MALAT1 regulates mRNA processing through sequence dependent RNA–RNA and RNA–protein interactions

Messenger RNAs (mRNAs) are subject to multiple layers of gene expression regulation, enabling the production of a large diversity of RNA transcripts and encoded proteins from a smaller number of genes in the human genome. We find that the metastasis-associated lung adenocarcinoma transcript 1 (MALAT...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 53; no. 15
Main Authors Balaji, Adarsh, Hall, Simone, Johnson, Raul, Zhu, Jonathan, Ellis, Lauren, McHugh, Colleen A
Format Journal Article
LanguageEnglish
Published England Oxford University Press 11.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Messenger RNAs (mRNAs) are subject to multiple layers of gene expression regulation, enabling the production of a large diversity of RNA transcripts and encoded proteins from a smaller number of genes in the human genome. We find that the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) non-coding RNA regulates mRNA processing through direct RNA–RNA and RNA–protein interactions. MALAT1 interacts with both the TAR DNA binding protein (TDP-43) and the spermine/spermidine acetyltransferase SAT1 pre-mRNA to enhance alternative splicing of SAT1 through direct, sequence-specific interactions. MALAT1 interaction with TDP-43 and SAT1 increases TDP-43 binding affinity for SAT1 pre-mRNA by coordinating tripartite RNA–RNA–protein interactions. These tripartite interactions enhance SAT1 alternative splicing. This mechanism of pre-mRNA processing may not be limited to MALAT1, TDP-43, and SAT1. Similarly, alternative splicing of the liprin-α3 PPFIA3 pre-mRNA at exon 16 by the cleavage stimulation factor subunit 2 protein is enhanced by sequence-specific interactions with MALAT1 RNA. We conclude that the abundant MALAT1 non-coding RNA contains modular RNA–RNA and RNA–protein binding regions that facilitate the processing of mRNA transcripts relevant for neuronal function.
AbstractList Messenger RNAs (mRNAs) are subject to multiple layers of gene expression regulation, enabling the production of a large diversity of RNA transcripts and encoded proteins from a smaller number of genes in the human genome. We find that the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) non-coding RNA regulates mRNA processing through direct RNA–RNA and RNA–protein interactions. MALAT1 interacts with both the TAR DNA binding protein (TDP-43) and the spermine/spermidine acetyltransferase SAT1 pre-mRNA to enhance alternative splicing of SAT1 through direct, sequence-specific interactions. MALAT1 interaction with TDP-43 and SAT1 increases TDP-43 binding affinity for SAT1 pre-mRNA by coordinating tripartite RNA–RNA–protein interactions. These tripartite interactions enhance SAT1 alternative splicing. This mechanism of pre-mRNA processing may not be limited to MALAT1, TDP-43, and SAT1 . Similarly, alternative splicing of the liprin-α3 PPFIA3 pre-mRNA at exon 16 by the cleavage stimulation factor subunit 2 protein is enhanced by sequence-specific interactions with MALAT1 RNA. We conclude that the abundant MALAT1 non-coding RNA contains modular RNA–RNA and RNA–protein binding regions that facilitate the processing of mRNA transcripts relevant for neuronal function. Graphical Abstract
Messenger RNAs (mRNAs) are subject to multiple layers of gene expression regulation, enabling the production of a large diversity of RNA transcripts and encoded proteins from a smaller number of genes in the human genome. We find that the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) non-coding RNA regulates mRNA processing through direct RNA-RNA and RNA-protein interactions. MALAT1 interacts with both the TAR DNA binding protein (TDP-43) and the spermine/spermidine acetyltransferase SAT1 pre-mRNA to enhance alternative splicing of SAT1 through direct, sequence-specific interactions. MALAT1 interaction with TDP-43 and SAT1 increases TDP-43 binding affinity for SAT1 pre-mRNA by coordinating tripartite RNA-RNA-protein interactions. These tripartite interactions enhance SAT1 alternative splicing. This mechanism of pre-mRNA processing may not be limited to MALAT1, TDP-43, and SAT1. Similarly, alternative splicing of the liprin-α3 PPFIA3 pre-mRNA at exon 16 by the cleavage stimulation factor subunit 2 protein is enhanced by sequence-specific interactions with MALAT1 RNA. We conclude that the abundant MALAT1 non-coding RNA contains modular RNA-RNA and RNA-protein binding regions that facilitate the processing of mRNA transcripts relevant for neuronal function.Messenger RNAs (mRNAs) are subject to multiple layers of gene expression regulation, enabling the production of a large diversity of RNA transcripts and encoded proteins from a smaller number of genes in the human genome. We find that the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) non-coding RNA regulates mRNA processing through direct RNA-RNA and RNA-protein interactions. MALAT1 interacts with both the TAR DNA binding protein (TDP-43) and the spermine/spermidine acetyltransferase SAT1 pre-mRNA to enhance alternative splicing of SAT1 through direct, sequence-specific interactions. MALAT1 interaction with TDP-43 and SAT1 increases TDP-43 binding affinity for SAT1 pre-mRNA by coordinating tripartite RNA-RNA-protein interactions. These tripartite interactions enhance SAT1 alternative splicing. This mechanism of pre-mRNA processing may not be limited to MALAT1, TDP-43, and SAT1. Similarly, alternative splicing of the liprin-α3 PPFIA3 pre-mRNA at exon 16 by the cleavage stimulation factor subunit 2 protein is enhanced by sequence-specific interactions with MALAT1 RNA. We conclude that the abundant MALAT1 non-coding RNA contains modular RNA-RNA and RNA-protein binding regions that facilitate the processing of mRNA transcripts relevant for neuronal function.
Messenger RNAs (mRNAs) are subject to multiple layers of gene expression regulation, enabling the production of a large diversity of RNA transcripts and encoded proteins from a smaller number of genes in the human genome. We find that the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) non-coding RNA regulates mRNA processing through direct RNA-RNA and RNA-protein interactions. MALAT1 interacts with both the TAR DNA binding protein (TDP-43) and the spermine/spermidine acetyltransferase SAT1 pre-mRNA to enhance alternative splicing of SAT1 through direct, sequence-specific interactions. MALAT1 interaction with TDP-43 and SAT1 increases TDP-43 binding affinity for SAT1 pre-mRNA by coordinating tripartite RNA-RNA-protein interactions. These tripartite interactions enhance SAT1 alternative splicing. This mechanism of pre-mRNA processing may not be limited to MALAT1, TDP-43, and SAT1. Similarly, alternative splicing of the liprin-α3 PPFIA3 pre-mRNA at exon 16 by the cleavage stimulation factor subunit 2 protein is enhanced by sequence-specific interactions with MALAT1 RNA. We conclude that the abundant MALAT1 non-coding RNA contains modular RNA-RNA and RNA-protein binding regions that facilitate the processing of mRNA transcripts relevant for neuronal function.
Author McHugh, Colleen A
Ellis, Lauren
Johnson, Raul
Balaji, Adarsh
Hall, Simone
Zhu, Jonathan
Author_xml – sequence: 1
  givenname: Adarsh
  surname: Balaji
  fullname: Balaji, Adarsh
– sequence: 2
  givenname: Simone
  surname: Hall
  fullname: Hall, Simone
– sequence: 3
  givenname: Raul
  surname: Johnson
  fullname: Johnson, Raul
– sequence: 4
  givenname: Jonathan
  surname: Zhu
  fullname: Zhu, Jonathan
– sequence: 5
  givenname: Lauren
  surname: Ellis
  fullname: Ellis, Lauren
– sequence: 6
  givenname: Colleen A
  orcidid: 0000-0001-6008-2640
  surname: McHugh
  fullname: McHugh, Colleen A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40808300$$D View this record in MEDLINE/PubMed
BookMark eNpVkUtLxDAQx4Mouj5O3qVHQaqTR5v0JMviC1YF0XPIptNutZusSSt48zv4Df0kVlxFT8Mwv_nP479N1p13SMg-hWMKBT9xJpzUT6aSSqyREeU5S0WRs3UyAg5ZSkGoLbId4yMAFTQTm2RLgALFAUakvB5Px_c0CVj3rekwJou7m3GyDN5ijI2rk24efF_Pk4jPPTqLSYlLdCW6LhnIj7f3L964cpUNnR02Lmlch8HYrvEu7pKNyrQR91Zxhzycn91PLtPp7cXVZDxNLWPQpUrOUEoKmZzNqMykyZkoDcqsKrKcWVOVWCJXssqtpEpZoYALKUEU3FApK75DTr91l_1sgaUddgym1cvQLEx41d40-n_FNXNd-xdNGc8ACjUoHK4Ugh_OjZ1eNNFi2xqHvo-aM14IYJwWA3rwd9jvlJ_fDsDRN2CDjzFg9YtQ0F_O6cE5vXKOfwIN3o7J
Cites_doi 10.1093/nar/gkx279
10.1172/jci.insight.158457
10.1038/nsmb.1550
10.1007/s00418-012-1044-y
10.1038/s41583-023-00717-6
10.1016/j.molcel.2010.08.011
10.1007/978-1-4939-6887-9_14
10.1016/j.chom.2016.06.011
10.1016/j.yexmp.2020.104545
10.1016/j.molcel.2019.09.017
10.1016/j.devcel.2014.06.017
10.1152/ajpendo.90217.2008
10.1073/pnas.2220537120
10.1016/j.brainres.2009.09.105
10.1093/bioinformatics/btl024
10.1038/nn.3512
10.1080/15476286.2016.1191727
10.3390/ijms21031166
10.1111/jnc.14327
10.1261/rna.078796.121
10.14806/ej.17.1.200
10.1146/annurev.pa.35.040195.000415
10.1093/nar/gkaa340
10.1007/978-1-4939-6380-5_7
10.1073/pnas.2003932117
10.1038/s41568-018-0050-3
10.1016/j.cell.2021.07.018
10.1042/BJ20150168
10.1111/iji.12549
10.1073/pnas.1011751107
10.1074/jbc.273.51.34623
10.1038/nsmb.2698
10.1002/mds.29048
10.3390/cells10123389
10.21769/BioProtoc.2126
10.1016/j.ceb.2018.02.011
10.1261/rna.39806
10.1074/jbc.M104236200
10.3390/ncrna6020022
10.1016/j.bbrc.2015.08.027
10.1074/jbc.273.25.15611
10.1002/ana.25516
10.1101/cshperspect.a032409
10.1080/15476286.2019.1592072
10.1101/gr.134312.111
10.1093/nar/gku837
10.1038/nm.4222
10.1093/jb/mvj021
10.1146/annurev-biochem-071322-021330
10.1038/nn.2778
10.1038/emboj.2010.310
10.1073/pnas.1719012115
10.1016/j.tig.2017.12.012
10.1093/gigascience/giab008
10.1261/rna.079713.123
10.1093/nar/gkaa689
10.1016/j.molcel.2014.07.012
10.1016/j.ajhg.2023.12.004
10.1101/gr.209601.116
10.1002/jcb.29711
10.1038/43886
10.7554/eLife.57264
10.1073/pnas.1607152113
10.1093/nar/gkv814
10.1016/j.celrep.2012.05.003
10.3389/fmolb.2017.00090
10.1126/sciadv.abq7289
10.7554/eLife.67605
10.1038/nbt.1754
10.1093/nar/9.1.133
10.1016/j.molmed.2011.06.004
10.1038/s41576-022-00514-4
10.1002/1873-3468.13800
10.1016/j.jbc.2025.108207
10.1038/s41568-022-00481-2
10.1038/nprot.2014.135
10.1016/j.cell.2009.02.009
10.1007/s12035-022-02899-z
10.1016/j.neuron.2019.01.048
10.1093/bioinformatics/bts635
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press.
The Author(s) 2025. Published by Oxford University Press. 2025
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press.
– notice: The Author(s) 2025. Published by Oxford University Press. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkaf784
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
ExternalDocumentID PMC12350098
40808300
10_1093_nar_gkaf784
Genre Journal Article
GrantInformation_xml – fundername: NIH HHS
  grantid: R00 GM120494
– fundername: University of California San Diego Dean of Physical Sciences Summer Undergraduate Research Awar
– fundername: National Science Foundation
  grantid: 2419893
– fundername: National Institutes of Health Molecular Biophysics Training
  grantid: GM139795
– fundername: University of California San Deigo Chemistry and Biochemistry
– fundername: National Institutes of Health Molecular Biophysics Training
  grantid: GM008326
– fundername: ;
– fundername: ;
  grantid: R00 GM120494
– fundername: ;
  grantid: 2419893
– fundername: ;
  grantid: GM008326; GM139795
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CAG
CIDKT
CITATION
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVT
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c220t-87be771057bb1757a624dae75f9562cafdede387f6c7188c48034770493a177f3
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:25:24 EDT 2025
Thu Aug 14 17:32:55 EDT 2025
Thu Aug 28 04:32:59 EDT 2025
Thu Aug 21 00:11:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c220t-87be771057bb1757a624dae75f9562cafdede387f6c7188c48034770493a177f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Adarsh Balaji and Simone Hall should be regarded as Joint First Authors.
ORCID 0000-0001-6008-2640
OpenAccessLink http://dx.doi.org/10.1093/nar/gkaf784
PMID 40808300
PQID 3239402319
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12350098
proquest_miscellaneous_3239402319
pubmed_primary_40808300
crossref_primary_10_1093_nar_gkaf784
PublicationCentury 2000
PublicationDate 2025-Aug-11
PublicationDateYYYYMMDD 2025-08-11
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-Aug-11
  day: 11
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2025
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Serra-Pagès (2025081323351456400_B78) 1998; 273
Arun (2025081323351456400_B29) 2020; 6
Mandal (2025081323351456400_B13) 2015; 468
Yang (2025081323351456400_B35) 2021; 48
Bardou (2025081323351456400_B8) 2014; 30
Mann (2025081323351456400_B43) 2019; 102
Mann (2025081323351456400_B55) 2017; 45
Hyvönen (2025081323351456400_B23) 2006; 12
Martin (2025081323351456400_B71) 2012; 1
Carey (2025081323351456400_B2) 2018; 34
Wang (2025081323351456400_B21) 2006; 139
Ayala (2025081323351456400_B70) 2011; 30
Ryder (2025081323351456400_B60) 2008
Lukavsky (2025081323351456400_B38) 2013; 20
Wahl (2025081323351456400_B5) 2009; 136
Li (2025081323351456400_B32) 2020; 117
Jarmoskaite (2025081323351456400_B61) 2020; 9
Yan (2025081323351456400_B4) 2019; 11
Ishiguro (2025081323351456400_B40) 2020; 594
Neff (2025081323351456400_B12) 2012; 22
Panda (2025081323351456400_B68) 2017; 7
Raran-Kurussi (2025081323351456400_B58) 2017; 1586
Tan (2025081323351456400_B11) 2022; 22
Guo (2025081323351456400_B64) 2015; 465
Grozdanov (2025081323351456400_B73) 2020; 48
Liu (2025081323351456400_B80) 2020; 117
Lightfoot (2025081323351456400_B15) 2014; 42
Gao (2025081323351456400_B49) 2018; 146
West (2025081323351456400_B45) 2014; 55
Balaji (2025081323351456400_B26) 2025; 301
Ou (2025081323351456400_B67) 2016; 113
Hallegger (2025081323351456400_B39) 2021; 184
Rengifo-Gonzalez (2025081323351456400_B44) 2021; 10
Martin (2025081323351456400_B51) 2011; 17
Dobin (2025081323351456400_B52) 2013; 29
Brogna (2025081323351456400_B10) 2009; 16
Gaweda-Walerych (2025081323351456400_B47) 2021; 10
Hemphill (2025081323351456400_B79) 2023; 120
Mounce (2025081323351456400_B65) 2016; 20
Tollervey (2025081323351456400_B42) 2011; 14
Abrishamdar (2025081323351456400_B33) 2022; 59
Hallegger (2025081323351456400_B69) 2021; 184
Movassat (2025081323351456400_B72) 2016; 13
Paul (2025081323351456400_B74) 2024; 111
Gupta (2025081323351456400_B18) 2013; 16
Zuker (2025081323351456400_B56) 1981; 9
Bachmann (2025081323351456400_B82) 2011
Pintacuda (2025081323351456400_B7) 2017; 4
Wang (2025081323351456400_B20) 1998; 273
Buratti (2025081323351456400_B36) 2001; 276
Smith (2025081323351456400_B50) 2017; 27
Zhen (2025081323351456400_B76) 1999; 401
Lewandowski (2025081323351456400_B17) 2010; 107
Cohen (2025081323351456400_B37) 2011; 17
2025081323351456400_B53
Wong (2025081323351456400_B75) 2018; 115
Pegg (2025081323351456400_B22) 2008; 294
Joshi (2025081323351456400_B77) 2013; 139
Nikom (2025081323351456400_B9) 2023; 24
Yamashita (2025081323351456400_B48) 2022; 37
Saiki (2025081323351456400_B14) 2019; 86
Gagnon (2025081323351456400_B62) 2014; 9
Gagliardi (2025081323351456400_B63) 2016; 1480
Marton (2025081323351456400_B81) 1995; 35
Pozzi (2025081323351456400_B24) 2020; 48
Wright (2025081323351456400_B3) 2022; 23
Tripathi (2025081323351456400_B27) 2010; 39
Button (2025081323351456400_B59) 2024; 30
Corbett (2025081323351456400_B1) 2018; 52
Robinson (2025081323351456400_B54) 2011; 29
Vrijsen (2025081323351456400_B16) 2023; 92
Volkening (2025081323351456400_B41) 2009; 1305
Mückstein (2025081323351456400_B57) 2006; 22
Eisenberg (2025081323351456400_B19) 2016; 22
Ule (2025081323351456400_B6) 2019; 76
Baker (2025081323351456400_B25) 2021; 27
Miao (2025081323351456400_B31) 2022; 8
De (2025081323351456400_B28) 2015; 43
Arun (2025081323351456400_B30) 2019; 16
Scherer (2025081323351456400_B46) 2020; 21
Casero (2025081323351456400_B83) 2018; 18
Lu (2025081323351456400_B34) 2020; 121
Tao (2025081323351456400_B66) 2022; 7
References_xml – volume: 45
  start-page: W435
  year: 2017
  ident: 2025081323351456400_B55
  article-title: IntaRNA 2.0: enhanced and customizable prediction of RNA–RNA interactions
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx279
– volume: 7
  start-page: e158457
  year: 2022
  ident: 2025081323351456400_B66
  article-title: Phenylbutyrate modulates polyamine acetylase and ameliorates Snyder-Robinson syndrome in a Drosophila model and patient cells
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.158457
– volume: 16
  start-page: 107
  year: 2009
  ident: 2025081323351456400_B10
  article-title: Nonsense-mediated mRNA decay (NMD) mechanisms
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1550
– volume: 139
  start-page: 535
  year: 2013
  ident: 2025081323351456400_B77
  article-title: Liprin α3: a putative estrogen regulated acrosomal protein
  publication-title: Histochem Cell Biol
  doi: 10.1007/s00418-012-1044-y
– volume: 24
  start-page: 457
  year: 2023
  ident: 2025081323351456400_B9
  article-title: Alternative splicing in neurodegenerative disease and the promise of RNA therapies
  publication-title: Nat Rev Neurosci
  doi: 10.1038/s41583-023-00717-6
– volume: 39
  start-page: 925
  year: 2010
  ident: 2025081323351456400_B27
  article-title: The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.08.011
– volume: 1586
  start-page: 221
  year: 2017
  ident: 2025081323351456400_B58
  article-title: Removal of affinity tags with TEV protease
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-4939-6887-9_14
– volume: 20
  start-page: 167
  year: 2016
  ident: 2025081323351456400_B65
  article-title: Interferon-induced spermidine-spermine acetyltransferase and polyamine depletion restrict Zika and chikungunya viruses
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.06.011
– volume: 117
  start-page: 104545
  year: 2020
  ident: 2025081323351456400_B32
  article-title: Neuro-protective roles of long non-coding RNA MALAT1 in Alzheimer’s disease with the involvement of the microRNA-30b/CNR1 network and the following PI3K/AKT activation
  publication-title: Exp Mol Pathol
  doi: 10.1016/j.yexmp.2020.104545
– volume: 76
  start-page: 329
  year: 2019
  ident: 2025081323351456400_B6
  article-title: Alternative splicing regulatory networks: functions, mechanisms, and evolution
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2019.09.017
– volume: 30
  start-page: 166
  year: 2014
  ident: 2025081323351456400_B8
  article-title: Long noncoding RNA modulates alternative splicing regulators in Arabidopsis
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2014.06.017
– volume: 294
  start-page: E995
  year: 2008
  ident: 2025081323351456400_B22
  article-title: Spermidine/spermine-N1-acetyltransferase: a key metabolic regulator
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.90217.2008
– volume: 120
  start-page: e2220537120
  year: 2023
  ident: 2025081323351456400_B79
  article-title: Multiple RNA- and DNA-binding proteins exhibit direct transfer of polynucleotides with implications for target-site search
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2220537120
– volume: 1305
  start-page: 168
  year: 2009
  ident: 2025081323351456400_B41
  article-title: TAR DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS)
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2009.09.105
– volume: 22
  start-page: 1177
  year: 2006
  ident: 2025081323351456400_B57
  article-title: Thermodynamics of RNA–RNA binding
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl024
– volume: 16
  start-page: 1453
  year: 2013
  ident: 2025081323351456400_B18
  article-title: Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3512
– volume: 13
  start-page: 646
  year: 2016
  ident: 2025081323351456400_B72
  article-title: Coupling between alternative polyadenylation and alternative splicing is limited to terminal introns
  publication-title: RNA Biol
  doi: 10.1080/15476286.2016.1191727
– volume: 21
  start-page: 1166
  year: 2020
  ident: 2025081323351456400_B46
  article-title: Quantitative proteomics to identify nuclear RNA-binding proteins of Malat1
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21031166
– volume: 146
  start-page: 7
  year: 2018
  ident: 2025081323351456400_B49
  article-title: Pathomechanisms of TDP-43 in neurodegeneration
  publication-title: J Neurochem
  doi: 10.1111/jnc.14327
– volume: 27
  start-page: 1353
  year: 2021
  ident: 2025081323351456400_B25
  article-title: KDM3A regulates alternative splicing of cell-cycle genes following DNA damage
  publication-title: RNA
  doi: 10.1261/rna.078796.121
– volume: 17
  start-page: 10
  year: 2011
  ident: 2025081323351456400_B51
  article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads
  publication-title: EMBnet J
  doi: 10.14806/ej.17.1.200
– volume: 35
  start-page: 55
  year: 1995
  ident: 2025081323351456400_B81
  article-title: Polyamines as targets for therapeutic intervention
  publication-title: Annu Rev Pharmacol Toxicol
  doi: 10.1146/annurev.pa.35.040195.000415
– volume: 48
  start-page: 6824
  year: 2020
  ident: 2025081323351456400_B24
  article-title: Dengue virus targets RBM10 deregulating host cell splicing and innate immune response
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa340
– volume: 1480
  start-page: 73
  year: 2016
  ident: 2025081323351456400_B63
  article-title: RIP: RNA immunoprecipitation
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-4939-6380-5_7
– volume: 117
  start-page: 23695
  year: 2020
  ident: 2025081323351456400_B80
  article-title: LncRNA Malat1 inhibition of TDP43 cleavage suppresses IRF3-initiated antiviral innate immunity
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2003932117
– volume: 18
  start-page: 681
  year: 2018
  ident: 2025081323351456400_B83
  article-title: Polyamine metabolism and cancer: treatments, challenges and opportunities
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-018-0050-3
– volume: 184
  start-page: 4680
  year: 2021
  ident: 2025081323351456400_B39
  article-title: TDP-43 condensation properties specify its RNA-binding and regulatory repertoire
  publication-title: Cell
  doi: 10.1016/j.cell.2021.07.018
– volume: 468
  start-page: 435
  year: 2015
  ident: 2025081323351456400_B13
  article-title: Depletion of the polyamines spermidine and spermine by overexpression of spermidine/spermine N1-acetyltransferase 1 (SAT1) leads to mitochondria-mediated apoptosis in mammalian cells
  publication-title: Biochem J
  doi: 10.1042/BJ20150168
– volume: 48
  start-page: 419
  year: 2021
  ident: 2025081323351456400_B35
  article-title: LncRNA MALAT1 potentiates inflammation disorder in Parkinson’s disease
  publication-title: Int J Immunogenetics
  doi: 10.1111/iji.12549
– volume: 107
  start-page: 16970
  year: 2010
  ident: 2025081323351456400_B17
  article-title: Polyamine pathway contributes to the pathogenesis of Parkinson disease
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1011751107
– volume: 273
  start-page: 34623
  year: 1998
  ident: 2025081323351456400_B20
  article-title: The identification of a cis-element and a trans-acting factor involved in the response to polyamines and polyamine analogues in the regulation of the human spermidine/spermine N1-acetyltransferase gene transcription
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.51.34623
– volume: 20
  start-page: 1443
  year: 2013
  ident: 2025081323351456400_B38
  article-title: Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2698
– volume: 37
  start-page: 1561
  year: 2022
  ident: 2025081323351456400_B48
  article-title: TDP-43 proteinopathy presenting with typical symptoms of Parkinson’s disease
  publication-title: Mov Disord
  doi: 10.1002/mds.29048
– volume: 184
  start-page: 4680
  year: 2021
  ident: 2025081323351456400_B69
  article-title: TDP-43 condensation properties specify its RNA-binding and regulatory repertoire
  publication-title: Cell
  doi: 10.1016/j.cell.2021.07.018
– volume: 10
  start-page: 3389
  year: 2021
  ident: 2025081323351456400_B47
  article-title: Parkin beyond Parkinson’s disease—a functional meaning of Parkin downregulation in TDP-43 proteinopathies
  publication-title: Cells
  doi: 10.3390/cells10123389
– volume: 7
  start-page: e2126
  year: 2017
  ident: 2025081323351456400_B68
  article-title: Polysome fractionation to analyze mRNA distribution profiles
  publication-title: Bio Protoc
  doi: 10.21769/BioProtoc.2126
– volume: 52
  start-page: 96
  year: 2018
  ident: 2025081323351456400_B1
  article-title: Post-transcriptional regulation of gene expression and human disease
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2018.02.011
– volume: 12
  start-page: 1569
  year: 2006
  ident: 2025081323351456400_B23
  article-title: Polyamine-regulated unproductive splicing and translation of spermidine/spermine N1-acetyltransferase
  publication-title: RNA
  doi: 10.1261/rna.39806
– volume: 276
  start-page: 36337
  year: 2001
  ident: 2025081323351456400_B36
  article-title: Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M104236200
– volume: 6
  start-page: 22
  year: 2020
  ident: 2025081323351456400_B29
  article-title: MALAT1 Long non-coding RNA: functional implications
  publication-title: Noncoding RNA
  doi: 10.3390/ncrna6020022
– volume: 465
  start-page: 293
  year: 2015
  ident: 2025081323351456400_B64
  article-title: Regulation of MALAT1 expression by TDP43 controls the migration and invasion of non-small cell lung cancer cells in vitro
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2015.08.027
– volume: 273
  start-page: 15611
  year: 1998
  ident: 2025081323351456400_B78
  article-title: Liprins, a family of LAR transmembrane protein–tyrosine phosphatase–interacting proteins
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.25.15611
– start-page: 257
  volume-title: The Royal Society of Chemistry
  year: 2011
  ident: 2025081323351456400_B82
  article-title: Clinical Applications of Polyamine-Based Therapeutics
– volume: 86
  start-page: 251
  year: 2019
  ident: 2025081323351456400_B14
  article-title: A metabolic profile of polyamines in parkinson disease: a promising biomarker
  publication-title: Ann Neurol
  doi: 10.1002/ana.25516
– volume: 11
  start-page: a032409
  year: 2019
  ident: 2025081323351456400_B4
  article-title: Molecular mechanisms of pre-mRNA splicing through structural biology of the spliceosome
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a032409
– volume: 16
  start-page: 860
  year: 2019
  ident: 2025081323351456400_B30
  article-title: MALAT1 long non-coding RNA and breast cancer
  publication-title: RNA Biol
  doi: 10.1080/15476286.2019.1592072
– volume: 22
  start-page: 1457
  year: 2012
  ident: 2025081323351456400_B12
  article-title: Global analysis reveals multiple pathways for unique regulation of mRNA decay in induced pluripotent stem cells
  publication-title: Genome Res
  doi: 10.1101/gr.134312.111
– volume: 42
  start-page: 11275
  year: 2014
  ident: 2025081323351456400_B15
  article-title: Endogenous polyamine function–the RNA perspective
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku837
– volume: 22
  start-page: 1428
  year: 2016
  ident: 2025081323351456400_B19
  article-title: Cardioprotection and lifespan extension by the natural polyamine spermidine
  publication-title: Nat Med
  doi: 10.1038/nm.4222
– volume: 139
  start-page: 17
  year: 2006
  ident: 2025081323351456400_B21
  article-title: Mammalian polyamine catabolism: a therapeutic target, a pathological problem, or both?
  publication-title: J Biochem
  doi: 10.1093/jb/mvj021
– volume: 92
  start-page: 435
  year: 2023
  ident: 2025081323351456400_B16
  article-title: Polyamines in Parkinson’s disease: balancing between neurotoxicity and neuroprotection
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev-biochem-071322-021330
– volume: 14
  start-page: 452
  year: 2011
  ident: 2025081323351456400_B42
  article-title: Characterizing the RNA targets and position-dependent splicing regulation by TDP-43
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2778
– volume: 30
  start-page: 277
  year: 2011
  ident: 2025081323351456400_B70
  article-title: TDP-43 regulates its mRNA levels through a negative feedback loop
  publication-title: EMBO J
  doi: 10.1038/emboj.2010.310
– volume: 115
  start-page: 2234
  year: 2018
  ident: 2025081323351456400_B75
  article-title: Liprin-α3 controls vesicle docking and exocytosis at the active zone of hippocampal synapses
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1719012115
– volume: 34
  start-page: 279
  year: 2018
  ident: 2025081323351456400_B2
  article-title: Regulatory potential of the RNA processing machinery: implications for human disease
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2017.12.012
– ident: 2025081323351456400_B53
  doi: 10.1093/gigascience/giab008
– volume: 30
  start-page: 240
  year: 2024
  ident: 2025081323351456400_B59
  article-title: Dissection of protein and RNA regions required for SPEN binding to XIST A-repeat RNA
  publication-title: RNA
  doi: 10.1261/rna.079713.123
– volume: 48
  start-page: 9804
  year: 2020
  ident: 2025081323351456400_B73
  article-title: A missense mutation in the CSTF2 gene that impairs the function of the RNA recognition motif and causes defects in 3′ end processing is associated with intellectual disability in humans
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa689
– volume: 55
  start-page: 791
  year: 2014
  ident: 2025081323351456400_B45
  article-title: The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.07.012
– volume: 111
  start-page: 96
  year: 2024
  ident: 2025081323351456400_B74
  article-title: A syndromic neurodevelopmental disorder caused by rare variants in PPFIA3
  publication-title: Am Hum Genet
  doi: 10.1016/j.ajhg.2023.12.004
– volume: 27
  start-page: 491
  year: 2017
  ident: 2025081323351456400_B50
  article-title: UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy
  publication-title: Genome Res
  doi: 10.1101/gr.209601.116
– volume: 121
  start-page: 4838
  year: 2020
  ident: 2025081323351456400_B34
  article-title: LncRNA MALAT1 targeting miR-124-3p regulates DAPK1 expression contributes to cell apoptosis in Parkinson’s disease
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.29711
– volume: 401
  start-page: 371
  year: 1999
  ident: 2025081323351456400_B76
  article-title: The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans
  publication-title: Nature
  doi: 10.1038/43886
– volume: 9
  start-page: e57264
  year: 2020
  ident: 2025081323351456400_B61
  article-title: How to measure and evaluate binding affinities
  publication-title: eLife
  doi: 10.7554/eLife.57264
– start-page: 99
  volume-title: Methods in Molecular Biology, Methods in Molecular Biology (Clifton, N.J.)
  year: 2008
  ident: 2025081323351456400_B60
  article-title: Quantitative analysis of protein–RNA interactions by gel mobility shift
– volume: 113
  start-page: E6806
  year: 2016
  ident: 2025081323351456400_B67
  article-title: Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1607152113
– volume: 43
  start-page: 8990
  year: 2015
  ident: 2025081323351456400_B28
  article-title: TDP-43 affects splicing profiles and isoform production of genes involved in the apoptotic and mitotic cellular pathways
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv814
– volume: 1
  start-page: 753
  year: 2012
  ident: 2025081323351456400_B71
  article-title: Genome-wide analysis of pre-mRNA 3′ end processing reveals a decisive role of human cleavage factor I in the regulation of 3′ UTR length
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2012.05.003
– volume: 4
  start-page: 90
  year: 2017
  ident: 2025081323351456400_B7
  article-title: Function by structure: spotlights on Xist long non-coding RNA
  publication-title: Front Mol Biosci
  doi: 10.3389/fmolb.2017.00090
– volume: 8
  start-page: eabq7289
  year: 2022
  ident: 2025081323351456400_B31
  article-title: MALAT1 modulates alternative splicing by cooperating with the splicing factors PTBP1 and PSF
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abq7289
– volume: 10
  start-page: e67605
  year: 2021
  ident: 2025081323351456400_B44
  article-title: The cooperative binding of TDP-43 to GU-rich RNA repeats antagonizes TDP-43 aggregation
  publication-title: eLife
  doi: 10.7554/eLife.67605
– volume: 29
  start-page: 24
  year: 2011
  ident: 2025081323351456400_B54
  article-title: Integrative genomics viewer
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1754
– volume: 9
  start-page: 133
  year: 1981
  ident: 2025081323351456400_B56
  article-title: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/9.1.133
– volume: 17
  start-page: 659
  year: 2011
  ident: 2025081323351456400_B37
  article-title: TDP-43 functions and pathogenic mechanisms implicated in TDP-43 proteinopathies
  publication-title: Trends Mol Med
  doi: 10.1016/j.molmed.2011.06.004
– volume: 23
  start-page: 697
  year: 2022
  ident: 2025081323351456400_B3
  article-title: Alternative splicing as a source of phenotypic diversity
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-022-00514-4
– volume: 594
  start-page: 2254
  year: 2020
  ident: 2025081323351456400_B40
  article-title: Molecular dissection of ALS-linked TDP-43—involvement of the gly-rich domain in interaction with G-quadruplex mRNA
  publication-title: FEBS Lett
  doi: 10.1002/1873-3468.13800
– volume: 301
  start-page: 108207
  year: 2025
  ident: 2025081323351456400_B26
  article-title: The levels of the long noncoding RNA MALAT1 affect cell viability and modulate TDP-43 binding to mRNA in the nucleus
  publication-title: J Biol Chem
  doi: 10.1016/j.jbc.2025.108207
– volume: 22
  start-page: 437
  year: 2022
  ident: 2025081323351456400_B11
  article-title: Nonsense-mediated RNA decay: an emerging modulator of malignancy
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-022-00481-2
– volume: 9
  start-page: 2045
  year: 2014
  ident: 2025081323351456400_B62
  article-title: Analysis of nuclear RNA interference in human cells by subcellular fractionation and argonaute loading
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2014.135
– volume: 136
  start-page: 701
  year: 2009
  ident: 2025081323351456400_B5
  article-title: The spliceosome: design principles of a dynamic RNP machine
  publication-title: Cell
  doi: 10.1016/j.cell.2009.02.009
– volume: 59
  start-page: 5253
  year: 2022
  ident: 2025081323351456400_B33
  article-title: MALAT1 lncRNA and Parkinson’s disease: the role in the pathophysiology and significance for diagnostic and therapeutic approaches
  publication-title: Mol Neurobiol
  doi: 10.1007/s12035-022-02899-z
– volume: 102
  start-page: 321
  year: 2019
  ident: 2025081323351456400_B43
  article-title: RNA binding antagonizes neurotoxic phase transitions of TDP-43
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.01.048
– volume: 29
  start-page: 15
  year: 2013
  ident: 2025081323351456400_B52
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
SSID ssj0014154
Score 2.484975
Snippet Messenger RNAs (mRNAs) are subject to multiple layers of gene expression regulation, enabling the production of a large diversity of RNA transcripts and...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Acetyltransferases
Alternative Splicing
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
HEK293 Cells
Humans
Protein Binding
RNA and RNA-protein complexes
RNA Precursors - genetics
RNA Precursors - metabolism
RNA Processing, Post-Transcriptional
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
RNA-Binding Proteins - metabolism
Title MALAT1 regulates mRNA processing through sequence dependent RNA–RNA and RNA–protein interactions
URI https://www.ncbi.nlm.nih.gov/pubmed/40808300
https://www.proquest.com/docview/3239402319
https://pubmed.ncbi.nlm.nih.gov/PMC12350098
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgSLALgg1YgU1GmrhEYWmcxOkxmjZNE-sBOmniEmzHoYU1q9r0AH8979lxkrJNAg6NosS1JX-fXt57fj8IOcRPHFdopqaq8EEDBzkopfSjuCj4MNRKx5jvfDFOzi6j86v4qiuoYLJLavlB_bozr-R_UIVngCtmyf4Dsu2k8ADuAV-4AsJw_SuML7KP2WToLW0_eb3y5p_Gmbewsf82D8p24XEB057reVt7MNLH0SZBEe5NwYZZZepHLG22w6qvuY6x8DEWd1WzAo8ael4w4wi9Ft9NYEBWgKk87QSbPdb4DJToDvCbtlwG3l5k4pfpuu_Q7zskwhg9rI3A1FaImkys0aaUtSWBHZviO6W3rWxVYWT56bcfouS2e1wPycXcQBmBnpuyIOg-Ym1ooXv1kDwKwXJA0ceDk_ZgCfSVqEnThNWOYK2jZqVt8tj9d1NHuWV4_Bk_21NIJs_I08aSoJmlxXPyQFc7ZDeDvbuZ_6TvqYntNYcmO-TJsevrt0u-WtbQljUUWUM71tCGNdSxhrasoQ1rKLCG9lhD-6x5QS5PTybHZ37TZ8NXYRjU8EGUmnNs-CwlaJNcJGFUCM3jEoznUImy0IVmKS8TBZpMqqI0YBHnYFsyMeS8ZC_JVgUk2iNUqyQVTILNH4OtILDPpiyLROqEwW80GpBDt7P5wpZTyW0YBMsBi7zBYkDeuV3PYXfwDEtU-ma9ylnIRhHWLISpXlkU2okcfAOSbuDTDsBS6ptvqtnUlFTHjHEsrfv63knfkO2O7G_JVr1c633QR2t5YBh2YLw5vwFzLY81
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MALAT1+regulates+mRNA+processing+through+sequence+dependent+RNA-RNA+and+RNA-protein+interactions&rft.jtitle=Nucleic+acids+research&rft.au=Balaji%2C+Adarsh&rft.au=Hall%2C+Simone&rft.au=Johnson%2C+Raul&rft.au=Zhu%2C+Jonathan&rft.date=2025-08-11&rft.eissn=1362-4962&rft.volume=53&rft.issue=15&rft_id=info:doi/10.1093%2Fnar%2Fgkaf784&rft_id=info%3Apmid%2F40808300&rft.externalDocID=40808300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon