 32 year: 2023 ident: 10.1016/j.talanta.2025.128531_bib26 article-title: One-pot preparation of tough, anti-swelling, antibacterial and conductive multiple-crosslinked hydrogels assisted by phytic acid and ferric trichloride publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.54243 – volume: 684 year: 2024 ident: 10.1016/j.talanta.2025.128531_bib28 article-title: Synthesis of a novel clay/polyacrylic acid-tannic acid hydrogel composite for efficient removal of crystal violet dye with low swelling and high adsorption performance publication-title: Colloid Surf. A-Physicochem. Eng. Asp. – volume: 512 year: 2025 ident: 10.1016/j.talanta.2025.128531_bib37 article-title: Antibacterial conductive hydrogels with freeze-directed microstructures reinforced by polyaniline-encapsulated bacterial cellulose for flexible sensors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2025.162702 – volume: 221 year: 2022 ident: 10.1016/j.talanta.2025.128531_bib30 article-title: Tannic acid-Fe3+ activated rapid polymerization of ionic conductive hydrogels with high mechanical properties, self-healing, and self-adhesion for flexible wearable sensors publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2022.109345 – volume: 36 issue: 21 year: 2024 ident: 10.1016/j.talanta.2025.128531_bib11 article-title: Self-healing hydrogel bioelectronics publication-title: Adv. Mater. – volume: 15 start-page: 24648 issue: 20 year: 2023 ident: 10.1016/j.talanta.2025.128531_bib17 article-title: Self-healable conductive hydrogels with high stretchability and ultralow hysteresis for soft electronics publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c02407 – volume: 676 year: 2023 ident: 10.1016/j.talanta.2025.128531_bib31 article-title: Instant strong adhesion of ultrafast gelling tough nanocomposite hydrogels for antifogging coatings and soft electronics publication-title: Colloid Surf. A-Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2023.132132 – volume: 34 issue: 22 year: 2024 ident: 10.1016/j.talanta.2025.128531_bib1 article-title: 3D printed electronic skin for strain, pressure and temperature sensing publication-title: Adv. Funct. Mater. – volume: 309 year: 2023 ident: 10.1016/j.talanta.2025.128531_bib36 article-title: Abundant tannic acid modified gelatin/sodium alginate biocomposite hydrogels with high toughness, antifreezing, antioxidant and antibacterial properties publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2023.120702 – volume: 194 year: 2024 ident: 10.1016/j.talanta.2025.128531_bib25 article-title: Electromagnetic shielding materials of highly conductive PVA/PAA/hydrogel cross-linked with MXene publication-title: Prog. Org. Coating – volume: 497 year: 2024 ident: 10.1016/j.talanta.2025.128531_bib40 article-title: Strong adhesive, high conductive and environmentally stable eutectogel based on "Water in deep eutectic Solvent": ultrasensitive flexible temperature and strain sensors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.154883 – volume: 300 year: 2023 ident: 10.1016/j.talanta.2025.128531_bib39 article-title: Anti-freezing dual-network hydrogels with high-strength, self-adhesive and strain-sensitive for flexible sensors publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2022.120229 – volume: 53 start-page: 144 year: 2013 ident: 10.1016/j.talanta.2025.128531_bib32 article-title: Preparation and properties of photo-crosslinkable hydrogel based on photopolymerizable chitosan derivative publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2012.10.021 – volume: 7 start-page: 168 issue: 2 year: 2024 ident: 10.1016/j.talanta.2025.128531_bib5 article-title: A physicochemical-sensing electronic skin for stress response monitoring publication-title: Nat. Electron. doi: 10.1038/s41928-023-01116-6 – volume: 12 start-page: 9371 issue: 16 year: 2024 ident: 10.1016/j.talanta.2025.128531_bib8 article-title: Conductive nanocomposite hydrogels for flexible wearable sensors publication-title: J. Mater. Chem. A doi: 10.1039/D3TA08069B – volume: 326 year: 2024 ident: 10.1016/j.talanta.2025.128531_bib23 article-title: TEMPO bacterial cellulose and MXene nanosheets synergistically promote tough hydrogels for intelligent wearable human-machine interaction publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2023.121621 – volume: 95 year: 2024 ident: 10.1016/j.talanta.2025.128531_bib33 article-title: Ultrafast gelation of multifunctional β-cyclodextrin based hydrogel electrolyte for self-healing supercapacitor publication-title: J. Energy Storage doi: 10.1016/j.est.2024.112607 – volume: 15 start-page: 60 year: 2023 ident: 10.1016/j.talanta.2025.128531_bib6 article-title: Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01028-2 – volume: 342 year: 2024 ident: 10.1016/j.talanta.2025.128531_bib12 article-title: Highly stretchable, self-healing, antibacterial, conductive, and amylopectin-enhanced hydrogels with gallium droplets loading as strain sensors publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2024.122357 – volume: 10 start-page: 1487 year: 2019 ident: 10.1016/j.talanta.2025.128531_bib22 article-title: Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry publication-title: Nat. Commun. doi: 10.1038/s41467-019-09351-2 – volume: 15 start-page: 28664 issue: 23 year: 2023 ident: 10.1016/j.talanta.2025.128531_bib45 article-title: Underwater self-healing and recyclable ionogel sensor for physiological signal monitoring publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c05943 – volume: 15 start-page: 136 year: 2023 ident: 10.1016/j.talanta.2025.128531_bib9 article-title: Functionalized hydrogel-based wearable gas and humidity sensors publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01109-2 – volume: 209 year: 2024 ident: 10.1016/j.talanta.2025.128531_bib24 article-title: Homogeneous PVA/sodium lignosulfonate mulch films with improved mechanical and UV/water vapor barrier properties publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2023.117975 – volume: 72 year: 2023 ident: 10.1016/j.talanta.2025.128531_bib21 article-title: Full-device stretchable supercapacitors with superior thermal and self-healing stability based on recyclable polymeric eutectogels publication-title: J. Energy Storage doi: 10.1016/j.est.2023.108619 – volume: 214 year: 2022 ident: 10.1016/j.talanta.2025.128531_bib35 article-title: Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor publication-title: Colloid Surf. B-Biointerfaces doi: 10.1016/j.colsurfb.2022.112482 – volume: 470 year: 2023 ident: 10.1016/j.talanta.2025.128531_bib42 article-title: Ultrastretchable, repairable and highly sensitive xanthan collagen nanosilver hydrogel for wide temperature flexible sensing publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.144385 – volume: 387 start-page: 32 year: 2019 ident: 10.1016/j.talanta.2025.128531_bib14 article-title: Noncovalent interactions in metal complex catalysis publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.02.011 – volume: 15 start-page: 10006 year: 2023 ident: 10.1016/j.talanta.2025.128531_bib27 article-title: Rapid preparation of antifreezing conductive hydrogels for flexible strain sensors and supercapacitors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c21617 – volume: 5 start-page: 1976 year: 2022 ident: 10.1016/j.talanta.2025.128531_bib29 article-title: Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-022-00531-1 – volume: 505 year: 2025 ident: 10.1016/j.talanta.2025.128531_bib38 article-title: High performance eutectogel-based thermocell with a wide operating temperature range through a water-containing deep eutectic solvent strategy publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2025.159714 – volume: 15 start-page: 190 issue: 1 year: 2023 ident: 10.1016/j.talanta.2025.128531_bib16 article-title: Microstructure and self-healing capability of artificial skin composites using biomimetic fibers containing a healing agent publication-title: Polymers doi: 10.3390/polym15010190 – volume: 255 year: 2021 ident: 10.1016/j.talanta.2025.128531_bib41 article-title: A plant-inspired long-lasting adhesive bilayer nanocomposite hydrogel based on redox-active Ag/Tannic acid-Cellulose nanofibers publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.117508 – volume: 122 start-page: 14594 issue: 18 year: 2022 ident: 10.1016/j.talanta.2025.128531_bib43 article-title: Probing and manipulating noncovalent interactions in functional polymeric systems publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00215 – volume: 35 issue: 18 year: 2023 ident: 10.1016/j.talanta.2025.128531_bib2 article-title: Machine-learning assisted electronic skins capable of proprioception and exteroception in soft robotics publication-title: Adv. Mater. doi: 10.1002/adma.202211385 – volume: 380 start-page: 735 issue: 6646 year: 2023 ident: 10.1016/j.talanta.2025.128531_bib4 article-title: Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin publication-title: Science doi: 10.1126/science.ade0086 – volume: 219 year: 2021 ident: 10.1016/j.talanta.2025.128531_bib20 article-title: Self-healable and recyclable polyurethane-polyaniline hydrogel toward flexible strain sensor publication-title: Compos. Pt. B-Eng. doi: 10.1016/j.compositesb.2021.108965 – volume: 271 year: 2024 ident: 10.1016/j.talanta.2025.128531_bib13 article-title: Hydrophobic association-improved multi-functional hydrogels with liquid metal droplets stabilized by xanthan gum and PEDOT:PSS for strain sensors publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2024.132494 – volume: 17 start-page: 16160 issue: 16 year: 2023 ident: 10.1016/j.talanta.2025.128531_bib3 article-title: Deep-learning enabled active biomimetic multifunctional hydrogel electronic skin publication-title: ACS Nano doi: 10.1021/acsnano.3c05253 – volume: 184 start-page: 9 year: 2021 ident: 10.1016/j.talanta.2025.128531_bib18 article-title: Biomimetic structure of chitosan reinforced epoxy natural rubber with self-healed, recyclable and antimicrobial ability publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.06.037 – volume: 43 start-page: 53 year: 2024 ident: 10.1016/j.talanta.2025.128531_bib19 article-title: Recyclable and self-healable polydimethylsiloxane elastomers based on knoevenagel condensation publication-title: Chin. J. Polym. Sci. doi: 10.1007/s10118-024-3248-8 – volume: 26 start-page: 8191 year: 2019 ident: 10.1016/j.talanta.2025.128531_bib34 article-title: Sodium lignin sulfonate: a bio-macromolecule for making fire retardant cotton fabric publication-title: Cellulose doi: 10.1007/s10570-019-02668-7 – volume: 510 year: 2025 ident: 10.1016/j.talanta.2025.128531_bib10 article-title: Amylopectin-enhanced MXene/gallium hydrogels: high-performance flexible conductive materials for multifunctional sensing, EMI shielding, and energy storage applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2025.161793 – volume: 20 issue: 19 year: 2024 ident: 10.1016/j.talanta.2025.128531_bib44 article-title: Ultrafast self-healing, superstretchable, and ultra-strong polymer cluster-based adhesive based on aromatic acid cross-linkers for excellent hydrogel strain sensors publication-title: Small doi: 10.1002/smll.202305875 – volume: 76 year: 2023 ident: 10.1016/j.talanta.2025.128531_bib15 article-title: Enhancing self-healing efficiency of concrete using multifunctional granules and PVA fibers publication-title: J. Build. Eng. – volume: 26 start-page: 3329 issue: 6 year: 2024 ident: 10.1016/j.talanta.2025.128531_bib7 article-title: Natural polyphenolic nanodot-knotted conductive hydrogels for flexible wearable sensors publication-title: Green Chem. doi: 10.1039/D3GC04952C |
SSID | ssj0002303 |
Score | 2.47923 |
Snippet | Hydrogel-based materials for e-skin applications have aroused tremendous attention due to their ability to simulate human skin's sensory capabilities and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 128531 |
SubjectTerms | Conductive hydrogel Diverse functions Recyclability Self-healing Strain sensor |
Title | Multifunctional hydrogel with self-healing and recyclability based on self-catalytic Fe3+/TA system for sustainable E-skin application |
URI | https://dx.doi.org/10.1016/j.talanta.2025.128531 https://www.proquest.com/docview/3227054617 |
Volume | 296 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA6lHvQirliXEsGbpJ3OZCaTYyktVbGnFnoLmSzaWqaly6EXj_5uX2ahKojgcYZklvfC97285H1B6M7XobLWaexrowiVASM8YowkgQXysCzmmVj18yDqj-jjOBxXUKeshXHbKgvszzE9Q-viTrOwZnMxmbgaXyBXmB8AibvzqV2hOaXMjfLG-26bB4TYhfAuJ671roqnOXUig_D9Tn7IDxuA1GHQ-o2ffiB1Rj-9I3RYxI24nX_aMaqY9ATtd8rj2k7RR1ZK62gqz-7h161ezl_MDLtUK16ZmSUuKgSqwjLVGP56q2a5SvcWOzLTeJ7m7bKczhbehHsmuG8O2zgXfMYQ4eLVruQKd8nqbZLiL6vgZ2jU6w47fVIcskCU73trEiuASu0DzHmUKUuNjSwHk0rDlQ1bUrOAR0lEYSIYcyljrkMTmsRT3HpRAnhxjqrpPDUXCHvg7kRaCz3B0JrGkvmJ4i2dJZ9pWEON0rRikWtpiHKT2VQUvhDOFyL3RQ3FpQPEt0EhAO__6npbOkyAI9wqiEzNfLMSgGAM4lSI3C7___grdABXRS7mGlXXy425gehkndSz4VdHe-2Hp_7gE3kj52I |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWBBPEV5GokNuU2TOInHqmpVoO3USt0sxw9oqdKqj6ELI7-bcx4qICEk1sRO4jvn-85n3x1C966i0hibY19pSXzhhYQFYUhizwB5mDBiabLqXj_oDP2nER2VULOIhbHHKnPszzA9Rev8Si2XZm0-HtsYXyBXWB8Aidv61HQH7frw-9oyBtX37TkPsLHzzLuM2ObbMJ7axGYZhAHY_EMurQJUU6_-G0H9gOqUf9qH6CA3HHEj-7YjVNLJMdprFvXaTtBHGktreSpz7-HXjVrMXvQUW18rXuqpIdYsBK7CIlEYhr2R0yxN9wZbNlN4lmTtUqfOBt6E29p7qA0aOMv4jMHExcttzBVukeXbOMFftsFP0bDdGjQ7JK-yQKTrOisSScBK5QLOOX4oja9NYBjIVGgmDa0LFXosiAMfVoIREyJiimqqY0cy4wQxAMYZKiezRJ8j7IC-Y2EM9ARBKz8SoRtLVlep99mnFVQtRMvnWTINXpwym_BcF9zqgme6qKCoUAD_Nis4AP5fXe8KhXFQhN0GEYmerZccICwEQxVMt4v_P_4W7XUGvS7vPvafL9E-3MkdM1eovFqs9TWYKqv4Jp2Kn9DM6PA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+hydrogel+with+self-healing+and+recyclability+based+on+self-catalytic+Fe3%2B%2FTA+system+for+sustainable+E-skin+application&rft.jtitle=Talanta+%28Oxford%29&rft.au=Wang%2C+Chenhao&rft.au=Xin%2C+Qing&rft.au=Liang%2C+Shangqing&rft.au=Lin%2C+Jun&rft.date=2026-01-01&rft.issn=1873-3573&rft.eissn=1873-3573&rft.volume=296&rft.spage=128531&rft_id=info:doi/10.1016%2Fj.talanta.2025.128531&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon |