MALAT1 regulates mRNA processing through sequence dependent RNA–RNA and RNA–protein interactions
Messenger RNAs (mRNAs) are subject to multiple layers of gene expression regulation, enabling the production of a large diversity of RNA transcripts and encoded proteins from a smaller number of genes in the human genome. We find that the metastasis-associated lung adenocarcinoma transcript 1 (MALAT...
Saved in:
Published in | Nucleic acids research Vol. 53; no. 15 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
11.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Messenger RNAs (mRNAs) are subject to multiple layers of gene expression regulation, enabling the production of a large diversity of RNA transcripts and encoded proteins from a smaller number of genes in the human genome. We find that the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) non-coding RNA regulates mRNA processing through direct RNA–RNA and RNA–protein interactions. MALAT1 interacts with both the TAR DNA binding protein (TDP-43) and the spermine/spermidine acetyltransferase SAT1 pre-mRNA to enhance alternative splicing of SAT1 through direct, sequence-specific interactions. MALAT1 interaction with TDP-43 and SAT1 increases TDP-43 binding affinity for SAT1 pre-mRNA by coordinating tripartite RNA–RNA–protein interactions. These tripartite interactions enhance SAT1 alternative splicing. This mechanism of pre-mRNA processing may not be limited to MALAT1, TDP-43, and SAT1. Similarly, alternative splicing of the liprin-α3 PPFIA3 pre-mRNA at exon 16 by the cleavage stimulation factor subunit 2 protein is enhanced by sequence-specific interactions with MALAT1 RNA. We conclude that the abundant MALAT1 non-coding RNA contains modular RNA–RNA and RNA–protein binding regions that facilitate the processing of mRNA transcripts relevant for neuronal function. |
---|---|
AbstractList | Messenger RNAs (mRNAs) are subject to multiple layers of gene expression regulation, enabling the production of a large diversity of RNA transcripts and encoded proteins from a smaller number of genes in the human genome. We find that the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) non-coding RNA regulates mRNA processing through direct RNA–RNA and RNA–protein interactions. MALAT1 interacts with both the TAR DNA binding protein (TDP-43) and the spermine/spermidine acetyltransferase
SAT1
pre-mRNA to enhance alternative splicing of
SAT1
through direct, sequence-specific interactions. MALAT1 interaction with TDP-43 and
SAT1
increases TDP-43 binding affinity for
SAT1
pre-mRNA by coordinating tripartite RNA–RNA–protein interactions. These tripartite interactions enhance
SAT1
alternative splicing. This mechanism of pre-mRNA processing may not be limited to MALAT1, TDP-43, and
SAT1
. Similarly, alternative splicing of the liprin-α3
PPFIA3
pre-mRNA at exon 16 by the cleavage stimulation factor subunit 2 protein is enhanced by sequence-specific interactions with MALAT1 RNA. We conclude that the abundant MALAT1 non-coding RNA contains modular RNA–RNA and RNA–protein binding regions that facilitate the processing of mRNA transcripts relevant for neuronal function.
Graphical Abstract Messenger RNAs (mRNAs) are subject to multiple layers of gene expression regulation, enabling the production of a large diversity of RNA transcripts and encoded proteins from a smaller number of genes in the human genome. We find that the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) non-coding RNA regulates mRNA processing through direct RNA-RNA and RNA-protein interactions. MALAT1 interacts with both the TAR DNA binding protein (TDP-43) and the spermine/spermidine acetyltransferase SAT1 pre-mRNA to enhance alternative splicing of SAT1 through direct, sequence-specific interactions. MALAT1 interaction with TDP-43 and SAT1 increases TDP-43 binding affinity for SAT1 pre-mRNA by coordinating tripartite RNA-RNA-protein interactions. These tripartite interactions enhance SAT1 alternative splicing. This mechanism of pre-mRNA processing may not be limited to MALAT1, TDP-43, and SAT1. Similarly, alternative splicing of the liprin-α3 PPFIA3 pre-mRNA at exon 16 by the cleavage stimulation factor subunit 2 protein is enhanced by sequence-specific interactions with MALAT1 RNA. We conclude that the abundant MALAT1 non-coding RNA contains modular RNA-RNA and RNA-protein binding regions that facilitate the processing of mRNA transcripts relevant for neuronal function.Messenger RNAs (mRNAs) are subject to multiple layers of gene expression regulation, enabling the production of a large diversity of RNA transcripts and encoded proteins from a smaller number of genes in the human genome. We find that the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) non-coding RNA regulates mRNA processing through direct RNA-RNA and RNA-protein interactions. MALAT1 interacts with both the TAR DNA binding protein (TDP-43) and the spermine/spermidine acetyltransferase SAT1 pre-mRNA to enhance alternative splicing of SAT1 through direct, sequence-specific interactions. MALAT1 interaction with TDP-43 and SAT1 increases TDP-43 binding affinity for SAT1 pre-mRNA by coordinating tripartite RNA-RNA-protein interactions. These tripartite interactions enhance SAT1 alternative splicing. This mechanism of pre-mRNA processing may not be limited to MALAT1, TDP-43, and SAT1. Similarly, alternative splicing of the liprin-α3 PPFIA3 pre-mRNA at exon 16 by the cleavage stimulation factor subunit 2 protein is enhanced by sequence-specific interactions with MALAT1 RNA. We conclude that the abundant MALAT1 non-coding RNA contains modular RNA-RNA and RNA-protein binding regions that facilitate the processing of mRNA transcripts relevant for neuronal function. Messenger RNAs (mRNAs) are subject to multiple layers of gene expression regulation, enabling the production of a large diversity of RNA transcripts and encoded proteins from a smaller number of genes in the human genome. We find that the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) non-coding RNA regulates mRNA processing through direct RNA-RNA and RNA-protein interactions. MALAT1 interacts with both the TAR DNA binding protein (TDP-43) and the spermine/spermidine acetyltransferase SAT1 pre-mRNA to enhance alternative splicing of SAT1 through direct, sequence-specific interactions. MALAT1 interaction with TDP-43 and SAT1 increases TDP-43 binding affinity for SAT1 pre-mRNA by coordinating tripartite RNA-RNA-protein interactions. These tripartite interactions enhance SAT1 alternative splicing. This mechanism of pre-mRNA processing may not be limited to MALAT1, TDP-43, and SAT1. Similarly, alternative splicing of the liprin-α3 PPFIA3 pre-mRNA at exon 16 by the cleavage stimulation factor subunit 2 protein is enhanced by sequence-specific interactions with MALAT1 RNA. We conclude that the abundant MALAT1 non-coding RNA contains modular RNA-RNA and RNA-protein binding regions that facilitate the processing of mRNA transcripts relevant for neuronal function. |
Author | McHugh, Colleen A Ellis, Lauren Johnson, Raul Balaji, Adarsh Hall, Simone Zhu, Jonathan |
Author_xml | – sequence: 1 givenname: Adarsh surname: Balaji fullname: Balaji, Adarsh – sequence: 2 givenname: Simone surname: Hall fullname: Hall, Simone – sequence: 3 givenname: Raul surname: Johnson fullname: Johnson, Raul – sequence: 4 givenname: Jonathan surname: Zhu fullname: Zhu, Jonathan – sequence: 5 givenname: Lauren surname: Ellis fullname: Ellis, Lauren – sequence: 6 givenname: Colleen A orcidid: 0000-0001-6008-2640 surname: McHugh fullname: McHugh, Colleen A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40808300$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkUtLxDAQx4Mouj5O3qVHQaqTR5v0JMviC1YF0XPIptNutZusSSt48zv4Df0kVlxFT8Mwv_nP479N1p13SMg-hWMKBT9xJpzUT6aSSqyREeU5S0WRs3UyAg5ZSkGoLbId4yMAFTQTm2RLgALFAUakvB5Px_c0CVj3rekwJou7m3GyDN5ijI2rk24efF_Pk4jPPTqLSYlLdCW6LhnIj7f3L964cpUNnR02Lmlch8HYrvEu7pKNyrQR91Zxhzycn91PLtPp7cXVZDxNLWPQpUrOUEoKmZzNqMykyZkoDcqsKrKcWVOVWCJXssqtpEpZoYALKUEU3FApK75DTr91l_1sgaUddgym1cvQLEx41d40-n_FNXNd-xdNGc8ACjUoHK4Ugh_OjZ1eNNFi2xqHvo-aM14IYJwWA3rwd9jvlJ_fDsDRN2CDjzFg9YtQ0F_O6cE5vXKOfwIN3o7J |
Cites_doi | 10.1093/nar/gkx279 10.1172/jci.insight.158457 10.1038/nsmb.1550 10.1007/s00418-012-1044-y 10.1038/s41583-023-00717-6 10.1016/j.molcel.2010.08.011 10.1007/978-1-4939-6887-9_14 10.1016/j.chom.2016.06.011 10.1016/j.yexmp.2020.104545 10.1016/j.molcel.2019.09.017 10.1016/j.devcel.2014.06.017 10.1152/ajpendo.90217.2008 10.1073/pnas.2220537120 10.1016/j.brainres.2009.09.105 10.1093/bioinformatics/btl024 10.1038/nn.3512 10.1080/15476286.2016.1191727 10.3390/ijms21031166 10.1111/jnc.14327 10.1261/rna.078796.121 10.14806/ej.17.1.200 10.1146/annurev.pa.35.040195.000415 10.1093/nar/gkaa340 10.1007/978-1-4939-6380-5_7 10.1073/pnas.2003932117 10.1038/s41568-018-0050-3 10.1016/j.cell.2021.07.018 10.1042/BJ20150168 10.1111/iji.12549 10.1073/pnas.1011751107 10.1074/jbc.273.51.34623 10.1038/nsmb.2698 10.1002/mds.29048 10.3390/cells10123389 10.21769/BioProtoc.2126 10.1016/j.ceb.2018.02.011 10.1261/rna.39806 10.1074/jbc.M104236200 10.3390/ncrna6020022 10.1016/j.bbrc.2015.08.027 10.1074/jbc.273.25.15611 10.1002/ana.25516 10.1101/cshperspect.a032409 10.1080/15476286.2019.1592072 10.1101/gr.134312.111 10.1093/nar/gku837 10.1038/nm.4222 10.1093/jb/mvj021 10.1146/annurev-biochem-071322-021330 10.1038/nn.2778 10.1038/emboj.2010.310 10.1073/pnas.1719012115 10.1016/j.tig.2017.12.012 10.1093/gigascience/giab008 10.1261/rna.079713.123 10.1093/nar/gkaa689 10.1016/j.molcel.2014.07.012 10.1016/j.ajhg.2023.12.004 10.1101/gr.209601.116 10.1002/jcb.29711 10.1038/43886 10.7554/eLife.57264 10.1073/pnas.1607152113 10.1093/nar/gkv814 10.1016/j.celrep.2012.05.003 10.3389/fmolb.2017.00090 10.1126/sciadv.abq7289 10.7554/eLife.67605 10.1038/nbt.1754 10.1093/nar/9.1.133 10.1016/j.molmed.2011.06.004 10.1038/s41576-022-00514-4 10.1002/1873-3468.13800 10.1016/j.jbc.2025.108207 10.1038/s41568-022-00481-2 10.1038/nprot.2014.135 10.1016/j.cell.2009.02.009 10.1007/s12035-022-02899-z 10.1016/j.neuron.2019.01.048 10.1093/bioinformatics/bts635 |
ContentType | Journal Article |
Copyright | The Author(s) 2025. Published by Oxford University Press. The Author(s) 2025. Published by Oxford University Press. 2025 |
Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press. – notice: The Author(s) 2025. Published by Oxford University Press. 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkaf784 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
ExternalDocumentID | PMC12350098 40808300 10_1093_nar_gkaf784 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIH HHS grantid: R00 GM120494 – fundername: University of California San Diego Dean of Physical Sciences Summer Undergraduate Research Awar – fundername: National Science Foundation grantid: 2419893 – fundername: National Institutes of Health Molecular Biophysics Training grantid: GM139795 – fundername: University of California San Deigo Chemistry and Biochemistry – fundername: National Institutes of Health Molecular Biophysics Training grantid: GM008326 – fundername: ; – fundername: ; grantid: R00 GM120494 – fundername: ; grantid: 2419893 – fundername: ; grantid: GM008326; GM139795 |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAVAP AAYXX ABEJV ABGNP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ACUTJ ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFYAG AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS BAWUL BAYMD BCNDV CAG CIDKT CITATION CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EMOBN F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI OAWHX OBC OBS OEB OES OJQWA OVT P2P PEELM PQQKQ R44 RD5 RNS ROL ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c220t-87be771057bb1757a624dae75f9562cafdede387f6c7188c48034770493a177f3 |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:25:24 EDT 2025 Thu Aug 14 17:32:55 EDT 2025 Thu Aug 28 04:32:59 EDT 2025 Thu Aug 21 00:11:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2025. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c220t-87be771057bb1757a624dae75f9562cafdede387f6c7188c48034770493a177f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Adarsh Balaji and Simone Hall should be regarded as Joint First Authors. |
ORCID | 0000-0001-6008-2640 |
OpenAccessLink | http://dx.doi.org/10.1093/nar/gkaf784 |
PMID | 40808300 |
PQID | 3239402319 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12350098 proquest_miscellaneous_3239402319 pubmed_primary_40808300 crossref_primary_10_1093_nar_gkaf784 |
PublicationCentury | 2000 |
PublicationDate | 2025-Aug-11 |
PublicationDateYYYYMMDD | 2025-08-11 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-Aug-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2025 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Serra-Pagès (2025081323351456400_B78) 1998; 273 Arun (2025081323351456400_B29) 2020; 6 Mandal (2025081323351456400_B13) 2015; 468 Yang (2025081323351456400_B35) 2021; 48 Bardou (2025081323351456400_B8) 2014; 30 Mann (2025081323351456400_B43) 2019; 102 Mann (2025081323351456400_B55) 2017; 45 Hyvönen (2025081323351456400_B23) 2006; 12 Martin (2025081323351456400_B71) 2012; 1 Carey (2025081323351456400_B2) 2018; 34 Wang (2025081323351456400_B21) 2006; 139 Ayala (2025081323351456400_B70) 2011; 30 Ryder (2025081323351456400_B60) 2008 Lukavsky (2025081323351456400_B38) 2013; 20 Wahl (2025081323351456400_B5) 2009; 136 Li (2025081323351456400_B32) 2020; 117 Jarmoskaite (2025081323351456400_B61) 2020; 9 Yan (2025081323351456400_B4) 2019; 11 Ishiguro (2025081323351456400_B40) 2020; 594 Neff (2025081323351456400_B12) 2012; 22 Panda (2025081323351456400_B68) 2017; 7 Raran-Kurussi (2025081323351456400_B58) 2017; 1586 Tan (2025081323351456400_B11) 2022; 22 Guo (2025081323351456400_B64) 2015; 465 Grozdanov (2025081323351456400_B73) 2020; 48 Liu (2025081323351456400_B80) 2020; 117 Lightfoot (2025081323351456400_B15) 2014; 42 Gao (2025081323351456400_B49) 2018; 146 West (2025081323351456400_B45) 2014; 55 Balaji (2025081323351456400_B26) 2025; 301 Ou (2025081323351456400_B67) 2016; 113 Hallegger (2025081323351456400_B39) 2021; 184 Rengifo-Gonzalez (2025081323351456400_B44) 2021; 10 Martin (2025081323351456400_B51) 2011; 17 Dobin (2025081323351456400_B52) 2013; 29 Brogna (2025081323351456400_B10) 2009; 16 Gaweda-Walerych (2025081323351456400_B47) 2021; 10 Hemphill (2025081323351456400_B79) 2023; 120 Mounce (2025081323351456400_B65) 2016; 20 Tollervey (2025081323351456400_B42) 2011; 14 Abrishamdar (2025081323351456400_B33) 2022; 59 Hallegger (2025081323351456400_B69) 2021; 184 Movassat (2025081323351456400_B72) 2016; 13 Paul (2025081323351456400_B74) 2024; 111 Gupta (2025081323351456400_B18) 2013; 16 Zuker (2025081323351456400_B56) 1981; 9 Bachmann (2025081323351456400_B82) 2011 Pintacuda (2025081323351456400_B7) 2017; 4 Wang (2025081323351456400_B20) 1998; 273 Buratti (2025081323351456400_B36) 2001; 276 Smith (2025081323351456400_B50) 2017; 27 Zhen (2025081323351456400_B76) 1999; 401 Lewandowski (2025081323351456400_B17) 2010; 107 Cohen (2025081323351456400_B37) 2011; 17 2025081323351456400_B53 Wong (2025081323351456400_B75) 2018; 115 Pegg (2025081323351456400_B22) 2008; 294 Joshi (2025081323351456400_B77) 2013; 139 Nikom (2025081323351456400_B9) 2023; 24 Yamashita (2025081323351456400_B48) 2022; 37 Saiki (2025081323351456400_B14) 2019; 86 Gagnon (2025081323351456400_B62) 2014; 9 Gagliardi (2025081323351456400_B63) 2016; 1480 Marton (2025081323351456400_B81) 1995; 35 Pozzi (2025081323351456400_B24) 2020; 48 Wright (2025081323351456400_B3) 2022; 23 Tripathi (2025081323351456400_B27) 2010; 39 Button (2025081323351456400_B59) 2024; 30 Corbett (2025081323351456400_B1) 2018; 52 Robinson (2025081323351456400_B54) 2011; 29 Vrijsen (2025081323351456400_B16) 2023; 92 Volkening (2025081323351456400_B41) 2009; 1305 Mückstein (2025081323351456400_B57) 2006; 22 Eisenberg (2025081323351456400_B19) 2016; 22 Ule (2025081323351456400_B6) 2019; 76 Baker (2025081323351456400_B25) 2021; 27 Miao (2025081323351456400_B31) 2022; 8 De (2025081323351456400_B28) 2015; 43 Arun (2025081323351456400_B30) 2019; 16 Scherer (2025081323351456400_B46) 2020; 21 Casero (2025081323351456400_B83) 2018; 18 Lu (2025081323351456400_B34) 2020; 121 Tao (2025081323351456400_B66) 2022; 7 |
References_xml | – volume: 45 start-page: W435 year: 2017 ident: 2025081323351456400_B55 article-title: IntaRNA 2.0: enhanced and customizable prediction of RNA–RNA interactions publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx279 – volume: 7 start-page: e158457 year: 2022 ident: 2025081323351456400_B66 article-title: Phenylbutyrate modulates polyamine acetylase and ameliorates Snyder-Robinson syndrome in a Drosophila model and patient cells publication-title: JCI Insight doi: 10.1172/jci.insight.158457 – volume: 16 start-page: 107 year: 2009 ident: 2025081323351456400_B10 article-title: Nonsense-mediated mRNA decay (NMD) mechanisms publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1550 – volume: 139 start-page: 535 year: 2013 ident: 2025081323351456400_B77 article-title: Liprin α3: a putative estrogen regulated acrosomal protein publication-title: Histochem Cell Biol doi: 10.1007/s00418-012-1044-y – volume: 24 start-page: 457 year: 2023 ident: 2025081323351456400_B9 article-title: Alternative splicing in neurodegenerative disease and the promise of RNA therapies publication-title: Nat Rev Neurosci doi: 10.1038/s41583-023-00717-6 – volume: 39 start-page: 925 year: 2010 ident: 2025081323351456400_B27 article-title: The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation publication-title: Mol Cell doi: 10.1016/j.molcel.2010.08.011 – volume: 1586 start-page: 221 year: 2017 ident: 2025081323351456400_B58 article-title: Removal of affinity tags with TEV protease publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-6887-9_14 – volume: 20 start-page: 167 year: 2016 ident: 2025081323351456400_B65 article-title: Interferon-induced spermidine-spermine acetyltransferase and polyamine depletion restrict Zika and chikungunya viruses publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.06.011 – volume: 117 start-page: 104545 year: 2020 ident: 2025081323351456400_B32 article-title: Neuro-protective roles of long non-coding RNA MALAT1 in Alzheimer’s disease with the involvement of the microRNA-30b/CNR1 network and the following PI3K/AKT activation publication-title: Exp Mol Pathol doi: 10.1016/j.yexmp.2020.104545 – volume: 76 start-page: 329 year: 2019 ident: 2025081323351456400_B6 article-title: Alternative splicing regulatory networks: functions, mechanisms, and evolution publication-title: Mol Cell doi: 10.1016/j.molcel.2019.09.017 – volume: 30 start-page: 166 year: 2014 ident: 2025081323351456400_B8 article-title: Long noncoding RNA modulates alternative splicing regulators in Arabidopsis publication-title: Dev Cell doi: 10.1016/j.devcel.2014.06.017 – volume: 294 start-page: E995 year: 2008 ident: 2025081323351456400_B22 article-title: Spermidine/spermine-N1-acetyltransferase: a key metabolic regulator publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.90217.2008 – volume: 120 start-page: e2220537120 year: 2023 ident: 2025081323351456400_B79 article-title: Multiple RNA- and DNA-binding proteins exhibit direct transfer of polynucleotides with implications for target-site search publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2220537120 – volume: 1305 start-page: 168 year: 2009 ident: 2025081323351456400_B41 article-title: TAR DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS) publication-title: Brain Res doi: 10.1016/j.brainres.2009.09.105 – volume: 22 start-page: 1177 year: 2006 ident: 2025081323351456400_B57 article-title: Thermodynamics of RNA–RNA binding publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl024 – volume: 16 start-page: 1453 year: 2013 ident: 2025081323351456400_B18 article-title: Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner publication-title: Nat Neurosci doi: 10.1038/nn.3512 – volume: 13 start-page: 646 year: 2016 ident: 2025081323351456400_B72 article-title: Coupling between alternative polyadenylation and alternative splicing is limited to terminal introns publication-title: RNA Biol doi: 10.1080/15476286.2016.1191727 – volume: 21 start-page: 1166 year: 2020 ident: 2025081323351456400_B46 article-title: Quantitative proteomics to identify nuclear RNA-binding proteins of Malat1 publication-title: Int J Mol Sci doi: 10.3390/ijms21031166 – volume: 146 start-page: 7 year: 2018 ident: 2025081323351456400_B49 article-title: Pathomechanisms of TDP-43 in neurodegeneration publication-title: J Neurochem doi: 10.1111/jnc.14327 – volume: 27 start-page: 1353 year: 2021 ident: 2025081323351456400_B25 article-title: KDM3A regulates alternative splicing of cell-cycle genes following DNA damage publication-title: RNA doi: 10.1261/rna.078796.121 – volume: 17 start-page: 10 year: 2011 ident: 2025081323351456400_B51 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet J doi: 10.14806/ej.17.1.200 – volume: 35 start-page: 55 year: 1995 ident: 2025081323351456400_B81 article-title: Polyamines as targets for therapeutic intervention publication-title: Annu Rev Pharmacol Toxicol doi: 10.1146/annurev.pa.35.040195.000415 – volume: 48 start-page: 6824 year: 2020 ident: 2025081323351456400_B24 article-title: Dengue virus targets RBM10 deregulating host cell splicing and innate immune response publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa340 – volume: 1480 start-page: 73 year: 2016 ident: 2025081323351456400_B63 article-title: RIP: RNA immunoprecipitation publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-6380-5_7 – volume: 117 start-page: 23695 year: 2020 ident: 2025081323351456400_B80 article-title: LncRNA Malat1 inhibition of TDP43 cleavage suppresses IRF3-initiated antiviral innate immunity publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2003932117 – volume: 18 start-page: 681 year: 2018 ident: 2025081323351456400_B83 article-title: Polyamine metabolism and cancer: treatments, challenges and opportunities publication-title: Nat Rev Cancer doi: 10.1038/s41568-018-0050-3 – volume: 184 start-page: 4680 year: 2021 ident: 2025081323351456400_B39 article-title: TDP-43 condensation properties specify its RNA-binding and regulatory repertoire publication-title: Cell doi: 10.1016/j.cell.2021.07.018 – volume: 468 start-page: 435 year: 2015 ident: 2025081323351456400_B13 article-title: Depletion of the polyamines spermidine and spermine by overexpression of spermidine/spermine N1-acetyltransferase 1 (SAT1) leads to mitochondria-mediated apoptosis in mammalian cells publication-title: Biochem J doi: 10.1042/BJ20150168 – volume: 48 start-page: 419 year: 2021 ident: 2025081323351456400_B35 article-title: LncRNA MALAT1 potentiates inflammation disorder in Parkinson’s disease publication-title: Int J Immunogenetics doi: 10.1111/iji.12549 – volume: 107 start-page: 16970 year: 2010 ident: 2025081323351456400_B17 article-title: Polyamine pathway contributes to the pathogenesis of Parkinson disease publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1011751107 – volume: 273 start-page: 34623 year: 1998 ident: 2025081323351456400_B20 article-title: The identification of a cis-element and a trans-acting factor involved in the response to polyamines and polyamine analogues in the regulation of the human spermidine/spermine N1-acetyltransferase gene transcription publication-title: J Biol Chem doi: 10.1074/jbc.273.51.34623 – volume: 20 start-page: 1443 year: 2013 ident: 2025081323351456400_B38 article-title: Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2698 – volume: 37 start-page: 1561 year: 2022 ident: 2025081323351456400_B48 article-title: TDP-43 proteinopathy presenting with typical symptoms of Parkinson’s disease publication-title: Mov Disord doi: 10.1002/mds.29048 – volume: 184 start-page: 4680 year: 2021 ident: 2025081323351456400_B69 article-title: TDP-43 condensation properties specify its RNA-binding and regulatory repertoire publication-title: Cell doi: 10.1016/j.cell.2021.07.018 – volume: 10 start-page: 3389 year: 2021 ident: 2025081323351456400_B47 article-title: Parkin beyond Parkinson’s disease—a functional meaning of Parkin downregulation in TDP-43 proteinopathies publication-title: Cells doi: 10.3390/cells10123389 – volume: 7 start-page: e2126 year: 2017 ident: 2025081323351456400_B68 article-title: Polysome fractionation to analyze mRNA distribution profiles publication-title: Bio Protoc doi: 10.21769/BioProtoc.2126 – volume: 52 start-page: 96 year: 2018 ident: 2025081323351456400_B1 article-title: Post-transcriptional regulation of gene expression and human disease publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2018.02.011 – volume: 12 start-page: 1569 year: 2006 ident: 2025081323351456400_B23 article-title: Polyamine-regulated unproductive splicing and translation of spermidine/spermine N1-acetyltransferase publication-title: RNA doi: 10.1261/rna.39806 – volume: 276 start-page: 36337 year: 2001 ident: 2025081323351456400_B36 article-title: Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9 publication-title: J Biol Chem doi: 10.1074/jbc.M104236200 – volume: 6 start-page: 22 year: 2020 ident: 2025081323351456400_B29 article-title: MALAT1 Long non-coding RNA: functional implications publication-title: Noncoding RNA doi: 10.3390/ncrna6020022 – volume: 465 start-page: 293 year: 2015 ident: 2025081323351456400_B64 article-title: Regulation of MALAT1 expression by TDP43 controls the migration and invasion of non-small cell lung cancer cells in vitro publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2015.08.027 – volume: 273 start-page: 15611 year: 1998 ident: 2025081323351456400_B78 article-title: Liprins, a family of LAR transmembrane protein–tyrosine phosphatase–interacting proteins publication-title: J Biol Chem doi: 10.1074/jbc.273.25.15611 – start-page: 257 volume-title: The Royal Society of Chemistry year: 2011 ident: 2025081323351456400_B82 article-title: Clinical Applications of Polyamine-Based Therapeutics – volume: 86 start-page: 251 year: 2019 ident: 2025081323351456400_B14 article-title: A metabolic profile of polyamines in parkinson disease: a promising biomarker publication-title: Ann Neurol doi: 10.1002/ana.25516 – volume: 11 start-page: a032409 year: 2019 ident: 2025081323351456400_B4 article-title: Molecular mechanisms of pre-mRNA splicing through structural biology of the spliceosome publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a032409 – volume: 16 start-page: 860 year: 2019 ident: 2025081323351456400_B30 article-title: MALAT1 long non-coding RNA and breast cancer publication-title: RNA Biol doi: 10.1080/15476286.2019.1592072 – volume: 22 start-page: 1457 year: 2012 ident: 2025081323351456400_B12 article-title: Global analysis reveals multiple pathways for unique regulation of mRNA decay in induced pluripotent stem cells publication-title: Genome Res doi: 10.1101/gr.134312.111 – volume: 42 start-page: 11275 year: 2014 ident: 2025081323351456400_B15 article-title: Endogenous polyamine function–the RNA perspective publication-title: Nucleic Acids Res doi: 10.1093/nar/gku837 – volume: 22 start-page: 1428 year: 2016 ident: 2025081323351456400_B19 article-title: Cardioprotection and lifespan extension by the natural polyamine spermidine publication-title: Nat Med doi: 10.1038/nm.4222 – volume: 139 start-page: 17 year: 2006 ident: 2025081323351456400_B21 article-title: Mammalian polyamine catabolism: a therapeutic target, a pathological problem, or both? publication-title: J Biochem doi: 10.1093/jb/mvj021 – volume: 92 start-page: 435 year: 2023 ident: 2025081323351456400_B16 article-title: Polyamines in Parkinson’s disease: balancing between neurotoxicity and neuroprotection publication-title: Annu Rev Biochem doi: 10.1146/annurev-biochem-071322-021330 – volume: 14 start-page: 452 year: 2011 ident: 2025081323351456400_B42 article-title: Characterizing the RNA targets and position-dependent splicing regulation by TDP-43 publication-title: Nat Neurosci doi: 10.1038/nn.2778 – volume: 30 start-page: 277 year: 2011 ident: 2025081323351456400_B70 article-title: TDP-43 regulates its mRNA levels through a negative feedback loop publication-title: EMBO J doi: 10.1038/emboj.2010.310 – volume: 115 start-page: 2234 year: 2018 ident: 2025081323351456400_B75 article-title: Liprin-α3 controls vesicle docking and exocytosis at the active zone of hippocampal synapses publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1719012115 – volume: 34 start-page: 279 year: 2018 ident: 2025081323351456400_B2 article-title: Regulatory potential of the RNA processing machinery: implications for human disease publication-title: Trends Genet doi: 10.1016/j.tig.2017.12.012 – ident: 2025081323351456400_B53 doi: 10.1093/gigascience/giab008 – volume: 30 start-page: 240 year: 2024 ident: 2025081323351456400_B59 article-title: Dissection of protein and RNA regions required for SPEN binding to XIST A-repeat RNA publication-title: RNA doi: 10.1261/rna.079713.123 – volume: 48 start-page: 9804 year: 2020 ident: 2025081323351456400_B73 article-title: A missense mutation in the CSTF2 gene that impairs the function of the RNA recognition motif and causes defects in 3′ end processing is associated with intellectual disability in humans publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa689 – volume: 55 start-page: 791 year: 2014 ident: 2025081323351456400_B45 article-title: The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites publication-title: Mol Cell doi: 10.1016/j.molcel.2014.07.012 – volume: 111 start-page: 96 year: 2024 ident: 2025081323351456400_B74 article-title: A syndromic neurodevelopmental disorder caused by rare variants in PPFIA3 publication-title: Am Hum Genet doi: 10.1016/j.ajhg.2023.12.004 – volume: 27 start-page: 491 year: 2017 ident: 2025081323351456400_B50 article-title: UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy publication-title: Genome Res doi: 10.1101/gr.209601.116 – volume: 121 start-page: 4838 year: 2020 ident: 2025081323351456400_B34 article-title: LncRNA MALAT1 targeting miR-124-3p regulates DAPK1 expression contributes to cell apoptosis in Parkinson’s disease publication-title: J Cell Biochem doi: 10.1002/jcb.29711 – volume: 401 start-page: 371 year: 1999 ident: 2025081323351456400_B76 article-title: The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans publication-title: Nature doi: 10.1038/43886 – volume: 9 start-page: e57264 year: 2020 ident: 2025081323351456400_B61 article-title: How to measure and evaluate binding affinities publication-title: eLife doi: 10.7554/eLife.57264 – start-page: 99 volume-title: Methods in Molecular Biology, Methods in Molecular Biology (Clifton, N.J.) year: 2008 ident: 2025081323351456400_B60 article-title: Quantitative analysis of protein–RNA interactions by gel mobility shift – volume: 113 start-page: E6806 year: 2016 ident: 2025081323351456400_B67 article-title: Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1607152113 – volume: 43 start-page: 8990 year: 2015 ident: 2025081323351456400_B28 article-title: TDP-43 affects splicing profiles and isoform production of genes involved in the apoptotic and mitotic cellular pathways publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv814 – volume: 1 start-page: 753 year: 2012 ident: 2025081323351456400_B71 article-title: Genome-wide analysis of pre-mRNA 3′ end processing reveals a decisive role of human cleavage factor I in the regulation of 3′ UTR length publication-title: Cell Rep doi: 10.1016/j.celrep.2012.05.003 – volume: 4 start-page: 90 year: 2017 ident: 2025081323351456400_B7 article-title: Function by structure: spotlights on Xist long non-coding RNA publication-title: Front Mol Biosci doi: 10.3389/fmolb.2017.00090 – volume: 8 start-page: eabq7289 year: 2022 ident: 2025081323351456400_B31 article-title: MALAT1 modulates alternative splicing by cooperating with the splicing factors PTBP1 and PSF publication-title: Sci Adv doi: 10.1126/sciadv.abq7289 – volume: 10 start-page: e67605 year: 2021 ident: 2025081323351456400_B44 article-title: The cooperative binding of TDP-43 to GU-rich RNA repeats antagonizes TDP-43 aggregation publication-title: eLife doi: 10.7554/eLife.67605 – volume: 29 start-page: 24 year: 2011 ident: 2025081323351456400_B54 article-title: Integrative genomics viewer publication-title: Nat Biotechnol doi: 10.1038/nbt.1754 – volume: 9 start-page: 133 year: 1981 ident: 2025081323351456400_B56 article-title: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information publication-title: Nucleic Acids Res doi: 10.1093/nar/9.1.133 – volume: 17 start-page: 659 year: 2011 ident: 2025081323351456400_B37 article-title: TDP-43 functions and pathogenic mechanisms implicated in TDP-43 proteinopathies publication-title: Trends Mol Med doi: 10.1016/j.molmed.2011.06.004 – volume: 23 start-page: 697 year: 2022 ident: 2025081323351456400_B3 article-title: Alternative splicing as a source of phenotypic diversity publication-title: Nat Rev Genet doi: 10.1038/s41576-022-00514-4 – volume: 594 start-page: 2254 year: 2020 ident: 2025081323351456400_B40 article-title: Molecular dissection of ALS-linked TDP-43—involvement of the gly-rich domain in interaction with G-quadruplex mRNA publication-title: FEBS Lett doi: 10.1002/1873-3468.13800 – volume: 301 start-page: 108207 year: 2025 ident: 2025081323351456400_B26 article-title: The levels of the long noncoding RNA MALAT1 affect cell viability and modulate TDP-43 binding to mRNA in the nucleus publication-title: J Biol Chem doi: 10.1016/j.jbc.2025.108207 – volume: 22 start-page: 437 year: 2022 ident: 2025081323351456400_B11 article-title: Nonsense-mediated RNA decay: an emerging modulator of malignancy publication-title: Nat Rev Cancer doi: 10.1038/s41568-022-00481-2 – volume: 9 start-page: 2045 year: 2014 ident: 2025081323351456400_B62 article-title: Analysis of nuclear RNA interference in human cells by subcellular fractionation and argonaute loading publication-title: Nat Protoc doi: 10.1038/nprot.2014.135 – volume: 136 start-page: 701 year: 2009 ident: 2025081323351456400_B5 article-title: The spliceosome: design principles of a dynamic RNP machine publication-title: Cell doi: 10.1016/j.cell.2009.02.009 – volume: 59 start-page: 5253 year: 2022 ident: 2025081323351456400_B33 article-title: MALAT1 lncRNA and Parkinson’s disease: the role in the pathophysiology and significance for diagnostic and therapeutic approaches publication-title: Mol Neurobiol doi: 10.1007/s12035-022-02899-z – volume: 102 start-page: 321 year: 2019 ident: 2025081323351456400_B43 article-title: RNA binding antagonizes neurotoxic phase transitions of TDP-43 publication-title: Neuron doi: 10.1016/j.neuron.2019.01.048 – volume: 29 start-page: 15 year: 2013 ident: 2025081323351456400_B52 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 |
SSID | ssj0014154 |
Score | 2.484975 |
Snippet | Messenger RNAs (mRNAs) are subject to multiple layers of gene expression regulation, enabling the production of a large diversity of RNA transcripts and... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Acetyltransferases Alternative Splicing DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism HEK293 Cells Humans Protein Binding RNA and RNA-protein complexes RNA Precursors - genetics RNA Precursors - metabolism RNA Processing, Post-Transcriptional RNA, Long Noncoding - genetics RNA, Long Noncoding - metabolism RNA, Messenger - genetics RNA, Messenger - metabolism RNA-Binding Proteins - metabolism |
Title | MALAT1 regulates mRNA processing through sequence dependent RNA–RNA and RNA–protein interactions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40808300 https://www.proquest.com/docview/3239402319 https://pubmed.ncbi.nlm.nih.gov/PMC12350098 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgSLALgg1YgU1GmrhEYWmcxOkxmjZNE-sBOmniEmzHoYU1q9r0AH8979lxkrJNAg6NosS1JX-fXt57fj8IOcRPHFdopqaq8EEDBzkopfSjuCj4MNRKx5jvfDFOzi6j86v4qiuoYLJLavlB_bozr-R_UIVngCtmyf4Dsu2k8ADuAV-4AsJw_SuML7KP2WToLW0_eb3y5p_Gmbewsf82D8p24XEB057reVt7MNLH0SZBEe5NwYZZZepHLG22w6qvuY6x8DEWd1WzAo8ael4w4wi9Ft9NYEBWgKk87QSbPdb4DJToDvCbtlwG3l5k4pfpuu_Q7zskwhg9rI3A1FaImkys0aaUtSWBHZviO6W3rWxVYWT56bcfouS2e1wPycXcQBmBnpuyIOg-Ym1ooXv1kDwKwXJA0ceDk_ZgCfSVqEnThNWOYK2jZqVt8tj9d1NHuWV4_Bk_21NIJs_I08aSoJmlxXPyQFc7ZDeDvbuZ_6TvqYntNYcmO-TJsevrt0u-WtbQljUUWUM71tCGNdSxhrasoQ1rKLCG9lhD-6x5QS5PTybHZ37TZ8NXYRjU8EGUmnNs-CwlaJNcJGFUCM3jEoznUImy0IVmKS8TBZpMqqI0YBHnYFsyMeS8ZC_JVgUk2iNUqyQVTILNH4OtILDPpiyLROqEwW80GpBDt7P5wpZTyW0YBMsBi7zBYkDeuV3PYXfwDEtU-ma9ylnIRhHWLISpXlkU2okcfAOSbuDTDsBS6ptvqtnUlFTHjHEsrfv63knfkO2O7G_JVr1c633QR2t5YBh2YLw5vwFzLY81 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MALAT1+regulates+mRNA+processing+through+sequence+dependent+RNA-RNA+and+RNA-protein+interactions&rft.jtitle=Nucleic+acids+research&rft.au=Balaji%2C+Adarsh&rft.au=Hall%2C+Simone&rft.au=Johnson%2C+Raul&rft.au=Zhu%2C+Jonathan&rft.date=2025-08-11&rft.eissn=1362-4962&rft.volume=53&rft.issue=15&rft_id=info:doi/10.1093%2Fnar%2Fgkaf784&rft_id=info%3Apmid%2F40808300&rft.externalDocID=40808300 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |