Evidently diverse effects of silver nanoparticles on Vibrio parahaemolyticus across different estuarine water samples
Potential threats that silver nanoparticles (Ag NPs) pose to bacterial communities in estuarine environments have become a subject of intensifying global interest. Herein, eight water samples were collected from various estuarine sites. They were characterized by a wide array of distinct physicochem...
Saved in:
Published in | Environmental science. Nano Vol. 12; no. 5; pp. 2657 - 2666 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
16.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2051-8153 2051-8161 |
DOI | 10.1039/D5EN00018A |
Cover
Loading…
Abstract | Potential threats that silver nanoparticles (Ag NPs) pose to bacterial communities in estuarine environments have become a subject of intensifying global interest. Herein, eight water samples were collected from various estuarine sites. They were characterized by a wide array of distinct physicochemical properties, including pH, salinity, conductivity, turbidity, chemical oxygen demand (COD) and total suspended solids (TSS). Vibrio parahaemolyticus ( V. parahaemolyticus ) were exposed to Ag NPs at a series of concentrations in these water samples. Subsequently, the growth curves of the surviving bacterial cells were measured using an electronic microbial growth analyzer to determine the minimum inhibitory concentrations (MICs) of Ag NPs against V. parahaemolyticus . The results revealed a remarkable variation in the MICs, with values ranging from 12.0 mg L −1 to >48.0 mg L −1 . A comprehensive analysis indicated that there were no clear and definitive relationships between the MIC and individual physicochemical parameters such as pH, salinity, conductivity, turbidity, COD and TSS. Instead, the adverse effect of Ag NPs on V. parahaemolyticus depended on the combination of these factors. In contrast, the MIC of Ag NPs against V. parahaemolyticus in physiological saline, a commonly used simple laboratory medium, was determined to be 6.0 mg L −1 , which was significantly lower compared to those observed in the estuarine water samples. Therefore, when assessing the ecotoxicity of Ag NPs in actual estuarine scenarios, it is essential to rely on the antimicrobial data collected directly from realistic environmental matrices, rather than relying on data obtained from simple laboratory media or so-called representative water samples. |
---|---|
AbstractList | Potential threats that silver nanoparticles (Ag NPs) pose to bacterial communities in estuarine environments have become a subject of intensifying global interest. Herein, eight water samples were collected from various estuarine sites. They were characterized by a wide array of distinct physicochemical properties, including pH, salinity, conductivity, turbidity, chemical oxygen demand (COD) and total suspended solids (TSS). Vibrio parahaemolyticus (V. parahaemolyticus) were exposed to Ag NPs at a series of concentrations in these water samples. Subsequently, the growth curves of the surviving bacterial cells were measured using an electronic microbial growth analyzer to determine the minimum inhibitory concentrations (MICs) of Ag NPs against V. parahaemolyticus. The results revealed a remarkable variation in the MICs, with values ranging from 12.0 mg L−1 to >48.0 mg L−1. A comprehensive analysis indicated that there were no clear and definitive relationships between the MIC and individual physicochemical parameters such as pH, salinity, conductivity, turbidity, COD and TSS. Instead, the adverse effect of Ag NPs on V. parahaemolyticus depended on the combination of these factors. In contrast, the MIC of Ag NPs against V. parahaemolyticus in physiological saline, a commonly used simple laboratory medium, was determined to be 6.0 mg L−1, which was significantly lower compared to those observed in the estuarine water samples. Therefore, when assessing the ecotoxicity of Ag NPs in actual estuarine scenarios, it is essential to rely on the antimicrobial data collected directly from realistic environmental matrices, rather than relying on data obtained from simple laboratory media or so-called representative water samples. Potential threats that silver nanoparticles (Ag NPs) pose to bacterial communities in estuarine environments have become a subject of intensifying global interest. Herein, eight water samples were collected from various estuarine sites. They were characterized by a wide array of distinct physicochemical properties, including pH, salinity, conductivity, turbidity, chemical oxygen demand (COD) and total suspended solids (TSS). Vibrio parahaemolyticus ( V. parahaemolyticus ) were exposed to Ag NPs at a series of concentrations in these water samples. Subsequently, the growth curves of the surviving bacterial cells were measured using an electronic microbial growth analyzer to determine the minimum inhibitory concentrations (MICs) of Ag NPs against V. parahaemolyticus . The results revealed a remarkable variation in the MICs, with values ranging from 12.0 mg L −1 to >48.0 mg L −1 . A comprehensive analysis indicated that there were no clear and definitive relationships between the MIC and individual physicochemical parameters such as pH, salinity, conductivity, turbidity, COD and TSS. Instead, the adverse effect of Ag NPs on V. parahaemolyticus depended on the combination of these factors. In contrast, the MIC of Ag NPs against V. parahaemolyticus in physiological saline, a commonly used simple laboratory medium, was determined to be 6.0 mg L −1 , which was significantly lower compared to those observed in the estuarine water samples. Therefore, when assessing the ecotoxicity of Ag NPs in actual estuarine scenarios, it is essential to rely on the antimicrobial data collected directly from realistic environmental matrices, rather than relying on data obtained from simple laboratory media or so-called representative water samples. |
Author | Yang, Qianqian Hou, Xiangyi Schlensky, Nick Zhang, Xuzhi Lin, Wentao Zhang, Dahai Chen, Zhixiang Zhang, Yan Lu, Feng |
Author_xml | – sequence: 1 givenname: Qianqian surname: Yang fullname: Yang, Qianqian organization: State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China – sequence: 2 givenname: Xiangyi surname: Hou fullname: Hou, Xiangyi organization: State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China – sequence: 3 givenname: Feng surname: Lu fullname: Lu, Feng organization: State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China – sequence: 4 givenname: Dahai surname: Zhang fullname: Zhang, Dahai organization: Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China – sequence: 5 givenname: Wentao surname: Lin fullname: Lin, Wentao organization: eDAQ Pty Ltd, 6 Doig Ave, Denistone East NSW 2112, Australia – sequence: 6 givenname: Nick surname: Schlensky fullname: Schlensky, Nick organization: eDAQ Pty Ltd, 6 Doig Ave, Denistone East NSW 2112, Australia – sequence: 7 givenname: Zhixiang surname: Chen fullname: Chen, Zhixiang organization: Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China – sequence: 8 givenname: Yan surname: Zhang fullname: Zhang, Yan organization: State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China – sequence: 9 givenname: Xuzhi orcidid: 0009-0005-9486-0611 surname: Zhang fullname: Zhang, Xuzhi organization: State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China |
BookMark | eNpFkE9LAzEQxYNUsNZe_AQBb8LqJGm27bHU-geKXtTrMpudYMo2uya7lX57Uyt6muHN4zePd84GvvHE2KWAGwFqfnunV88AIGaLEzaUoEU2E7kY_O1anbFxjJuDR0it8umQ9audq8h39Z5XbkchEidryXSRN5ZHVyeNe_RNi6Fzpqake_7uyuAanjT8QNo29T7d-sjRhCbGREqIkKicYtdjcJ74F3aJFHHbJsYFO7VYRxr_zhF7u1-9Lh-z9cvD03KxzoyU0GVqRpUAOTVaKyAEwGkuq9KAkZBbEmARQc7FjGyp5ih0adFAmZPOjTZGqRG7OnLb0Hz2KUyxafrg08tCSZhomcPk4Lo-un7SB7JFG9wWw74QUByaLf6bVd-zg2-H |
Cites_doi | 10.1021/es403969x 10.1021/acsnano.8b03241 10.1007/s00775-007-0208-z 10.1128/AEM.01296-12 10.1016/j.biortech.2019.02.013 10.1080/10643389.2020.1764279 10.1021/acs.analchem.8b01214 10.1021/acs.est.5b00081 10.1021/acs.est.5b03285 10.1021/es100854g 10.1002/etc.716 10.1016/j.envpol.2017.04.006 10.1021/cm500316k 10.1021/es803259g 10.1016/j.jhazmat.2021.125320 10.1186/s12951-019-0459-1 10.1016/j.jes.2019.09.013 10.3390/ijms24032621 10.1038/nature12523 10.1016/j.scitotenv.2021.148765 10.1016/j.impact.2024.100496 10.3390/nano6030049 10.1016/j.bios.2023.115626 10.1007/s00248-020-01524-7 10.1016/j.marenvres.2017.08.006 10.1016/j.marenvres.2009.07.001 10.1126/sciadv.1603229 10.1016/j.renene.2021.02.127 10.1039/C6CS00691D 10.1039/C2NR32447D 10.1016/j.envpol.2015.02.033 10.3389/fmicb.2014.00544 10.1016/B978-0-443-15343-3.00006-1 10.1111/1462-2920.13441 10.1016/j.watres.2011.11.037 10.1021/ac400245j 10.1128/aem.01849-21 10.1007/s10646-017-1796-1 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2025 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2025 |
DBID | AAYXX CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI |
DOI | 10.1039/D5EN00018A |
DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2051-8161 |
EndPage | 2666 |
ExternalDocumentID | 10_1039_D5EN00018A |
GroupedDBID | 0R~ 4.4 AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENGV AETIL AFLYV AFOGI AFRAH AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- GGIMP H13 HZ~ H~N J3I O-G O9- RAOCF RCNCU RPMJG RRC RSCEA RVUXY 7QH 7ST 7UA C1K F1W H97 L.G SOI |
ID | FETCH-LOGICAL-c220t-38ed1027c5530ea00a762dbc0c206fe10faa02918efb39a15bfac0b6e56c5cc33 |
ISSN | 2051-8153 |
IngestDate | Fri Jul 25 10:32:13 EDT 2025 Tue Jul 29 02:13:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c220t-38ed1027c5530ea00a762dbc0c206fe10faa02918efb39a15bfac0b6e56c5cc33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0005-9486-0611 |
PQID | 3204526043 |
PQPubID | 2047519 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3204526043 crossref_primary_10_1039_D5EN00018A |
PublicationCentury | 2000 |
PublicationDate | 2025-05-16 |
PublicationDateYYYYMMDD | 2025-05-16 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Environmental science. Nano |
PublicationYear | 2025 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Fabrega (D5EN00018A/cit15/1) 2009; 43 Vukomanovic (D5EN00018A/cit35/1) 2019; 17 Mallevre (D5EN00018A/cit38/1) 2016; 6 Navarro-Pérez (D5EN00018A/cit36/1) 2022; 88 Keller (D5EN00018A/cit34/1) 2024; 33 Xiong (D5EN00018A/cit2/1) 2024; 12 Bastús (D5EN00018A/cit24/1) 2014; 26 Zhang (D5EN00018A/cit32/1) 2023; 24 Suresh (D5EN00018A/cit12/1) 2013; 5 Mühling (D5EN00018A/cit10/1) 2009; 68 Stauber (D5EN00018A/cit18/1) 2018; 12 Yi (D5EN00018A/cit39/1) 2017; 26 Echavarri-Bravo (D5EN00018A/cit9/1) 2015; 201 Grimes (D5EN00018A/cit33/1) 2020; 80 Grosser (D5EN00018A/cit42/1) 2021; 171 Johnson (D5EN00018A/cit31/1) 2012; 78 Odzak (D5EN00018A/cit37/1) 2017; 226 Beddow (D5EN00018A/cit7/1) 2017; 19 Jin (D5EN00018A/cit16/1) 2010; 44 Zhang (D5EN00018A/cit21/1) 2012; 46 Garner (D5EN00018A/cit30/1) 2015; 49 Zhang (D5EN00018A/cit23/1) 2018; 90 Ale (D5EN00018A/cit3/1) 2024 Zhang (D5EN00018A/cit22/1) 2023; 239 Zheng (D5EN00018A/cit29/1) 2017; 3 Baptista (D5EN00018A/cit6/1) 2015; 49 Echavarri-Bravo (D5EN00018A/cit8/1) 2017; 130 Theophel (D5EN00018A/cit27/1) 2014; 5 Desireddy (D5EN00018A/cit1/1) 2013; 501 Xiao (D5EN00018A/cit20/1) 2021; 794 Zhang (D5EN00018A/cit26/1) 2021; 413 Kalantzi (D5EN00018A/cit43/1) 2019 Zhao (D5EN00018A/cit5/1) 2021; 51 Das (D5EN00018A/cit25/1) 2012; 31 Huang (D5EN00018A/cit41/1) 2019; 281 Westmeier (D5EN00018A/cit19/1) 2018; 47 Lok (D5EN00018A/cit40/1) 2007; 12 Feng (D5EN00018A/cit13/1) 2015; 6 Passarelli (D5EN00018A/cit11/1) 2020; 7 Chambers (D5EN00018A/cit14/1) 2014; 48 Li (D5EN00018A/cit17/1) 2020; 88 Cui (D5EN00018A/cit28/1) 2013; 85 Kang (D5EN00018A/cit4/1) 2023; 32 |
References_xml | – volume: 48 start-page: 761 year: 2014 ident: D5EN00018A/cit14/1 publication-title: Environ. Sci. Technol. doi: 10.1021/es403969x – volume: 12 start-page: 6351 year: 2018 ident: D5EN00018A/cit18/1 publication-title: ACS Nano doi: 10.1021/acsnano.8b03241 – volume: 12 start-page: 527 year: 2007 ident: D5EN00018A/cit40/1 publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-007-0208-z – volume: 78 start-page: 7249 year: 2012 ident: D5EN00018A/cit31/1 publication-title: Environ. Microbiol. doi: 10.1128/AEM.01296-12 – volume: 281 start-page: 107 year: 2019 ident: D5EN00018A/cit41/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.02.013 – volume: 51 start-page: 1443 year: 2021 ident: D5EN00018A/cit5/1 publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2020.1764279 – volume: 90 start-page: 6006 year: 2018 ident: D5EN00018A/cit23/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b01214 – volume: 49 start-page: 5753 year: 2015 ident: D5EN00018A/cit30/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00081 – volume: 49 start-page: 12968 year: 2015 ident: D5EN00018A/cit6/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03285 – volume: 7 start-page: 3020 year: 2020 ident: D5EN00018A/cit11/1 publication-title: Environ. Sci.: Nano – volume: 44 start-page: 7321 year: 2010 ident: D5EN00018A/cit16/1 publication-title: Environ. Sci. Technol. doi: 10.1021/es100854g – volume: 31 start-page: 122 year: 2012 ident: D5EN00018A/cit25/1 publication-title: Environ. Toxicol. doi: 10.1002/etc.716 – volume: 226 start-page: 1 year: 2017 ident: D5EN00018A/cit37/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.04.006 – volume: 26 start-page: 2836 year: 2014 ident: D5EN00018A/cit24/1 publication-title: Chem. Mater. doi: 10.1021/cm500316k – volume: 32 start-page: 103295 year: 2023 ident: D5EN00018A/cit4/1 publication-title: J. Environ. – volume: 43 start-page: 7285 year: 2009 ident: D5EN00018A/cit15/1 publication-title: Environ. Sci. Technol. doi: 10.1021/es803259g – volume: 413 start-page: 125320 year: 2021 ident: D5EN00018A/cit26/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125320 – volume: 17 start-page: 1 year: 2019 ident: D5EN00018A/cit35/1 publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-019-0459-1 – volume: 6 start-page: 5186 year: 2015 ident: D5EN00018A/cit13/1 publication-title: Chem. Soc. – volume: 88 start-page: 248 year: 2020 ident: D5EN00018A/cit17/1 publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2019.09.013 – volume: 24 start-page: 2621 year: 2023 ident: D5EN00018A/cit32/1 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms24032621 – volume: 501 start-page: 399 year: 2013 ident: D5EN00018A/cit1/1 publication-title: Nat. Commun. doi: 10.1038/nature12523 – volume: 794 start-page: 148765 year: 2021 ident: D5EN00018A/cit20/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.148765 – volume: 33 start-page: 100496 year: 2024 ident: D5EN00018A/cit34/1 publication-title: NanoImpact doi: 10.1016/j.impact.2024.100496 – volume: 12 start-page: 112012 year: 2024 ident: D5EN00018A/cit2/1 publication-title: J. Environ. – volume: 6 start-page: 49 issue: 3 year: 2016 ident: D5EN00018A/cit38/1 publication-title: J. Nanomater. doi: 10.3390/nano6030049 – volume: 239 start-page: 115626 year: 2023 ident: D5EN00018A/cit22/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2023.115626 – volume: 80 start-page: 501 year: 2020 ident: D5EN00018A/cit33/1 publication-title: Microb. Ecol. doi: 10.1007/s00248-020-01524-7 – volume: 130 start-page: 293 year: 2017 ident: D5EN00018A/cit8/1 publication-title: Mar. Environ. Res. doi: 10.1016/j.marenvres.2017.08.006 – volume: 68 start-page: 278 year: 2009 ident: D5EN00018A/cit10/1 publication-title: Mar. Environ. Res. doi: 10.1016/j.marenvres.2009.07.001 – volume: 3 start-page: e1603229 issue: 8 year: 2017 ident: D5EN00018A/cit29/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.1603229 – volume: 171 start-page: 1014 year: 2021 ident: D5EN00018A/cit42/1 publication-title: Renewable Energy doi: 10.1016/j.renene.2021.02.127 – volume: 47 start-page: 5312 year: 2018 ident: D5EN00018A/cit19/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00691D – volume: 5 start-page: 463 year: 2013 ident: D5EN00018A/cit12/1 publication-title: Nanoscale doi: 10.1039/C2NR32447D – volume: 201 start-page: 91 year: 2015 ident: D5EN00018A/cit9/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2015.02.033 – volume: 5 start-page: 544 year: 2014 ident: D5EN00018A/cit27/1 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2014.00544 – start-page: 371 volume-title: Silver Nanoparticles for Drug Delivery year: 2024 ident: D5EN00018A/cit3/1 doi: 10.1016/B978-0-443-15343-3.00006-1 – start-page: 21 year: 2019 ident: D5EN00018A/cit43/1 publication-title: J. Nanopart. Res. – volume: 19 start-page: 500 year: 2017 ident: D5EN00018A/cit7/1 publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13441 – volume: 46 start-page: 691 year: 2012 ident: D5EN00018A/cit21/1 publication-title: Water Res. doi: 10.1016/j.watres.2011.11.037 – volume: 85 start-page: 5436 year: 2013 ident: D5EN00018A/cit28/1 publication-title: Anal. Chem. doi: 10.1021/ac400245j – volume: 88 start-page: e01849-21 year: 2022 ident: D5EN00018A/cit36/1 publication-title: Appl. Environ. doi: 10.1128/aem.01849-21 – volume: 26 start-page: 639 year: 2017 ident: D5EN00018A/cit39/1 publication-title: Ecotoxicology doi: 10.1007/s10646-017-1796-1 |
SSID | ssj0001125367 |
Score | 2.3338468 |
Snippet | Potential threats that silver nanoparticles (Ag NPs) pose to bacterial communities in estuarine environments have become a subject of intensifying global... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 2657 |
SubjectTerms | Bacteria Brackishwater environment Chemical oxygen demand Conductivity Estuaries Estuarine environments Growth curves Microorganisms Minimum inhibitory concentration Nanoparticles Oxygen requirement Physicochemical processes Physicochemical properties Salinity Salinity effects Silver Solid suspensions Suspended particulate matter Total suspended solids Turbidity Vibrio parahaemolyticus Water analysis Water sampling |
Title | Evidently diverse effects of silver nanoparticles on Vibrio parahaemolyticus across different estuarine water samples |
URI | https://www.proquest.com/docview/3204526043 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fi9NAEF5q78UXOVHx9JQFfQupm90kTR6L16NKrQip9C1sNpuzcCZ6SZH6p_jXOpNsfukh6ksoE1jCzteZ2dlvZgh5KRQL5jIM7AAvCV3OUzvB9toeXvplWcoUw0Lhdxt_tXXf7rzdZPJjwFo6VMlMfb-1ruR_tAoy0CtWyf6DZrtFQQC_Qb_wBA3D86903IwEra6PVlrTK0b0jHKPpGcrlzmciw39Da8GPiLJv7Cw5_cnqT8X10fsv1FasnaY3cSUygJ_AfjBKPSbxFaKpcROwuUol9-XybXFlUrP0GQXnTkxCekPgMOvAyyuigOKdyC6Ou47XlAthE2--i2jfQGfux8mKbiH9-tNDaVhN2EqpOWh1jwTM82uN3cczIMdOE3r4Jkeypp27Z295gNcekPj6ze9ro0jh9DDv9VJMIE9VlNP5xjhBgNX2F7_b97Hl9v1Oo6Wu-gOOeFwBOFTcrJYRm_WfQYPYkNRjyjuPr3tfyvCV_3y44hn7PDrKCY6JffM8YMuGjzcJxOdPyCHDkfU4IgaHNEiow2O6AhHtMhpgyP6K45ogyPa4Yh2OKI1jqjB0UOyvVxGr1e2GcdhK85ZZYtApxCOzhVOmtKSMQmONE0UU5z5mXZYJiXjoRPoLBGhdLwkk4olvvZ85SklxCMyzYtcPyZUwo7BSqFMPddNpBOEeg7BpBPMte-rLDgjL9oti780XVfimi0hwvjCW27qjV2ckfN2N2PzryxjgfMV4JDuiid_fv2U3O2Rek6m1c1BP4MAs0qeG03_BJmqhJk |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidently+diverse+effects+of+silver+nanoparticles+on+Vibrio+parahaemolyticus+across+different+estuarine+water+samples&rft.jtitle=Environmental+science.+Nano&rft.au=Yang%2C+Qianqian&rft.au=Hou%2C+Xiangyi&rft.au=Lu%2C+Feng&rft.au=Zhang%2C+Dahai&rft.date=2025-05-16&rft.pub=Royal+Society+of+Chemistry&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=12&rft.issue=5&rft.spage=2657&rft.epage=2666&rft_id=info:doi/10.1039%2Fd5en00018a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon |