Multifunctional hydrogel with self-healing and recyclability based on self-catalytic Fe3+/TA system for sustainable E-skin application

Hydrogel-based materials for e-skin applications have aroused tremendous attention due to their ability to simulate human skin's sensory capabilities and possess mechanical properties comparable to those of skin. When used as sensors attached to the skin, hydrogels are inevitably subject to dam...

Full description

Saved in:
Bibliographic Details
Published inTalanta (Oxford) Vol. 296; p. 128531
Main Authors Wang, Chenhao, Xin, Qing, Liang, Shangqing, Lin, Jun, Yao, Baidong, Yang, Guoqing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2026
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogel-based materials for e-skin applications have aroused tremendous attention due to their ability to simulate human skin's sensory capabilities and possess mechanical properties comparable to those of skin. When used as sensors attached to the skin, hydrogels are inevitably subject to damage, highlighting the need for self-healing properties. Furthermore, the lack of recyclability in traditional hydrogel sensors is detrimental to sustainability. To address this issue, we developed a hydrogel based on multiple noncovalent bonds and ferric ion/tannic acid redox system, combined with polyvinyl alcohol as a reinforcing skeleton and low polymerization of polyacrylic acid. This design endows the hydrogel with excellent self-healing properties, easy recyclability and enhanced mechanical properties. Additionally, as a strain sensor, it exhibits competitive performance including high sensitivity, rapid response time and excellent sensing stability. With these remarkable characteristics, the hydrogel demonstrates significant potential as a sensor for sustainable e-skin applications. [Display omitted] •Hydrogel incorporated superior reversibility while maintain excellent mechanical properties.•Hydrogel possesses both self-healing ability and recyclability while this match is rare.•Hydrogel achieves a fast and excellent healing without external assistance.•Easy and low-cost way of recycling process compare to conventional recyclable way.•High gauge factor of hydrogel as strain sensor.
AbstractList Hydrogel-based materials for e-skin applications have aroused tremendous attention due to their ability to simulate human skin's sensory capabilities and possess mechanical properties comparable to those of skin. When used as sensors attached to the skin, hydrogels are inevitably subject to damage, highlighting the need for self-healing properties. Furthermore, the lack of recyclability in traditional hydrogel sensors is detrimental to sustainability. To address this issue, we developed a hydrogel based on multiple noncovalent bonds and ferric ion/tannic acid redox system, combined with polyvinyl alcohol as a reinforcing skeleton and low polymerization of polyacrylic acid. This design endows the hydrogel with excellent self-healing properties, easy recyclability and enhanced mechanical properties. Additionally, as a strain sensor, it exhibits competitive performance including high sensitivity, rapid response time and excellent sensing stability. With these remarkable characteristics, the hydrogel demonstrates significant potential as a sensor for sustainable e-skin applications. [Display omitted] •Hydrogel incorporated superior reversibility while maintain excellent mechanical properties.•Hydrogel possesses both self-healing ability and recyclability while this match is rare.•Hydrogel achieves a fast and excellent healing without external assistance.•Easy and low-cost way of recycling process compare to conventional recyclable way.•High gauge factor of hydrogel as strain sensor.
Hydrogel-based materials for e-skin applications have aroused tremendous attention due to their ability to simulate human skin's sensory capabilities and possess mechanical properties comparable to those of skin. When used as sensors attached to the skin, hydrogels are inevitably subject to damage, highlighting the need for self-healing properties. Furthermore, the lack of recyclability in traditional hydrogel sensors is detrimental to sustainability. To address this issue, we developed a hydrogel based on multiple noncovalent bonds and ferric ion/tannic acid redox system, combined with polyvinyl alcohol as a reinforcing skeleton and low polymerization of polyacrylic acid. This design endows the hydrogel with excellent self-healing properties, easy recyclability and enhanced mechanical properties. Additionally, as a strain sensor, it exhibits competitive performance including high sensitivity, rapid response time and excellent sensing stability. With these remarkable characteristics, the hydrogel demonstrates significant potential as a sensor for sustainable e-skin applications.Hydrogel-based materials for e-skin applications have aroused tremendous attention due to their ability to simulate human skin's sensory capabilities and possess mechanical properties comparable to those of skin. When used as sensors attached to the skin, hydrogels are inevitably subject to damage, highlighting the need for self-healing properties. Furthermore, the lack of recyclability in traditional hydrogel sensors is detrimental to sustainability. To address this issue, we developed a hydrogel based on multiple noncovalent bonds and ferric ion/tannic acid redox system, combined with polyvinyl alcohol as a reinforcing skeleton and low polymerization of polyacrylic acid. This design endows the hydrogel with excellent self-healing properties, easy recyclability and enhanced mechanical properties. Additionally, as a strain sensor, it exhibits competitive performance including high sensitivity, rapid response time and excellent sensing stability. With these remarkable characteristics, the hydrogel demonstrates significant potential as a sensor for sustainable e-skin applications.
ArticleNumber 128531
Author Liang, Shangqing
Yao, Baidong
Yang, Guoqing
Wang, Chenhao
Lin, Jun
Xin, Qing
Author_xml – sequence: 1
  givenname: Chenhao
  surname: Wang
  fullname: Wang, Chenhao
– sequence: 2
  givenname: Qing
  orcidid: 0000-0003-4548-3555
  surname: Xin
  fullname: Xin, Qing
  email: xinqing@hdu.edu.cn
– sequence: 3
  givenname: Shangqing
  surname: Liang
  fullname: Liang, Shangqing
– sequence: 4
  givenname: Jun
  surname: Lin
  fullname: Lin, Jun
– sequence: 5
  givenname: Baidong
  surname: Yao
  fullname: Yao, Baidong
  email: yao1984@mail.ustc.edu.cn
– sequence: 6
  givenname: Guoqing
  surname: Yang
  fullname: Yang, Guoqing
BookMark eNqFkMtuFDEQRS0UJCaBT0DyEgn1pGz3c4WiKAGkIDZhbVXb5YwHj3uw3aD-Ab6bjjp7VrW551bVuWQXcYrE2HsBewGivT7uCwaMBfcSZLMXsm-UeMV2ou9UpZpOXbAdgBqqQdTwhl3mfAQAqUDt2N9vcyjezdEUP0UM_LDYND1R4H98OfBMwVUHwuDjE8doeSKzmICjD74sfMRMlk9xyxlc71iKN_ye1Mfrxxuel1zoxN2UeJ5zQR9xDMTvqvzTR47nc_ArtC5-y147DJnevcwr9uP-7vH2S_Xw_fPX25uHykgJpepN3XZWorVQd8bV5Fo3yAaQBuMagbZTQzu2dV9DPyD2g22ooRHM4KAdO1BX7MPWe07Tr5ly0SefDYVVH01z1krKDpq6Fd0abbaoSVPOiZw-J3_CtGgB-tm7PuoX7_rZu968r9ynjaP1j9-eks7GUzRk_SqvaDv5_zT8A9X3kuc
Cites_doi 10.1002/app.54243
10.1016/j.cej.2025.162702
10.1016/j.compscitech.2022.109345
10.1021/acsami.3c02407
10.1016/j.colsurfa.2023.132132
10.1016/j.carbpol.2023.120702
10.1016/j.cej.2024.154883
10.1016/j.carbpol.2022.120229
10.1016/j.ijbiomac.2012.10.021
10.1038/s41928-023-01116-6
10.1039/D3TA08069B
10.1016/j.carbpol.2023.121621
10.1016/j.est.2024.112607
10.1007/s40820-023-01028-2
10.1016/j.carbpol.2024.122357
10.1038/s41467-019-09351-2
10.1021/acsami.3c05943
10.1007/s40820-023-01109-2
10.1016/j.indcrop.2023.117975
10.1016/j.est.2023.108619
10.1016/j.colsurfb.2022.112482
10.1016/j.cej.2023.144385
10.1016/j.ccr.2019.02.011
10.1021/acsami.2c21617
10.1007/s42114-022-00531-1
10.1016/j.cej.2025.159714
10.3390/polym15010190
10.1016/j.carbpol.2020.117508
10.1021/acs.chemrev.2c00215
10.1002/adma.202211385
10.1126/science.ade0086
10.1016/j.compositesb.2021.108965
10.1016/j.ijbiomac.2024.132494
10.1021/acsnano.3c05253
10.1016/j.ijbiomac.2021.06.037
10.1007/s10118-024-3248-8
10.1007/s10570-019-02668-7
10.1016/j.cej.2025.161793
10.1002/smll.202305875
10.1039/D3GC04952C
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright © 2025 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2025 Elsevier B.V.
– notice: Copyright © 2025 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.talanta.2025.128531
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3573
ExternalDocumentID 10_1016_j_talanta_2025_128531
S0039914025010215
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ACDAQ
ACGFS
ACNCT
ACRLP
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AFZHZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
TN5
TWZ
WH7
XPP
YK3
YNT
ZMT
~02
~G-
29Q
3O-
53G
AAQXK
AAYJJ
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADIYS
ADMUD
ADNMO
AGQPQ
AJQLL
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
M36
M41
R2-
RIG
SCB
SSH
WUQ
XOL
7X8
ID FETCH-LOGICAL-c220t-8c467d2add047cf4ef6f9250ae9cf51ad7396b6484089aa89d5e5eb0c9f06b703
IEDL.DBID .~1
ISSN 0039-9140
1873-3573
IngestDate Fri Jul 11 17:04:30 EDT 2025
Thu Jul 10 08:51:41 EDT 2025
Sat Aug 09 17:31:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Self-healing
Conductive hydrogel
Recyclability
Strain sensor
Diverse functions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c220t-8c467d2add047cf4ef6f9250ae9cf51ad7396b6484089aa89d5e5eb0c9f06b703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4548-3555
PQID 3227054617
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3227054617
crossref_primary_10_1016_j_talanta_2025_128531
elsevier_sciencedirect_doi_10_1016_j_talanta_2025_128531
PublicationCentury 2000
PublicationDate 2026-01-01
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: 2026-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Talanta (Oxford)
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Jiang, Zhong, Zhang, Choudhury, Lai, Gong, Niu, Yan, Zheng, Shih, Ning, Lin, Li, Kim, Kim, Wang, Zhao, Xu, Ji, Nishio, Lyu, Tok, Bao (bib4) 2023; 380
Qi, Xu, Wang, Nie, Ma (bib32) 2013; 53
Shukla, Sharma, Basak, Ali (bib34) 2019; 26
Hu, Yu, Dong, Gong, Li, Zhao, Wang, Li, Wang, Liu, Zhang, Chen, Zhao (bib37) 2025; 512
Xu, Pei, Zhan, Du, Zhang (bib25) 2024; 194
Zhi, Shi, Zhang, Si, Yang, Meng, Fei, Hu (bib6) 2023; 15
Yang, Zhang, Zhang, Duan, Li, Li (bib7) 2024; 26
Kong, El-Bahy, Algadi, Li, El-Bahy, Nassan, Li, Faheim, Li, Xu, Huang, Cui, Wei (bib29) 2022; 5
He, Ren, Chen, Rong, Rong (bib21) 2023; 72
Xu, Ren, Song, Wu, Zeng (bib24) 2024; 209
Zhang, Liu, Qin, Lan, Wang, Liang, Li, Wei, Hu, Zhao, Lian, Huang (bib36) 2023; 309
Dong, Yu, Lu, Song, Chen, Zhang, Li, Wang, Liu (bib23) 2024; 326
Xu, Song, Sempionatto, Solomon, Yu, Nyein, Tay, Li, Heng, Min, Lao, Hsiai, Sumner, Gao (bib5) 2024; 7
Hameed, Al-Aizari, Thamer (bib28) 2024; 684
Luo, Li, Ding, Wang, Liu, Wu (bib9) 2023; 15
Dong, Yu, Liu (bib42) 2023; 470
Wang, Dai, Wu, Ye, Yuan, Jia (bib30) 2022; 221
Zhao, Wang, Liu, Gan, Lei, Shao, Wang, Wang, Dong (bib45) 2023; 15
Sun, Gao, Wang, Shao, Wang, Su (bib16) 2023; 15
Roy, Deo, Lee, Soukar, Namkoong, Tian, Jaiswal, Gaharwar (bib1) 2024; 34
Wu, Song, Gao, Pang, Li, Xu, Yu (bib38) 2025; 505
Chen, Peng, Peng, Zhang, Zeng (bib43) 2022; 122
Hu, Dong, Yu, Zhao, Chen, Song, Lu, Zhang, Wang, Liu, Wang, Liu, Li (bib12) 2024; 342
Li, Xin, Yang, Liang, Lin, Zhang (bib33) 2024; 95
Wu, Pang, Ji, Pang, Li, Yu (bib40) 2024; 497
Guo, Ma (bib8) 2024; 12
Liu, Liu, Shu, Lian, Wu, Wen, Wu, Yang, Zhou, Hu (bib26) 2023; 140
Fang, Xu, Gao, Du, Du, Cheng, Wang (bib20) 2021; 219
Zeng, Wang, Wen, Chen, Ni, Yu, Bai, Zhao, Hu (bib39) 2023; 300
Lu, Liu, Chen, Yu, Song, Wang, Li, Liu, Ge (bib13) 2024; 271
Prameswati, Entifar, Han, Wibowo, Kim, Sembiring, Park, Lee, Lee, Song, Kim, Lim, Eom, Heo, Moon, Kim, Kim (bib17) 2023; 15
Wu, Yan, Wang, Gao, Liu (bib18) 2021; 184
Gan, Xing, Jiang, Fang, Zhao, Ren, Fang, Wang, Lu (bib22) 2019; 10
Chen, Pang, Li, Yu (bib44) 2024; 20
Tao, Yu, Zhang, Bao, Hu, Ye, Ding, Wang, Lin, Wu, Chang, Zhang, Yuan (bib3) 2023; 17
Hu, Yu, Gong, Li, Zhao, Wang, Zhang, Li, Wang, Liu, Zhao, Li (bib10) 2025; 510
Chen, Zhang, Mensaha, Li, Wang, Wei (bib41) 2021; 255
Shu, Wang, Chen, Zhong, Tang, Wang (bib2) 2023; 35
Li, Lu, Ji, Xue, Zhao, Zhao, Jia, Wang, Wang, Zhang, Jiang (bib11) 2024; 36
Zhang, Wang, Liu, Li, Yan, Du (bib15) 2023; 76
Zhu, Man, Zhao, Chen, Yan, Zhang, Chen, Xiao (bib19) 2024; 43
Qin, Yuan, Zhang, Cheng, Xu, Wei, Chen, Huang (bib35) 2022; 214
Mahmudov, Gurbanov, Guseinov, da Silva (bib14) 2019; 387
Bao, Wang, Duan, Gao, Sun, Liu, Yu, Zhou, Wu, Li (bib31) 2023; 676
Song, Niu, Ma, Li, Feng, Liu (bib27) 2023; 15
Hu (10.1016/j.talanta.2025.128531_bib12) 2024; 342
Shukla (10.1016/j.talanta.2025.128531_bib34) 2019; 26
Xu (10.1016/j.talanta.2025.128531_bib25) 2024; 194
Song (10.1016/j.talanta.2025.128531_bib27) 2023; 15
Xu (10.1016/j.talanta.2025.128531_bib24) 2024; 209
Zhang (10.1016/j.talanta.2025.128531_bib36) 2023; 309
Li (10.1016/j.talanta.2025.128531_bib11) 2024; 36
Sun (10.1016/j.talanta.2025.128531_bib16) 2023; 15
Qin (10.1016/j.talanta.2025.128531_bib35) 2022; 214
Xu (10.1016/j.talanta.2025.128531_bib5) 2024; 7
Zhi (10.1016/j.talanta.2025.128531_bib6) 2023; 15
Qi (10.1016/j.talanta.2025.128531_bib32) 2013; 53
Chen (10.1016/j.talanta.2025.128531_bib44) 2024; 20
Zhang (10.1016/j.talanta.2025.128531_bib15) 2023; 76
Wu (10.1016/j.talanta.2025.128531_bib18) 2021; 184
Hameed (10.1016/j.talanta.2025.128531_bib28) 2024; 684
Zhao (10.1016/j.talanta.2025.128531_bib45) 2023; 15
Zeng (10.1016/j.talanta.2025.128531_bib39) 2023; 300
Wang (10.1016/j.talanta.2025.128531_bib30) 2022; 221
Wu (10.1016/j.talanta.2025.128531_bib38) 2025; 505
Kong (10.1016/j.talanta.2025.128531_bib29) 2022; 5
Wang (10.1016/j.talanta.2025.128531_bib4) 2023; 380
Yang (10.1016/j.talanta.2025.128531_bib7) 2024; 26
Dong (10.1016/j.talanta.2025.128531_bib23) 2024; 326
Liu (10.1016/j.talanta.2025.128531_bib26) 2023; 140
Bao (10.1016/j.talanta.2025.128531_bib31) 2023; 676
Prameswati (10.1016/j.talanta.2025.128531_bib17) 2023; 15
Tao (10.1016/j.talanta.2025.128531_bib3) 2023; 17
Guo (10.1016/j.talanta.2025.128531_bib8) 2024; 12
Chen (10.1016/j.talanta.2025.128531_bib43) 2022; 122
Gan (10.1016/j.talanta.2025.128531_bib22) 2019; 10
Hu (10.1016/j.talanta.2025.128531_bib37) 2025; 512
Li (10.1016/j.talanta.2025.128531_bib33) 2024; 95
Roy (10.1016/j.talanta.2025.128531_bib1) 2024; 34
Hu (10.1016/j.talanta.2025.128531_bib10) 2025; 510
He (10.1016/j.talanta.2025.128531_bib21) 2023; 72
Chen (10.1016/j.talanta.2025.128531_bib41) 2021; 255
Shu (10.1016/j.talanta.2025.128531_bib2) 2023; 35
Fang (10.1016/j.talanta.2025.128531_bib20) 2021; 219
Mahmudov (10.1016/j.talanta.2025.128531_bib14) 2019; 387
Luo (10.1016/j.talanta.2025.128531_bib9) 2023; 15
Lu (10.1016/j.talanta.2025.128531_bib13) 2024; 271
Zhu (10.1016/j.talanta.2025.128531_bib19) 2024; 43
Wu (10.1016/j.talanta.2025.128531_bib40) 2024; 497
Dong (10.1016/j.talanta.2025.128531_bib42) 2023; 470
References_xml – volume: 684
  year: 2024
  ident: bib28
  article-title: Synthesis of a novel clay/polyacrylic acid-tannic acid hydrogel composite for efficient removal of crystal violet dye with low swelling and high adsorption performance
  publication-title: Colloid Surf. A-Physicochem. Eng. Asp.
– volume: 15
  start-page: 136
  year: 2023
  ident: bib9
  article-title: Functionalized hydrogel-based wearable gas and humidity sensors
  publication-title: Nano-Micro Lett.
– volume: 76
  year: 2023
  ident: bib15
  article-title: Enhancing self-healing efficiency of concrete using multifunctional granules and PVA fibers
  publication-title: J. Build. Eng.
– volume: 72
  year: 2023
  ident: bib21
  article-title: Full-device stretchable supercapacitors with superior thermal and self-healing stability based on recyclable polymeric eutectogels
  publication-title: J. Energy Storage
– volume: 34
  year: 2024
  ident: bib1
  article-title: 3D printed electronic skin for strain, pressure and temperature sensing
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 28664
  year: 2023
  end-page: 28674
  ident: bib45
  article-title: Underwater self-healing and recyclable ionogel sensor for physiological signal monitoring
  publication-title: ACS Appl. Mater. Interfaces
– volume: 676
  year: 2023
  ident: bib31
  article-title: Instant strong adhesion of ultrafast gelling tough nanocomposite hydrogels for antifogging coatings and soft electronics
  publication-title: Colloid Surf. A-Physicochem. Eng. Asp.
– volume: 26
  start-page: 8191
  year: 2019
  end-page: 8208
  ident: bib34
  article-title: Sodium lignin sulfonate: a bio-macromolecule for making fire retardant cotton fabric
  publication-title: Cellulose
– volume: 122
  start-page: 14594
  year: 2022
  end-page: 14678
  ident: bib43
  article-title: Probing and manipulating noncovalent interactions in functional polymeric systems
  publication-title: Chem. Rev.
– volume: 342
  year: 2024
  ident: bib12
  article-title: Highly stretchable, self-healing, antibacterial, conductive, and amylopectin-enhanced hydrogels with gallium droplets loading as strain sensors
  publication-title: Carbohydr. Polym.
– volume: 43
  start-page: 53
  year: 2024
  end-page: 60
  ident: bib19
  article-title: Recyclable and self-healable polydimethylsiloxane elastomers based on knoevenagel condensation
  publication-title: Chin. J. Polym. Sci.
– volume: 497
  year: 2024
  ident: bib40
  article-title: Strong adhesive, high conductive and environmentally stable eutectogel based on "Water in deep eutectic Solvent": ultrasensitive flexible temperature and strain sensors
  publication-title: Chem. Eng. J.
– volume: 17
  start-page: 16160
  year: 2023
  end-page: 16173
  ident: bib3
  article-title: Deep-learning enabled active biomimetic multifunctional hydrogel electronic skin
  publication-title: ACS Nano
– volume: 512
  year: 2025
  ident: bib37
  article-title: Antibacterial conductive hydrogels with freeze-directed microstructures reinforced by polyaniline-encapsulated bacterial cellulose for flexible sensors
  publication-title: Chem. Eng. J.
– volume: 510
  year: 2025
  ident: bib10
  article-title: Amylopectin-enhanced MXene/gallium hydrogels: high-performance flexible conductive materials for multifunctional sensing, EMI shielding, and energy storage applications
  publication-title: Chem. Eng. J.
– volume: 255
  year: 2021
  ident: bib41
  article-title: A plant-inspired long-lasting adhesive bilayer nanocomposite hydrogel based on redox-active Ag/Tannic acid-Cellulose nanofibers
  publication-title: Carbohydr. Polym.
– volume: 219
  year: 2021
  ident: bib20
  article-title: Self-healable and recyclable polyurethane-polyaniline hydrogel toward flexible strain sensor
  publication-title: Compos. Pt. B-Eng.
– volume: 505
  year: 2025
  ident: bib38
  article-title: High performance eutectogel-based thermocell with a wide operating temperature range through a water-containing deep eutectic solvent strategy
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 1487
  year: 2019
  ident: bib22
  article-title: Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry
  publication-title: Nat. Commun.
– volume: 209
  year: 2024
  ident: bib24
  article-title: Homogeneous PVA/sodium lignosulfonate mulch films with improved mechanical and UV/water vapor barrier properties
  publication-title: Ind. Crop. Prod.
– volume: 380
  start-page: 735
  year: 2023
  end-page: 742
  ident: bib4
  article-title: Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin
  publication-title: Science
– volume: 95
  year: 2024
  ident: bib33
  article-title: Ultrafast gelation of multifunctional β-cyclodextrin based hydrogel electrolyte for self-healing supercapacitor
  publication-title: J. Energy Storage
– volume: 194
  year: 2024
  ident: bib25
  article-title: Electromagnetic shielding materials of highly conductive PVA/PAA/hydrogel cross-linked with MXene
  publication-title: Prog. Org. Coating
– volume: 7
  start-page: 168
  year: 2024
  end-page: 179
  ident: bib5
  article-title: A physicochemical-sensing electronic skin for stress response monitoring
  publication-title: Nat. Electron.
– volume: 184
  start-page: 9
  year: 2021
  end-page: 19
  ident: bib18
  article-title: Biomimetic structure of chitosan reinforced epoxy natural rubber with self-healed, recyclable and antimicrobial ability
  publication-title: Int. J. Biol. Macromol.
– volume: 221
  year: 2022
  ident: bib30
  article-title: Tannic acid-Fe
  publication-title: Compos. Sci. Technol.
– volume: 309
  year: 2023
  ident: bib36
  article-title: Abundant tannic acid modified gelatin/sodium alginate biocomposite hydrogels with high toughness, antifreezing, antioxidant and antibacterial properties
  publication-title: Carbohydr. Polym.
– volume: 470
  year: 2023
  ident: bib42
  article-title: Ultrastretchable, repairable and highly sensitive xanthan collagen nanosilver hydrogel for wide temperature flexible sensing
  publication-title: Chem. Eng. J.
– volume: 20
  year: 2024
  ident: bib44
  article-title: Ultrafast self-healing, superstretchable, and ultra-strong polymer cluster-based adhesive based on aromatic acid cross-linkers for excellent hydrogel strain sensors
  publication-title: Small
– volume: 140
  year: 2023
  ident: bib26
  article-title: One-pot preparation of tough, anti-swelling, antibacterial and conductive multiple-crosslinked hydrogels assisted by phytic acid and ferric trichloride
  publication-title: J. Appl. Polym. Sci.
– volume: 15
  start-page: 10006
  year: 2023
  end-page: 10017
  ident: bib27
  article-title: Rapid preparation of antifreezing conductive hydrogels for flexible strain sensors and supercapacitors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 53
  start-page: 144
  year: 2013
  end-page: 149
  ident: bib32
  article-title: Preparation and properties of photo-crosslinkable hydrogel based on photopolymerizable chitosan derivative
  publication-title: Int. J. Biol. Macromol.
– volume: 35
  year: 2023
  ident: bib2
  article-title: Machine-learning assisted electronic skins capable of proprioception and exteroception in soft robotics
  publication-title: Adv. Mater.
– volume: 15
  start-page: 60
  year: 2023
  ident: bib6
  article-title: Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing
  publication-title: Nano-Micro Lett.
– volume: 387
  start-page: 32
  year: 2019
  end-page: 46
  ident: bib14
  article-title: Noncovalent interactions in metal complex catalysis
  publication-title: Coord. Chem. Rev.
– volume: 36
  year: 2024
  ident: bib11
  article-title: Self-healing hydrogel bioelectronics
  publication-title: Adv. Mater.
– volume: 271
  year: 2024
  ident: bib13
  article-title: Hydrophobic association-improved multi-functional hydrogels with liquid metal droplets stabilized by xanthan gum and PEDOT:PSS for strain sensors
  publication-title: Int. J. Biol. Macromol.
– volume: 5
  start-page: 1976
  year: 2022
  end-page: 1987
  ident: bib29
  article-title: Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 15
  start-page: 24648
  year: 2023
  end-page: 24657
  ident: bib17
  article-title: Self-healable conductive hydrogels with high stretchability and ultralow hysteresis for soft electronics
  publication-title: ACS Appl. Mater. Interfaces
– volume: 326
  year: 2024
  ident: bib23
  article-title: TEMPO bacterial cellulose and MXene nanosheets synergistically promote tough hydrogels for intelligent wearable human-machine interaction
  publication-title: Carbohydr. Polym.
– volume: 214
  year: 2022
  ident: bib35
  article-title: Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor
  publication-title: Colloid Surf. B-Biointerfaces
– volume: 300
  year: 2023
  ident: bib39
  article-title: Anti-freezing dual-network hydrogels with high-strength, self-adhesive and strain-sensitive for flexible sensors
  publication-title: Carbohydr. Polym.
– volume: 12
  start-page: 9371
  year: 2024
  end-page: 9399
  ident: bib8
  article-title: Conductive nanocomposite hydrogels for flexible wearable sensors
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 3329
  year: 2024
  end-page: 3337
  ident: bib7
  article-title: Natural polyphenolic nanodot-knotted conductive hydrogels for flexible wearable sensors
  publication-title: Green Chem.
– volume: 15
  start-page: 190
  year: 2023
  ident: bib16
  article-title: Microstructure and self-healing capability of artificial skin composites using biomimetic fibers containing a healing agent
  publication-title: Polymers
– volume: 140
  issue: 32
  year: 2023
  ident: 10.1016/j.talanta.2025.128531_bib26
  article-title: One-pot preparation of tough, anti-swelling, antibacterial and conductive multiple-crosslinked hydrogels assisted by phytic acid and ferric trichloride
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.54243
– volume: 684
  year: 2024
  ident: 10.1016/j.talanta.2025.128531_bib28
  article-title: Synthesis of a novel clay/polyacrylic acid-tannic acid hydrogel composite for efficient removal of crystal violet dye with low swelling and high adsorption performance
  publication-title: Colloid Surf. A-Physicochem. Eng. Asp.
– volume: 512
  year: 2025
  ident: 10.1016/j.talanta.2025.128531_bib37
  article-title: Antibacterial conductive hydrogels with freeze-directed microstructures reinforced by polyaniline-encapsulated bacterial cellulose for flexible sensors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2025.162702
– volume: 221
  year: 2022
  ident: 10.1016/j.talanta.2025.128531_bib30
  article-title: Tannic acid-Fe3+ activated rapid polymerization of ionic conductive hydrogels with high mechanical properties, self-healing, and self-adhesion for flexible wearable sensors
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2022.109345
– volume: 36
  issue: 21
  year: 2024
  ident: 10.1016/j.talanta.2025.128531_bib11
  article-title: Self-healing hydrogel bioelectronics
  publication-title: Adv. Mater.
– volume: 15
  start-page: 24648
  issue: 20
  year: 2023
  ident: 10.1016/j.talanta.2025.128531_bib17
  article-title: Self-healable conductive hydrogels with high stretchability and ultralow hysteresis for soft electronics
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c02407
– volume: 676
  year: 2023
  ident: 10.1016/j.talanta.2025.128531_bib31
  article-title: Instant strong adhesion of ultrafast gelling tough nanocomposite hydrogels for antifogging coatings and soft electronics
  publication-title: Colloid Surf. A-Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2023.132132
– volume: 34
  issue: 22
  year: 2024
  ident: 10.1016/j.talanta.2025.128531_bib1
  article-title: 3D printed electronic skin for strain, pressure and temperature sensing
  publication-title: Adv. Funct. Mater.
– volume: 309
  year: 2023
  ident: 10.1016/j.talanta.2025.128531_bib36
  article-title: Abundant tannic acid modified gelatin/sodium alginate biocomposite hydrogels with high toughness, antifreezing, antioxidant and antibacterial properties
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2023.120702
– volume: 194
  year: 2024
  ident: 10.1016/j.talanta.2025.128531_bib25
  article-title: Electromagnetic shielding materials of highly conductive PVA/PAA/hydrogel cross-linked with MXene
  publication-title: Prog. Org. Coating
– volume: 497
  year: 2024
  ident: 10.1016/j.talanta.2025.128531_bib40
  article-title: Strong adhesive, high conductive and environmentally stable eutectogel based on "Water in deep eutectic Solvent": ultrasensitive flexible temperature and strain sensors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.154883
– volume: 300
  year: 2023
  ident: 10.1016/j.talanta.2025.128531_bib39
  article-title: Anti-freezing dual-network hydrogels with high-strength, self-adhesive and strain-sensitive for flexible sensors
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2022.120229
– volume: 53
  start-page: 144
  year: 2013
  ident: 10.1016/j.talanta.2025.128531_bib32
  article-title: Preparation and properties of photo-crosslinkable hydrogel based on photopolymerizable chitosan derivative
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2012.10.021
– volume: 7
  start-page: 168
  issue: 2
  year: 2024
  ident: 10.1016/j.talanta.2025.128531_bib5
  article-title: A physicochemical-sensing electronic skin for stress response monitoring
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-023-01116-6
– volume: 12
  start-page: 9371
  issue: 16
  year: 2024
  ident: 10.1016/j.talanta.2025.128531_bib8
  article-title: Conductive nanocomposite hydrogels for flexible wearable sensors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D3TA08069B
– volume: 326
  year: 2024
  ident: 10.1016/j.talanta.2025.128531_bib23
  article-title: TEMPO bacterial cellulose and MXene nanosheets synergistically promote tough hydrogels for intelligent wearable human-machine interaction
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2023.121621
– volume: 95
  year: 2024
  ident: 10.1016/j.talanta.2025.128531_bib33
  article-title: Ultrafast gelation of multifunctional β-cyclodextrin based hydrogel electrolyte for self-healing supercapacitor
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.112607
– volume: 15
  start-page: 60
  year: 2023
  ident: 10.1016/j.talanta.2025.128531_bib6
  article-title: Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01028-2
– volume: 342
  year: 2024
  ident: 10.1016/j.talanta.2025.128531_bib12
  article-title: Highly stretchable, self-healing, antibacterial, conductive, and amylopectin-enhanced hydrogels with gallium droplets loading as strain sensors
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2024.122357
– volume: 10
  start-page: 1487
  year: 2019
  ident: 10.1016/j.talanta.2025.128531_bib22
  article-title: Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09351-2
– volume: 15
  start-page: 28664
  issue: 23
  year: 2023
  ident: 10.1016/j.talanta.2025.128531_bib45
  article-title: Underwater self-healing and recyclable ionogel sensor for physiological signal monitoring
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c05943
– volume: 15
  start-page: 136
  year: 2023
  ident: 10.1016/j.talanta.2025.128531_bib9
  article-title: Functionalized hydrogel-based wearable gas and humidity sensors
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01109-2
– volume: 209
  year: 2024
  ident: 10.1016/j.talanta.2025.128531_bib24
  article-title: Homogeneous PVA/sodium lignosulfonate mulch films with improved mechanical and UV/water vapor barrier properties
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2023.117975
– volume: 72
  year: 2023
  ident: 10.1016/j.talanta.2025.128531_bib21
  article-title: Full-device stretchable supercapacitors with superior thermal and self-healing stability based on recyclable polymeric eutectogels
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.108619
– volume: 214
  year: 2022
  ident: 10.1016/j.talanta.2025.128531_bib35
  article-title: Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor
  publication-title: Colloid Surf. B-Biointerfaces
  doi: 10.1016/j.colsurfb.2022.112482
– volume: 470
  year: 2023
  ident: 10.1016/j.talanta.2025.128531_bib42
  article-title: Ultrastretchable, repairable and highly sensitive xanthan collagen nanosilver hydrogel for wide temperature flexible sensing
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.144385
– volume: 387
  start-page: 32
  year: 2019
  ident: 10.1016/j.talanta.2025.128531_bib14
  article-title: Noncovalent interactions in metal complex catalysis
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.02.011
– volume: 15
  start-page: 10006
  year: 2023
  ident: 10.1016/j.talanta.2025.128531_bib27
  article-title: Rapid preparation of antifreezing conductive hydrogels for flexible strain sensors and supercapacitors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c21617
– volume: 5
  start-page: 1976
  year: 2022
  ident: 10.1016/j.talanta.2025.128531_bib29
  article-title: Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel
  publication-title: Adv. Compos. Hybrid Mater.
  doi: 10.1007/s42114-022-00531-1
– volume: 505
  year: 2025
  ident: 10.1016/j.talanta.2025.128531_bib38
  article-title: High performance eutectogel-based thermocell with a wide operating temperature range through a water-containing deep eutectic solvent strategy
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2025.159714
– volume: 15
  start-page: 190
  issue: 1
  year: 2023
  ident: 10.1016/j.talanta.2025.128531_bib16
  article-title: Microstructure and self-healing capability of artificial skin composites using biomimetic fibers containing a healing agent
  publication-title: Polymers
  doi: 10.3390/polym15010190
– volume: 255
  year: 2021
  ident: 10.1016/j.talanta.2025.128531_bib41
  article-title: A plant-inspired long-lasting adhesive bilayer nanocomposite hydrogel based on redox-active Ag/Tannic acid-Cellulose nanofibers
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.117508
– volume: 122
  start-page: 14594
  issue: 18
  year: 2022
  ident: 10.1016/j.talanta.2025.128531_bib43
  article-title: Probing and manipulating noncovalent interactions in functional polymeric systems
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00215
– volume: 35
  issue: 18
  year: 2023
  ident: 10.1016/j.talanta.2025.128531_bib2
  article-title: Machine-learning assisted electronic skins capable of proprioception and exteroception in soft robotics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202211385
– volume: 380
  start-page: 735
  issue: 6646
  year: 2023
  ident: 10.1016/j.talanta.2025.128531_bib4
  article-title: Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin
  publication-title: Science
  doi: 10.1126/science.ade0086
– volume: 219
  year: 2021
  ident: 10.1016/j.talanta.2025.128531_bib20
  article-title: Self-healable and recyclable polyurethane-polyaniline hydrogel toward flexible strain sensor
  publication-title: Compos. Pt. B-Eng.
  doi: 10.1016/j.compositesb.2021.108965
– volume: 271
  year: 2024
  ident: 10.1016/j.talanta.2025.128531_bib13
  article-title: Hydrophobic association-improved multi-functional hydrogels with liquid metal droplets stabilized by xanthan gum and PEDOT:PSS for strain sensors
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2024.132494
– volume: 17
  start-page: 16160
  issue: 16
  year: 2023
  ident: 10.1016/j.talanta.2025.128531_bib3
  article-title: Deep-learning enabled active biomimetic multifunctional hydrogel electronic skin
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c05253
– volume: 184
  start-page: 9
  year: 2021
  ident: 10.1016/j.talanta.2025.128531_bib18
  article-title: Biomimetic structure of chitosan reinforced epoxy natural rubber with self-healed, recyclable and antimicrobial ability
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.06.037
– volume: 43
  start-page: 53
  year: 2024
  ident: 10.1016/j.talanta.2025.128531_bib19
  article-title: Recyclable and self-healable polydimethylsiloxane elastomers based on knoevenagel condensation
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1007/s10118-024-3248-8
– volume: 26
  start-page: 8191
  year: 2019
  ident: 10.1016/j.talanta.2025.128531_bib34
  article-title: Sodium lignin sulfonate: a bio-macromolecule for making fire retardant cotton fabric
  publication-title: Cellulose
  doi: 10.1007/s10570-019-02668-7
– volume: 510
  year: 2025
  ident: 10.1016/j.talanta.2025.128531_bib10
  article-title: Amylopectin-enhanced MXene/gallium hydrogels: high-performance flexible conductive materials for multifunctional sensing, EMI shielding, and energy storage applications
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2025.161793
– volume: 20
  issue: 19
  year: 2024
  ident: 10.1016/j.talanta.2025.128531_bib44
  article-title: Ultrafast self-healing, superstretchable, and ultra-strong polymer cluster-based adhesive based on aromatic acid cross-linkers for excellent hydrogel strain sensors
  publication-title: Small
  doi: 10.1002/smll.202305875
– volume: 76
  year: 2023
  ident: 10.1016/j.talanta.2025.128531_bib15
  article-title: Enhancing self-healing efficiency of concrete using multifunctional granules and PVA fibers
  publication-title: J. Build. Eng.
– volume: 26
  start-page: 3329
  issue: 6
  year: 2024
  ident: 10.1016/j.talanta.2025.128531_bib7
  article-title: Natural polyphenolic nanodot-knotted conductive hydrogels for flexible wearable sensors
  publication-title: Green Chem.
  doi: 10.1039/D3GC04952C
SSID ssj0002303
Score 2.47923
Snippet Hydrogel-based materials for e-skin applications have aroused tremendous attention due to their ability to simulate human skin's sensory capabilities and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 128531
SubjectTerms Conductive hydrogel
Diverse functions
Recyclability
Self-healing
Strain sensor
Title Multifunctional hydrogel with self-healing and recyclability based on self-catalytic Fe3+/TA system for sustainable E-skin application
URI https://dx.doi.org/10.1016/j.talanta.2025.128531
https://www.proquest.com/docview/3227054617
Volume 296
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA6lHvQirliXEsGbpJ3OZCaTYyktVbGnFnoLmSzaWqaly6EXj_5uX2ahKojgcYZklvfC97285H1B6M7XobLWaexrowiVASM8YowkgQXysCzmmVj18yDqj-jjOBxXUKeshXHbKgvszzE9Q-viTrOwZnMxmbgaXyBXmB8AibvzqV2hOaXMjfLG-26bB4TYhfAuJ671roqnOXUig_D9Tn7IDxuA1GHQ-o2ffiB1Rj-9I3RYxI24nX_aMaqY9ATtd8rj2k7RR1ZK62gqz-7h161ezl_MDLtUK16ZmSUuKgSqwjLVGP56q2a5SvcWOzLTeJ7m7bKczhbehHsmuG8O2zgXfMYQ4eLVruQKd8nqbZLiL6vgZ2jU6w47fVIcskCU73trEiuASu0DzHmUKUuNjSwHk0rDlQ1bUrOAR0lEYSIYcyljrkMTmsRT3HpRAnhxjqrpPDUXCHvg7kRaCz3B0JrGkvmJ4i2dJZ9pWEON0rRikWtpiHKT2VQUvhDOFyL3RQ3FpQPEt0EhAO__6npbOkyAI9wqiEzNfLMSgGAM4lSI3C7___grdABXRS7mGlXXy425gehkndSz4VdHe-2Hp_7gE3kj52I
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWBBPEV5GokNuU2TOInHqmpVoO3USt0sxw9oqdKqj6ELI7-bcx4qICEk1sRO4jvn-85n3x1C966i0hibY19pSXzhhYQFYUhizwB5mDBiabLqXj_oDP2nER2VULOIhbHHKnPszzA9Rev8Si2XZm0-HtsYXyBXWB8Aidv61HQH7frw-9oyBtX37TkPsLHzzLuM2ObbMJ7axGYZhAHY_EMurQJUU6_-G0H9gOqUf9qH6CA3HHEj-7YjVNLJMdprFvXaTtBHGktreSpz7-HXjVrMXvQUW18rXuqpIdYsBK7CIlEYhr2R0yxN9wZbNlN4lmTtUqfOBt6E29p7qA0aOMv4jMHExcttzBVukeXbOMFftsFP0bDdGjQ7JK-yQKTrOisSScBK5QLOOX4oja9NYBjIVGgmDa0LFXosiAMfVoIREyJiimqqY0cy4wQxAMYZKiezRJ8j7IC-Y2EM9ARBKz8SoRtLVlep99mnFVQtRMvnWTINXpwym_BcF9zqgme6qKCoUAD_Nis4AP5fXe8KhXFQhN0GEYmerZccICwEQxVMt4v_P_4W7XUGvS7vPvafL9E-3MkdM1eovFqs9TWYKqv4Jp2Kn9DM6PA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+hydrogel+with+self-healing+and+recyclability+based+on+self-catalytic+Fe3%2B%2FTA+system+for+sustainable+E-skin+application&rft.jtitle=Talanta+%28Oxford%29&rft.au=Wang%2C+Chenhao&rft.au=Xin%2C+Qing&rft.au=Liang%2C+Shangqing&rft.au=Lin%2C+Jun&rft.date=2026-01-01&rft.issn=1873-3573&rft.eissn=1873-3573&rft.volume=296&rft.spage=128531&rft_id=info:doi/10.1016%2Fj.talanta.2025.128531&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon