A Survey on Multiview Clustering

Clustering is a machine learning paradigm of dividing sample subjects into a number of groups such that subjects in the same groups are more similar to those in other groups. With advances in information acquisition technologies, samples can frequently be viewed from different angles or in different...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on artificial intelligence Vol. 2; no. 2; pp. 146 - 168
Main Authors Chao, Guoqing, Sun, Shiliang, Bi, Jinbo
Format Journal Article
LanguageEnglish
Published IEEE 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Clustering is a machine learning paradigm of dividing sample subjects into a number of groups such that subjects in the same groups are more similar to those in other groups. With advances in information acquisition technologies, samples can frequently be viewed from different angles or in different modalities, generating multiview data. Multiview clustering (MVC), that clusters subjects into subgroups using multiview data, has attracted more and more attentions. Although MVC methods have been developed rapidly, there has not been enough survey to summarize and analyze the current progress. Therefore, we propose a novel taxonomy of the MVC approaches. Similar to other machine learning methods, we categorize them into generative and discriminative classes. In the discriminative class, based on the way of view integration, we split it further into five groups-common eigenvector matrix, common coefficient matrix, common indicator matrix, direct combination, and combination after projection. Furthermore, we relate MVC to other topics: multiview representation, ensemble clustering, multitask clustering, multiview supervised, and semisupervised learning. Several representative real-world applications are elaborated for practitioners. Some benchmark multiview datasets are introduced and representative MVC algorithms from each group are empirically evaluated to analyze how they perform on benchmark datasets. To promote future development of MVC approaches, we point out several open problems that may require further investigation and thorough examination. Impact Statement- Multiview clustering has gained the success in a variety of applications in the past decade. In order to obtain a comprehensive picture of the MVC development, we provide a new categorization of existing MVC methods and introduce the representative algorithms in each category. At last, we point out open problems that are worth investigating to advance the MVC study. More promising MVC methods to solve these open problems may appear following this review paper from which a large number of applications can benefit.
AbstractList Clustering is a machine learning paradigm of dividing sample subjects into a number of groups such that subjects in the same groups are more similar to those in other groups. With advances in information acquisition technologies, samples can frequently be viewed from different angles or in different modalities, generating multiview data. Multiview clustering (MVC), that clusters subjects into subgroups using multiview data, has attracted more and more attentions. Although MVC methods have been developed rapidly, there has not been enough survey to summarize and analyze the current progress. Therefore, we propose a novel taxonomy of the MVC approaches. Similar to other machine learning methods, we categorize them into generative and discriminative classes. In the discriminative class, based on the way of view integration, we split it further into five groups-common eigenvector matrix, common coefficient matrix, common indicator matrix, direct combination, and combination after projection. Furthermore, we relate MVC to other topics: multiview representation, ensemble clustering, multitask clustering, multiview supervised, and semisupervised learning. Several representative real-world applications are elaborated for practitioners. Some benchmark multiview datasets are introduced and representative MVC algorithms from each group are empirically evaluated to analyze how they perform on benchmark datasets. To promote future development of MVC approaches, we point out several open problems that may require further investigation and thorough examination. Impact Statement- Multiview clustering has gained the success in a variety of applications in the past decade. In order to obtain a comprehensive picture of the MVC development, we provide a new categorization of existing MVC methods and introduce the representative algorithms in each category. At last, we point out open problems that are worth investigating to advance the MVC study. More promising MVC methods to solve these open problems may appear following this review paper from which a large number of applications can benefit.
Author Bi, Jinbo
Sun, Shiliang
Chao, Guoqing
Author_xml – sequence: 1
  givenname: Guoqing
  orcidid: 0000-0002-2410-650X
  surname: Chao
  fullname: Chao, Guoqing
  email: guoqingchao10@gmail.com
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Weihai, China
– sequence: 2
  givenname: Shiliang
  orcidid: 0000-0001-7069-3752
  surname: Sun
  fullname: Sun, Shiliang
  email: slsun@cs.ecnu.edu.cn
  organization: School of Computer Science and Technology, East China Normal University, Shanghai, China
– sequence: 3
  givenname: Jinbo
  orcidid: 0000-0001-6996-4092
  surname: Bi
  fullname: Bi, Jinbo
  email: jinbo.bi@uconn.edu
  organization: Department of Computer Science, University of Connecticut, Storrs, CT, USA
BookMark eNp9kE1Lw0AQhhep2Fp7F7zkDyTOzu6mu8dQ_ChUPFjPYbOZyEpMZJNW-u9NaBHx4OmdwzwzPO8lmzRtQ4xdc0g4B3O7zdYJAvJEQKq0kWdshqnhsVSaT37NU7bouncAQMURcXnBpkIJ0BLVjEVZ9LILezpEbRM97ere7z19Rat61_UUfPN2xc4rW3e0OOWcvd7fbVeP8eb5Yb3KNrFDBBnzlKRGTQYQLBVaalssnS0FST58G6NyJJx02loBJAssypRUhaY0ZWHFnKXHuy60XReoyp3vbe_bpg_W1zmHfLTOB-t8tM5P1gMIf8DP4D9sOPyH3BwRT0Q_60YYNfQivgELpmEj
CODEN ITAICB
CitedBy_id crossref_primary_10_1109_TGRS_2025_3540269
crossref_primary_10_1007_s10489_021_02978_z
crossref_primary_10_1080_21642583_2024_2437159
crossref_primary_10_1016_j_knosys_2023_110816
crossref_primary_10_1016_j_engappai_2024_107857
crossref_primary_10_1007_s10044_023_01167_7
crossref_primary_10_1007_s00521_023_08975_2
crossref_primary_10_1016_j_inffus_2021_09_009
crossref_primary_10_1007_s00357_023_09441_3
crossref_primary_10_1016_j_knosys_2024_111871
crossref_primary_10_1109_JAS_2023_123579
crossref_primary_10_1016_j_engappai_2023_106379
crossref_primary_10_1016_j_inffus_2024_102245
crossref_primary_10_1016_j_ins_2023_119655
crossref_primary_10_1093_bib_bbae511
crossref_primary_10_1109_LSP_2023_3327536
crossref_primary_10_1155_2022_2522202
crossref_primary_10_3390_s21206775
crossref_primary_10_1016_j_patcog_2024_110307
crossref_primary_10_1109_TKDE_2023_3333522
crossref_primary_10_1109_TNNLS_2024_3357087
crossref_primary_10_1145_3698875
crossref_primary_10_1109_TFUZZ_2024_3416537
crossref_primary_10_1007_s44243_024_00047_w
crossref_primary_10_1145_3708887
crossref_primary_10_1007_s10489_022_03541_0
crossref_primary_10_1142_S2737480724500134
crossref_primary_10_1007_s00138_023_01455_6
crossref_primary_10_1007_s41019_022_00190_8
crossref_primary_10_1109_TIP_2023_3297410
crossref_primary_10_1007_s10489_022_03816_6
crossref_primary_10_1016_j_ins_2023_119622
crossref_primary_10_1016_j_inffus_2023_101884
crossref_primary_10_3724_SP_J_1089_2022_19522
crossref_primary_10_1109_TBDATA_2023_3334674
crossref_primary_10_1145_3543848
crossref_primary_10_1016_j_psychres_2023_115265
crossref_primary_10_1109_TCSVT_2023_3276362
crossref_primary_10_1007_s10489_022_03205_z
crossref_primary_10_1016_j_eswa_2022_119458
crossref_primary_10_1016_j_sigpro_2023_109014
crossref_primary_10_1109_TBDATA_2023_3325045
crossref_primary_10_1016_j_knosys_2025_113314
crossref_primary_10_26599_BDMA_2023_9020004
crossref_primary_10_1016_j_neucom_2024_127870
crossref_primary_10_1109_TKDE_2022_3202561
crossref_primary_10_1016_j_knosys_2024_112948
crossref_primary_10_1016_j_knosys_2024_111733
crossref_primary_10_1109_TAI_2024_3403511
crossref_primary_10_1109_TKDE_2024_3445992
crossref_primary_10_1109_TMM_2022_3194332
crossref_primary_10_1109_TNNLS_2023_3256066
crossref_primary_10_1109_TMM_2024_3374570
crossref_primary_10_1109_LSP_2023_3302234
crossref_primary_10_1007_s00224_024_10174_y
crossref_primary_10_1016_j_knosys_2023_111324
crossref_primary_10_3390_app12105094
crossref_primary_10_5753_jbcs_2024_3483
crossref_primary_10_1007_s11063_022_10789_7
crossref_primary_10_1109_TPAMI_2022_3217137
crossref_primary_10_1109_TKDE_2021_3112114
crossref_primary_10_1016_j_ipm_2022_103054
crossref_primary_10_1016_j_knosys_2022_108250
crossref_primary_10_1109_TETCI_2023_3306027
crossref_primary_10_1016_j_aei_2024_102799
crossref_primary_10_1016_j_eswa_2023_121518
crossref_primary_10_1109_ACCESS_2022_3232285
crossref_primary_10_1109_TAI_2021_3139573
crossref_primary_10_1109_TBDATA_2022_3163584
crossref_primary_10_1016_j_sigpro_2024_109597
crossref_primary_10_1016_j_patcog_2023_109349
crossref_primary_10_1016_j_patcog_2024_111140
crossref_primary_10_1109_TNNLS_2023_3274289
crossref_primary_10_1007_s13042_023_01866_x
crossref_primary_10_1007_s10489_022_03209_9
crossref_primary_10_1109_TEVC_2022_3220187
crossref_primary_10_1109_TBME_2022_3190050
crossref_primary_10_1016_j_engappai_2024_108336
crossref_primary_10_1007_s11063_021_10710_8
crossref_primary_10_1016_j_neucom_2024_128627
crossref_primary_10_1016_j_patcog_2025_111418
crossref_primary_10_1007_s13042_024_02403_0
crossref_primary_10_1016_j_eswa_2024_125386
crossref_primary_10_1109_TKDE_2022_3171911
crossref_primary_10_1016_j_ins_2023_119426
crossref_primary_10_1109_TMM_2024_3387298
crossref_primary_10_1109_TNNLS_2023_3261460
crossref_primary_10_1016_j_inffus_2024_102498
crossref_primary_10_1109_TAI_2022_3187060
crossref_primary_10_1109_TCSVT_2023_3299318
crossref_primary_10_1016_j_patcog_2024_110839
crossref_primary_10_1109_TAI_2023_3266191
crossref_primary_10_1109_TNNLS_2022_3201498
crossref_primary_10_1109_TIP_2024_3444320
crossref_primary_10_1109_TKDE_2023_3332682
crossref_primary_10_1109_TKDE_2024_3423307
crossref_primary_10_1016_j_eswa_2022_119484
crossref_primary_10_1016_j_patcog_2024_110605
crossref_primary_10_1109_TAI_2023_3314405
crossref_primary_10_1109_TETCI_2023_3306233
crossref_primary_10_1109_TETCI_2024_3406704
crossref_primary_10_1109_TMM_2021_3136098
crossref_primary_10_1109_TKDE_2023_3293498
crossref_primary_10_1016_j_knosys_2022_110092
crossref_primary_10_1109_TPAMI_2023_3257407
crossref_primary_10_1007_s10489_022_03406_6
crossref_primary_10_1016_j_knosys_2024_111421
crossref_primary_10_1016_j_eswa_2024_125165
crossref_primary_10_1016_j_jksuci_2024_102129
crossref_primary_10_1007_s13748_023_00312_x
crossref_primary_10_1007_s44196_024_00601_w
crossref_primary_10_1109_TKDE_2023_3236698
crossref_primary_10_1109_TMM_2021_3112230
crossref_primary_10_1016_j_inffus_2022_10_020
crossref_primary_10_1109_TNNLS_2023_3244021
crossref_primary_10_1007_s10489_023_04474_y
crossref_primary_10_1016_j_knosys_2022_110145
crossref_primary_10_1016_j_knosys_2024_112562
crossref_primary_10_1109_LSP_2024_3455988
crossref_primary_10_1016_j_ins_2023_03_016
crossref_primary_10_1016_j_engappai_2024_109509
crossref_primary_10_1109_TAI_2024_3445892
crossref_primary_10_1111_exsy_12857
crossref_primary_10_1016_j_patcog_2024_110944
crossref_primary_10_1016_j_ins_2024_121187
crossref_primary_10_1016_j_ins_2024_121186
crossref_primary_10_1109_TSG_2024_3411306
crossref_primary_10_1016_j_patcog_2023_109657
crossref_primary_10_1145_3638061
crossref_primary_10_1002_ett_4863
crossref_primary_10_1016_j_ins_2022_10_026
crossref_primary_10_1109_TFUZZ_2022_3196735
crossref_primary_10_1016_j_ins_2024_120899
crossref_primary_10_1007_s00357_024_09462_6
crossref_primary_10_1016_j_ins_2024_120739
crossref_primary_10_1016_j_patcog_2022_109281
crossref_primary_10_1016_j_ijar_2023_108968
crossref_primary_10_1109_TFUZZ_2024_3466175
crossref_primary_10_1109_TKDE_2023_3312794
crossref_primary_10_1145_3674839
crossref_primary_10_1016_j_trc_2024_104607
crossref_primary_10_1016_j_ins_2022_02_018
crossref_primary_10_1016_j_neucom_2024_128687
crossref_primary_10_1016_j_neunet_2025_107409
crossref_primary_10_1016_j_knosys_2024_112302
crossref_primary_10_1016_j_patcog_2024_110592
crossref_primary_10_1109_TMM_2021_3138638
crossref_primary_10_1016_j_eswa_2024_124683
crossref_primary_10_1016_j_inffus_2024_102501
crossref_primary_10_1007_s11704_024_40004_w
crossref_primary_10_1007_s13042_024_02105_7
crossref_primary_10_1007_s11227_023_05572_x
crossref_primary_10_1109_TAI_2023_3271964
crossref_primary_10_1109_TKDE_2022_3231929
crossref_primary_10_1109_TCSVT_2022_3200451
crossref_primary_10_1016_j_ins_2023_03_119
crossref_primary_10_1109_JSTARS_2022_3158761
crossref_primary_10_1016_j_eswa_2024_124103
crossref_primary_10_1109_TMM_2021_3110098
crossref_primary_10_1007_s00521_023_08386_3
crossref_primary_10_1016_j_ins_2023_02_089
crossref_primary_10_3390_electronics13030649
crossref_primary_10_1016_j_jksuci_2023_101904
crossref_primary_10_1016_j_ins_2024_121532
crossref_primary_10_1016_j_neucom_2024_128101
crossref_primary_10_54392_irjmt2513
crossref_primary_10_1016_j_fss_2023_108630
crossref_primary_10_1016_j_dsp_2024_104879
crossref_primary_10_1109_TCSVT_2024_3437756
crossref_primary_10_1109_TNNLS_2022_3201562
crossref_primary_10_1088_1361_6501_ad6022
crossref_primary_10_1093_bib_bbac372
crossref_primary_10_1016_j_asoc_2024_111278
crossref_primary_10_1016_j_neunet_2024_106503
crossref_primary_10_56714_bjrs_50_2_26
crossref_primary_10_1016_j_ins_2024_120335
crossref_primary_10_1109_TNNLS_2023_3238041
crossref_primary_10_1016_j_eswa_2024_125454
crossref_primary_10_1016_j_ins_2022_05_074
crossref_primary_10_1109_TPAMI_2025_3526790
crossref_primary_10_1109_TAI_2022_3207112
crossref_primary_10_3390_axioms11120722
crossref_primary_10_1145_3653022
crossref_primary_10_1016_j_fss_2024_109135
crossref_primary_10_3233_JIFS_235967
crossref_primary_10_1109_ACCESS_2024_3389979
crossref_primary_10_1016_j_knosys_2024_112106
crossref_primary_10_1016_j_eswa_2025_127235
crossref_primary_10_1007_s10489_022_03551_y
crossref_primary_10_3390_math11061509
crossref_primary_10_1287_ijoc_2023_0016
crossref_primary_10_1016_j_inffus_2025_103012
crossref_primary_10_1007_s00521_022_07326_x
crossref_primary_10_1007_s10489_021_03092_w
crossref_primary_10_1016_j_knosys_2023_110424
crossref_primary_10_1007_s11042_023_15645_x
crossref_primary_10_1016_j_knosys_2023_110425
crossref_primary_10_1007_s00530_024_01637_w
crossref_primary_10_1109_TKDE_2024_3443534
crossref_primary_10_1109_TKDE_2023_3270311
crossref_primary_10_1016_j_neunet_2023_10_001
crossref_primary_10_1109_TCE_2024_3376397
crossref_primary_10_1109_TCSVT_2024_3382761
crossref_primary_10_1109_TKDE_2024_3484161
crossref_primary_10_1016_j_neunet_2024_106849
crossref_primary_10_1093_biostatistics_kxae020
crossref_primary_10_1016_j_patcog_2023_109836
crossref_primary_10_1109_TAI_2021_3123126
Cites_doi 10.1109/TIP.2016.2553459
10.1145/2747879
10.1038/44565
10.1162/0899766042321814
10.1007/978-3-319-04114-8_13
10.1016/j.neunet.2017.02.003
10.1109/34.868688
10.24963/ijcai.2019/623
10.1109/ICDM.2004.10095
10.1145/1553374.1553391
10.1109/TPAMI.2016.2599174
10.1016/j.ins.2019.04.039
10.1109/CVPR.2015.7298657
10.1145/279943.279962
10.1109/TPAMI.2002.1017623
10.1145/860435.860485
10.1137/1.9781611972832.26
10.1093/nar/gky889
10.1109/TPAMI.2013.57
10.1016/j.knosys.2018.09.009
10.1109/TKDE.2018.2873378
10.1007/11551188_45
10.1111/j.2517-6161.1977.tb01600.x
10.1007/s10844-014-0307-6
10.1016/j.inffus.2016.09.008
10.1145/1526709.1526922
10.1109/CVPR42600.2020.01463
10.1007/978-3-642-04180-8_45
10.1109/MSP.2010.939739
10.1145/1390156.1390279
10.1145/1150402.1150510
10.1109/TKDE.2015.2503743
10.1109/TPAMI.2007.1115
10.1109/TSP.2013.2295553
10.1007/978-3-319-57529-2_32
10.1007/s11063-018-9823-7
10.1016/j.patcog.2015.12.007
10.1023/B:NEPL.0000011135.19145.1b
10.1109/TKDE.2020.3028422
10.1109/ICASSP.2016.7471631
10.1007/3-540-28349-8_2
10.1016/j.neucom.2016.06.035
10.1109/ICDM.2009.125
10.1109/TKDE.2012.95
10.1145/3182181
10.1109/DICTA.2016.7797034
10.1109/TKDE.2016.2603983
10.1145/1835449.1835633
10.1016/j.inffus.2017.02.007
10.1007/3-540-47887-6_54
10.1109/TMM.2007.911778
10.1109/TIP.2015.2457339
10.1016/j.neucom.2011.02.004
10.1109/TIP.2017.2665976
10.1109/TPAMI.2014.2343221
10.1109/TFUZZ.2018.2883022
10.1145/3182384
10.1111/j.1541-0420.2010.01392.x
10.1109/TPAMI.2018.2879108
10.1073/pnas.0308531101
10.1016/j.ins.2019.02.008
10.1109/ICDM.2012.43
10.1109/ICDM.2009.138
10.1109/ICCV.2013.328
10.1186/1471-2156-15-73
10.1007/s10994-016-5624-2
10.1109/TPAMI.2016.2598339
10.1109/ICPR.2014.648
10.1145/1015330.1015424
10.1145/2647868.2654902
10.1145/1273496.1273642
10.1109/CVPR.2005.177
10.1109/TCYB.2018.2887094
10.1137/1.9781611972788.74
10.1137/1.9781611972757.70
10.1016/j.neunet.2019.10.010
10.1023/B:VISI.0000029664.99615.94
10.1007/978-3-642-04277-5_21
10.1109/TNN.2010.2081999
10.24963/ijcai.2017/396
10.1016/j.neucom.2017.09.060
10.1007/978-3-642-04274-4_2
10.1016/j.patcog.2020.107524
10.3390/make1010020
10.1109/BigData.2017.8257992
10.1016/j.knosys.2019.06.006
10.1109/ICPR.2016.7899961
10.1142/S0218001411008683
10.1093/bioinformatics/btt425
10.1016/j.ins.2019.01.018
10.1109/ICIP.2013.6738834
10.1109/ICDM.2013.117
10.1016/j.patcog.2018.09.016
10.1093/bioinformatics/btq569
10.1109/TIP.2020.3010631
10.1109/TPAMI.2010.224
10.1137/1.9781611972832.28
10.1002/ima.22121
10.1007/s11222-007-9033-z
10.1109/TKDE.2011.262
10.24963/ijcai.2017/357
10.1145/1497577.1497578
10.1609/aaai.v34i04.6180
10.1109/CVPR.2016.578
10.1088/1742-6596/1060/1/012024
10.1109/TNNLS.2015.2442256
10.1016/j.neucom.2015.01.017
10.1109/CVPR.2017.237
10.1016/j.neucom.2017.06.005
10.1109/BIBM.2013.6732509
10.1109/TNN.2009.2019722
10.1016/j.patcog.2018.11.025
10.3233/IDA-160816
10.24963/ijcai.2019/409
10.1007/s13042-018-00902-5
10.1109/ICDM.2007.94
10.1145/2324796.2324825
10.1109/TPAMI.2018.2877660
10.1145/1557019.1557118
10.1109/TCYB.2014.2334595
10.1109/ICCV.2015.482
10.1109/TPAMI.2018.2847335
10.1109/TPAMI.2013.50
10.1109/TPAMI.2004.1262185
10.1016/j.patcog.2017.08.024
10.1109/CVPR.2007.383223
10.1162/089976698300017467
10.18637/jss.v045.i02
10.1109/TPAMI.2020.2974828
10.1016/j.ins.2016.06.004
10.1109/CVPR.2011.5995740
10.1109/TPAMI.2011.255
10.1145/2806416.2806526
10.1016/j.patcog.2020.107676
10.1198/jasa.2010.tm09415
10.1137/1.9781611972795.55
10.1609/aaai.v34i04.6052
10.26599/BDMA.2018.9020003
10.1109/BigData.2016.7840701
10.1007/978-3-030-04212-7_18
10.1109/TKDE.2017.2650229
10.1109/BHI.2016.7455910
10.1016/j.ins.2017.11.038
10.1016/j.neucom.2019.03.062
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TAI.2021.3065894
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2691-4581
EndPage 168
ExternalDocumentID 10_1109_TAI_2021_3065894
9395530
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: IIS-1718738
  funderid: 10.13039/100006435
– fundername: National Institutes of Health
  grantid: K02DA043063
  funderid: 10.13039/100000009
– fundername: NIH
  grantid: R01DA051922; R01MH119678
GroupedDBID 0R~
97E
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IEDLZ
IFIPE
JAVBF
M~E
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c2204-16e4828e9020aeb848ab7cad3e413533e41fce3c4c8aa30e4b2bd6e5f29d9dba3
IEDL.DBID RIE
ISSN 2691-4581
IngestDate Wed Aug 27 16:28:38 EDT 2025
Thu Apr 24 22:59:19 EDT 2025
Wed Aug 27 07:40:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2204-16e4828e9020aeb848ab7cad3e413533e41fce3c4c8aa30e4b2bd6e5f29d9dba3
ORCID 0000-0001-7069-3752
0000-0001-6996-4092
0000-0002-2410-650X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8925043
PMID 35308425
PageCount 23
ParticipantIDs crossref_primary_10_1109_TAI_2021_3065894
ieee_primary_9395530
crossref_citationtrail_10_1109_TAI_2021_3065894
PublicationCentury 2000
PublicationDate 2021-April
2021-4-00
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-April
PublicationDecade 2020
PublicationTitle IEEE transactions on artificial intelligence
PublicationTitleAbbrev TAI
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
sindhwani (ref157) 0
ref207
ref56
ref59
cai (ref189) 2005
ref206
ref53
ref203
ref55
ref201
ref54
ref202
tao (ref58) 0
saxe (ref2) 2016
ref209
tian (ref131) 0
jin (ref161) 0
ref210
ref51
ref50
ref46
huang (ref208) 2019; 97
ref48
ref42
shi (ref19) 2000; 22
ref41
vert (ref71) 2004
ref44
gönen (ref81) 2011; 12
ref43
(ref101) 0
ref49
ref5
ref100
ref40
(ref112) 0
rasiwasia (ref102) 0
ref35
ref34
ref31
ref30
ref33
samangooei (ref176) 0
dy (ref196) 2004; 5
ref38
srivastava (ref124) 2014; 15
wu (ref164) 2011; 33
zhao (ref39) 0
ref24
ref23
ref25
ref20
ref22
trivedi (ref103) 0
xie (ref144) 0
ref28
ref27
ng (ref18) 0
ref29
sun (ref160) 2016; 27
lütkepohl (ref21) 1997
ref200
belkin (ref14) 0
ref129
ref96
ref127
ref99
ref98
lewis (ref187) 2004; 5
chang (ref212) 0
zhu (ref135) 2019
yuanpeng (ref118) 2019; 27
ref93
ref133
gu (ref148) 0
ref92
ref134
ref95
ref94
ref130
ref91
ref90
ref89
ref139
ref137
ref85
ref88
ref87
wang (ref128) 0
niu (ref211) 0
ref82
ref145
ref84
ref142
ref83
ref143
ref140
ref108
ref78
ref109
ref106
ref107
ref104
kumar (ref17) 0
ref74
ref105
ref76
wang (ref32) 0
ref111
ref70
ref73
zhang (ref138) 0
ref72
ref110
ref119
ref67
ref117
ref69
ref63
ref116
ref66
ref113
ref65
senbabao?lu (ref141) 2014; 4
akata (ref45) 0
zhao (ref204) 0
ref60
ref122
ref123
dempster (ref7) 1977; 39
ref62
ref121
zhang (ref150) 0
ref168
ref169
ref170
zhao (ref37) 0
yu (ref165) 0
banerjee (ref9) 2005; 6
yan (ref192) 0
ref177
xu (ref3) 2013
ref178
ref175
ref173
ref174
ref171
mao (ref126) 2015
ref179
sun (ref97) 0
ref180
ref181
lange (ref115) 0
ref188
ref186
ref184
ref185
cai (ref47) 0
ref183
ref149
ref146
ref147
c (ref162) 2015; 25
sun (ref159) 0
ref155
shao (ref61) 0
ref153
valizadegan (ref75) 0
gönen (ref80) 0
ref154
joachims (ref68) 0
ref151
yang (ref6) 2018; 1
kumar (ref16) 0
ref158
xu (ref64) 0
ref166
lanckriet (ref77) 2004; 5
ref167
ref163
ref13
ref12
ye (ref26) 0
ref15
ref11
ref10
xie (ref132) 0
li (ref120) 2016
yu (ref156) 2011; 12
(ref4) 2014; 23
xia (ref114) 0
zhang (ref152) 0
law (ref205) 0
liu (ref86) 0
ref1
ref191
jiang (ref172) 0
ref199
ref197
ref198
ref195
ngiam (ref125) 0
sun (ref136) 0
sonnenburg (ref79) 0
ref193
ref194
lashkari (ref8) 0
yu (ref182) 2012; 34
cai (ref190) 2014; 45
wang (ref52) 0
li (ref36) 0
References_xml – start-page: 1413
  year: 0
  ident: ref17
  article-title: Co-regularized multi-view spectral clustering
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref188
  doi: 10.1109/TIP.2016.2553459
– ident: ref147
  doi: 10.1145/2747879
– ident: ref41
  doi: 10.1038/44565
– start-page: 831
  year: 0
  ident: ref211
  article-title: Multiple non-redundant spectral clustering views
  publication-title: Proc 27th Int Conf Int Conf Mach Learn
– ident: ref98
  doi: 10.1162/0899766042321814
– ident: ref177
  doi: 10.1007/978-3-319-04114-8_13
– ident: ref56
  doi: 10.1016/j.neunet.2017.02.003
– start-page: 281
  year: 0
  ident: ref138
  article-title: Solving cluster ensemble problems by bipartite graph partitioning
  publication-title: Proc 21st Int Conf Mach Learn
– volume: 23
  start-page: 2031
  year: 2014
  ident: ref4
  article-title: A survey of multi-view machine learning
  publication-title: S Sun
– start-page: 825
  year: 0
  ident: ref8
  article-title: Convex clustering with exemplar-based models
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 2392
  year: 0
  ident: ref37
  article-title: Incomplete multi-modal visual data grouping
  publication-title: Proc 25th Int Joint Conf Artif Intell
– volume: 22
  start-page: 888
  year: 2000
  ident: ref19
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Learn
  doi: 10.1109/34.868688
– ident: ref122
  doi: 10.24963/ijcai.2019/623
– ident: ref10
  doi: 10.1109/ICDM.2004.10095
– ident: ref100
  doi: 10.1145/1553374.1553391
– ident: ref130
  doi: 10.1109/TPAMI.2016.2599174
– year: 2013
  ident: ref3
  article-title: A survey on multi-view learning
– ident: ref181
  doi: 10.1016/j.ins.2019.04.039
– start-page: 4123
  year: 0
  ident: ref58
  article-title: Reliable multi-view clustering
  publication-title: Proc 32nd AAAI Conf Artif Intell
– ident: ref111
  doi: 10.1109/CVPR.2015.7298657
– ident: ref23
  doi: 10.1145/279943.279962
– year: 2005
  ident: ref189
  article-title: Using graph model for face analysis
– ident: ref167
  doi: 10.1109/TPAMI.2002.1017623
– ident: ref42
  doi: 10.1145/860435.860485
– ident: ref25
  doi: 10.1137/1.9781611972832.26
– ident: ref186
  doi: 10.1093/nar/gky889
– ident: ref29
  doi: 10.1109/TPAMI.2013.57
– ident: ref76
  doi: 10.1016/j.knosys.2018.09.009
– ident: ref116
  doi: 10.1109/TKDE.2018.2873378
– ident: ref11
  doi: 10.1007/11551188_45
– start-page: 35
  year: 2004
  ident: ref71
  publication-title: A primer on kernel methods
– year: 2019
  ident: ref135
  article-title: Multi-view deep subspace clustering networks
– volume: 39
  start-page: 1
  year: 1977
  ident: ref7
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J Roy Statist Soc Ser B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref174
  doi: 10.1007/s10844-014-0307-6
– ident: ref155
  doi: 10.1016/j.inffus.2016.09.008
– ident: ref169
  doi: 10.1145/1526709.1526922
– start-page: 1083
  year: 0
  ident: ref128
  article-title: On deep multi-view representation learning
  publication-title: Proc 32nd Int Conf Int Conf Mach Learn
– start-page: 1
  year: 0
  ident: ref103
  article-title: Muliview clusterting with incomplete views
  publication-title: Proc Neural Inf Process Syst Workshop Mach Learn Social Comput
– start-page: 368
  year: 0
  ident: ref148
  article-title: Learning a kernel for multi-task clustering
  publication-title: Proc 25th AAAI Conf Artif Intell
– volume: 45
  start-page: 1669
  year: 2014
  ident: ref190
  article-title: Optimized data fusion for kernel k-means clustering
  publication-title: IEEE Trans Cybern
– start-page: 393
  year: 0
  ident: ref16
  article-title: A co-training approach for multi-view spectral clustering
  publication-title: Proc 28th Int Conf Mach Learn
– ident: ref134
  doi: 10.1109/CVPR42600.2020.01463
– ident: ref53
  doi: 10.1007/978-3-642-04180-8_45
– ident: ref28
  doi: 10.1109/MSP.2010.939739
– ident: ref158
  doi: 10.1145/1390156.1390279
– ident: ref69
  doi: 10.1145/1150402.1150510
– start-page: 2598
  year: 0
  ident: ref47
  article-title: Multi-view k-means clustering on big data
  publication-title: Proc 23rd Int Joint Conf Artif Intell
– start-page: 929
  year: 0
  ident: ref165
  article-title: Color texture moments for content-based image retrieval
  publication-title: Proc Int Conf Image Process
– ident: ref109
  doi: 10.1109/TKDE.2015.2503743
– ident: ref83
  doi: 10.1109/TPAMI.2007.1115
– ident: ref27
  doi: 10.1109/TSP.2013.2295553
– start-page: 674
  year: 0
  ident: ref212
  article-title: Multiple clustering views from multiple uncertain experts
  publication-title: Proc Int Conf Mach Learn
– ident: ref173
  doi: 10.1007/978-3-319-57529-2_32
– ident: ref20
  doi: 10.1007/s11063-018-9823-7
– ident: ref62
  doi: 10.1016/j.patcog.2015.12.007
– ident: ref87
  doi: 10.1023/B:NEPL.0000011135.19145.1b
– ident: ref123
  doi: 10.1109/TKDE.2020.3028422
– year: 2015
  ident: ref126
  article-title: Deep captioning with multimodal recurrent neural networks (m-RNN
– volume: 12
  start-page: 2649
  year: 2011
  ident: ref156
  article-title: Bayesian co-training
  publication-title: J Mach Learn Res
– ident: ref206
  doi: 10.1109/ICASSP.2016.7471631
– ident: ref1
  doi: 10.1007/3-540-28349-8_2
– ident: ref105
  doi: 10.1016/j.neucom.2016.06.035
– ident: ref54
  doi: 10.1109/ICDM.2009.125
– start-page: 1968
  year: 0
  ident: ref36
  article-title: Partial multi-view clustering
  publication-title: Proc 28th AAAI Conf Artif Intell
– ident: ref117
  doi: 10.1109/TKDE.2012.95
– ident: ref143
  doi: 10.1145/3182181
– ident: ref55
  doi: 10.1109/DICTA.2016.7797034
– start-page: 590
  year: 0
  ident: ref192
  article-title: Fast spectral clustering of data using sequential matrix compression
  publication-title: Proc 17th Eur Conf Mach Learn
– ident: ref153
  doi: 10.1109/TKDE.2016.2603983
– ident: ref171
  doi: 10.1145/1835449.1835633
– ident: ref5
  doi: 10.1016/j.inffus.2017.02.007
– start-page: 689
  year: 0
  ident: ref125
  article-title: Multimodal deep learning
  publication-title: Proc 28th Int Conf Int Conf Mach Learn
– ident: ref199
  doi: 10.1007/3-540-47887-6_54
– ident: ref179
  doi: 10.1109/TMM.2007.911778
– ident: ref33
  doi: 10.1109/TIP.2015.2457339
– ident: ref146
  doi: 10.1016/j.neucom.2011.02.004
– start-page: 1001
  year: 0
  ident: ref136
  article-title: Self-supervised deep multi-view subspace clustering
  publication-title: Proc Asian Conf Mach Learn
– ident: ref48
  doi: 10.1109/TIP.2017.2665976
– ident: ref149
  doi: 10.1109/TPAMI.2014.2343221
– start-page: 1293
  year: 0
  ident: ref131
  article-title: Learning deep representations for graph clustering
  publication-title: Proc 28th AAAI Conf Artif Intell
– start-page: 823
  year: 0
  ident: ref102
  article-title: Cluster canonical correlation analysis
  publication-title: Proc 31th Annu Int Conf Mach Learn
– volume: 27
  start-page: 1543
  year: 2019
  ident: ref118
  article-title: A multi-view and multi-exemplar fuzzy clustering approach: Theoretical analysis and experimental studies
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2018.2883022
– ident: ref49
  doi: 10.1145/3182384
– ident: ref108
  doi: 10.1111/j.1541-0420.2010.01392.x
– year: 2016
  ident: ref2
  publication-title: The Blind Men and the Elephant
– start-page: 723
  year: 0
  ident: ref115
  article-title: Fusion of similarity data in clustering
  publication-title: Proc 18th Int Conf Neural Inf Process Syst
– ident: ref90
  doi: 10.1109/TPAMI.2018.2879108
– ident: ref44
  doi: 10.1073/pnas.0308531101
– volume: 12
  start-page: 2211
  year: 2011
  ident: ref81
  article-title: Multiple kernel learning algorithms
  publication-title: J Mach Learn Res
– ident: ref59
  doi: 10.1016/j.ins.2019.02.008
– start-page: 3196
  year: 0
  ident: ref204
  article-title: Self-paced learning for matrix factorization
  publication-title: Proc 29th AAAI Conf Artif Intell
– ident: ref84
  doi: 10.1109/ICDM.2012.43
– start-page: 2149
  year: 0
  ident: ref114
  article-title: Robust multi-view spectral clustering via low-rank and sparse decomposition
  publication-title: Proc 28th AAAI Conf Artif Intell
– ident: ref95
  doi: 10.1109/ICDM.2009.138
– ident: ref163
  doi: 10.1109/ICCV.2013.328
– ident: ref107
  doi: 10.1186/1471-2156-15-73
– ident: ref209
  doi: 10.1007/s10994-016-5624-2
– ident: ref129
  doi: 10.1109/TPAMI.2016.2598339
– ident: ref85
  doi: 10.1109/ICPR.2014.648
– volume: 5
  start-page: 27
  year: 2004
  ident: ref77
  article-title: Learning the kernel matrix with semidefinite programming
  publication-title: J Mach Learn Res
– volume: 5
  start-page: 361
  year: 2004
  ident: ref187
  article-title: RCV1: A new benchmark collection for text categorization research
  publication-title: J Mach Learn Res
– start-page: 1583
  year: 0
  ident: ref26
  article-title: Co-regularized kernel k-means for multi-view clustering
  publication-title: Proc 23rd Int Conf Pattern Recognit
– ident: ref78
  doi: 10.1145/1015330.1015424
– volume: 5
  start-page: 845
  year: 2004
  ident: ref196
  article-title: Feature selection for unsupervised learning
  publication-title: J Mach Learn Res
– ident: ref127
  doi: 10.1145/2647868.2654902
– start-page: 4055
  year: 0
  ident: ref152
  article-title: Multi-task multi-view clustering for non-negative data
  publication-title: Proc 24th Int Conf Artif Intell
– ident: ref113
  doi: 10.1145/1273496.1273642
– ident: ref166
  doi: 10.1109/CVPR.2005.177
– ident: ref15
  doi: 10.1109/TCYB.2018.2887094
– ident: ref104
  doi: 10.1137/1.9781611972788.74
– start-page: 318
  year: 0
  ident: ref61
  article-title: Multiple incomplete views clustering via weighted nonnegative matrix factorization with l21 regularization
  publication-title: Proc Eur Conf Mach Learn Knowl Discovery Databases
– ident: ref50
  doi: 10.1137/1.9781611972757.70
– ident: ref57
  doi: 10.1016/j.neunet.2019.10.010
– ident: ref168
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 97
  year: 2019
  ident: ref208
  article-title: Auto-weighted multi-view clustering via deep matrix decomposition
  publication-title: Pattern Recognit
– start-page: 1
  year: 0
  ident: ref101
  article-title: Correlational spectral clustering
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref12
  doi: 10.1007/978-3-642-04277-5_21
– ident: ref13
  doi: 10.1109/TNN.2010.2081999
– ident: ref65
  doi: 10.24963/ijcai.2017/396
– ident: ref92
  doi: 10.1016/j.neucom.2017.09.060
– start-page: 51
  year: 0
  ident: ref144
  article-title: Multi-view clustering ensembles
  publication-title: Proc Int Conf Mach Learn Cybern
– ident: ref74
  doi: 10.1007/978-3-642-04274-4_2
– ident: ref110
  doi: 10.1016/j.patcog.2020.107524
– ident: ref198
  doi: 10.3390/make1010020
– start-page: 20
  year: 0
  ident: ref112
  article-title: Spectral clustering with two views
  publication-title: Proc 22th Annu Int Conf Mach Learn Workshop Learn Multiple Views
– start-page: 1417
  year: 0
  ident: ref75
  article-title: Generalized maximum margin clustering and unsupervised kernel learning
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 2997
  year: 0
  ident: ref172
  article-title: Collaborative PLSA for multi-view clustering
  publication-title: Proc 21st Int Conf Pattern Recognit
– ident: ref201
  doi: 10.1109/BigData.2017.8257992
– volume: 4
  start-page: 1
  year: 2014
  ident: ref141
  article-title: Critical limitations of consensus clustering in class discovery
  publication-title: Int J Pattern Recognit Artif Intell
– start-page: 67
  year: 1997
  ident: ref21
  publication-title: Handbook of Mactrices
– ident: ref40
  doi: 10.1016/j.knosys.2019.06.006
– ident: ref202
  doi: 10.1109/ICPR.2016.7899961
– ident: ref137
  doi: 10.1142/S0218001411008683
– ident: ref140
  doi: 10.1093/bioinformatics/btt425
– start-page: 2357
  year: 0
  ident: ref150
  article-title: Self-adapted multi-task clustering
  publication-title: Proc 25th Int Joint Conf Artif Intell
– start-page: 824
  year: 0
  ident: ref157
  article-title: A co-regularized approach to semi-supervised learning with multiple views
  publication-title: Proc Int Conf Mach Learn Workshop Learn Multiple Views
– ident: ref145
  doi: 10.1016/j.ins.2019.01.018
– ident: ref139
  doi: 10.1109/ICIP.2013.6738834
– volume: 15
  start-page: 2949
  year: 2014
  ident: ref124
  article-title: Multimodal learning with deep Boltzmann machines
  publication-title: J Mach Learn Res
– start-page: 151
  year: 0
  ident: ref161
  article-title: Cross-modal image clustering via canonical correlation analysis
  publication-title: Proc 29th AAAI Conf Artif Intell
– ident: ref88
  doi: 10.1109/ICDM.2013.117
– ident: ref35
  doi: 10.1016/j.patcog.2018.09.016
– ident: ref183
  doi: 10.1093/bioinformatics/btq569
– start-page: 352
  year: 0
  ident: ref52
  article-title: Multi-view clustering and feature learning via structured sparsity
  publication-title: Proc 30th Int Conf Mach Learn
– ident: ref170
  doi: 10.1109/TIP.2020.3010631
– volume: 33
  start-page: 1489
  year: 2011
  ident: ref164
  article-title: Centrist: A visual descriptor for scene categorization
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.224
– ident: ref46
  doi: 10.1137/1.9781611972832.28
– volume: 25
  start-page: 56
  year: 2015
  ident: ref162
  article-title: Multiview cluster ensembles for multimodal MRI segmentation
  publication-title: Int J Imag Syst Technol
  doi: 10.1002/ima.22121
– ident: ref22
  doi: 10.1007/s11222-007-9033-z
– ident: ref93
  doi: 10.1109/TKDE.2011.262
– start-page: 478
  year: 0
  ident: ref132
  article-title: Unsupervised deep embedding for clustering analysis
  publication-title: Proc 33rd Int Conf Mach Learn
– ident: ref67
  doi: 10.24963/ijcai.2017/357
– ident: ref195
  doi: 10.1145/1497577.1497578
– ident: ref94
  doi: 10.1609/aaai.v34i04.6180
– start-page: 2921
  year: 0
  ident: ref39
  article-title: Multi-view clustering via deep matrix factorization
  publication-title: Proc 31st AAAI Conf Artif Intell
– start-page: 1273
  year: 0
  ident: ref79
  article-title: A general and efficient multiple kernel learning algorithm
  publication-title: Proc 18th Int Conf Neural Inf Process Syst
– ident: ref66
  doi: 10.1109/CVPR.2016.578
– ident: ref185
  doi: 10.1088/1742-6596/1060/1/012024
– volume: 27
  start-page: 1445
  year: 2016
  ident: ref160
  article-title: Alternative multi-view maximum entropy discrimination
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2442256
– start-page: 352
  year: 0
  ident: ref80
  article-title: Localized multiple kernel learning
  publication-title: Proc 25th Int Conf Mach Learn
– ident: ref30
  doi: 10.1016/j.neucom.2015.01.017
– ident: ref207
  doi: 10.1109/CVPR.2017.237
– ident: ref72
  doi: 10.1016/j.neucom.2017.06.005
– ident: ref106
  doi: 10.1109/BIBM.2013.6732509
– ident: ref91
  doi: 10.1109/TNN.2009.2019722
– ident: ref89
  doi: 10.1016/j.patcog.2018.11.025
– start-page: 849
  year: 0
  ident: ref18
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref70
  doi: 10.3233/IDA-160816
– ident: ref133
  doi: 10.24963/ijcai.2019/409
– ident: ref180
  doi: 10.1007/s13042-018-00902-5
– ident: ref210
  doi: 10.1109/ICDM.2007.94
– start-page: 2153
  year: 0
  ident: ref32
  article-title: Iterative views agreement: An iterative low-rank based structured optimization method to multi-view spectral clustering
  publication-title: Proc 25th Int Joint Conf Artif Intell
– start-page: 3974
  year: 0
  ident: ref64
  article-title: Multi-view self-paced learning for clustering
  publication-title: Proc 24th Int Joint Conf Artif Intell
– year: 0
  ident: ref176
  article-title: Social event detection via sparse multi-modal feature selection and incremental density based clustering
  publication-title: Proc MediaEval
– ident: ref175
  doi: 10.1145/2324796.2324825
– ident: ref34
  doi: 10.1109/TPAMI.2018.2877660
– start-page: 250
  year: 0
  ident: ref68
  article-title: Composite kernels for hypertext categorisation
  publication-title: Proc 18th Int Conf Mach Learn
– start-page: 1888
  year: 0
  ident: ref86
  article-title: Multiple kernel k-means clustering with matrix-induced regularization
  publication-title: Proc 30th AAAI Conf Artif Intell
– ident: ref193
  doi: 10.1145/1557019.1557118
– ident: ref96
  doi: 10.1109/TCYB.2014.2334595
– ident: ref51
  doi: 10.1109/ICCV.2015.482
– start-page: 585
  year: 0
  ident: ref14
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref194
  doi: 10.1109/TPAMI.2018.2847335
– start-page: 1706
  year: 0
  ident: ref159
  article-title: Multi-view maximum entropy discrimination
  publication-title: Proc 23th Int Joint Conf Artif Intell
– start-page: 1
  year: 0
  ident: ref45
  article-title: Non-negative matrix factorization in multimodality data for segmentation and label prediction
  publication-title: Proc 16th Comput Vis Winter Workshop
– ident: ref121
  doi: 10.1109/TPAMI.2013.50
– year: 2016
  ident: ref120
  article-title: Multi-view representation learning: A survey from shallow methods to deep methods
– ident: ref191
  doi: 10.1109/TPAMI.2004.1262185
– ident: ref31
  doi: 10.1016/j.patcog.2017.08.024
– ident: ref178
  doi: 10.1109/CVPR.2007.383223
– ident: ref82
  doi: 10.1162/089976698300017467
– ident: ref200
  doi: 10.18637/jss.v045.i02
– ident: ref203
  doi: 10.1109/TPAMI.2020.2974828
– ident: ref99
  doi: 10.1016/j.ins.2016.06.004
– ident: ref24
  doi: 10.1109/CVPR.2011.5995740
– start-page: 757
  year: 0
  ident: ref97
  article-title: Multi-view sparse co-clustering via proximal alternating linearized minimization
  publication-title: Proc 32th Annu Int Conf Mach Learn
– volume: 34
  start-page: 1031
  year: 2012
  ident: ref182
  article-title: Optimized data fusion for kernel k-means clustering
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2011.255
– ident: ref38
  doi: 10.1145/2806416.2806526
– ident: ref60
  doi: 10.1016/j.patcog.2020.107676
– ident: ref197
  doi: 10.1198/jasa.2010.tm09415
– ident: ref73
  doi: 10.1137/1.9781611972795.55
– ident: ref119
  doi: 10.1609/aaai.v34i04.6052
– volume: 1
  start-page: 83
  year: 2018
  ident: ref6
  article-title: Multi-view clustering: A survey
  publication-title: Big data mining and analytics
  doi: 10.26599/BDMA.2018.9020003
– volume: 6
  start-page: 1705
  year: 2005
  ident: ref9
  article-title: Clustering with Bregman divergences
  publication-title: J Mach Learn Res
– start-page: 1985
  year: 0
  ident: ref205
  article-title: Deep spectral clustering learning
  publication-title: Proc the 34th Int Conf Mach Learn
– ident: ref63
  doi: 10.1109/BigData.2016.7840701
– ident: ref154
  doi: 10.1007/978-3-030-04212-7_18
– ident: ref142
  doi: 10.1109/TKDE.2017.2650229
– ident: ref184
  doi: 10.1109/BHI.2016.7455910
– ident: ref43
  doi: 10.1016/j.ins.2017.11.038
– ident: ref151
  doi: 10.1016/j.neucom.2019.03.062
SSID ssj0002512227
Score 2.604407
Snippet Clustering is a machine learning paradigm of dividing sample subjects into a number of groups such that subjects in the same groups are more similar to those...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 146
SubjectTerms Canonical correlation analysis (CCA)
clustering
Clustering algorithms
Computer science
data mining
k-means
Machine learning
Mixture models
multiview learning
nonnegative matrix factorization (NMF)
Semisupervised learning
spectral clustering
subspace clustering
survey
Taxonomy
Web pages
Title A Survey on Multiview Clustering
URI https://ieeexplore.ieee.org/document/9395530
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFH60PXlxq2Jdyhy8CCaNyWSZYyktVagXW-gtzPJysbRSGkEP_nbnZUNFxFNCMg-GLxPe_j6Aa8OFfaOkI2MMHB5JdBJpnZVYGGsdRYmnDMU7Zo_RdMEfluGyBbdNLwwiFsVn6NJtkcs3G51TqGwgAkEsN21oW8et7NVq4imkp30_rjORnhjMh_fW__PvXCJHTwQx8ARWmvJO35TQF1aVQqlMDmBWb6esJXl2851y9fuPSY3_3e8h7FfWJRuWx-EIWrg-hoOauYFVP3IX2JA95dtXfGObNSt6cClDwEarnOYmWG12AovJeD6aOhVXgqN9n0YPRsit84TCmn8SVcITqWItTYCcmC3okmkMNNeJlIGHXPnKRBhmvjDCKBmcQme9WeMZMCkwC0WmY6UNjyMUEkP7NQVSl6v1VnowqMFLdTVInPgsVmnhUHgitcinhHxaId-Dm0bipRyi8cfaLgHZrKswPP_98QXskXBZSnMJnd02xytrJexUH9qzj3G_OCSftQa5fA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFH5BPOhFVDTi2oMXE1ugnS5zJEQCClyEhFszy-MiKYZQE_31zusWNcZ4atOZaSZfp3n7-wBuNeNmRApbhOjZLBBoR8IYKyHXRjsKoo7U5O-YTIPhnD0u_EUN7qtaGETMks_Qodsslq_XKiVXWZt7nFhudmDXyH2_m1drVR4VktSuG5axyA5vz3ojYwG6XYfo0SNOHDyeWU-Rp29i6AuvSiZWBg2YlBvKs0lenHQrHfXxo1fjf3d8CAeFfmn18gNxBDVMjqFRcjdYxa_cBKtnPaebN3y31omVVeFSjMDqr1LqnGDk2QnMBw-z_tAu2BJs5brUfDBAZswn5EYBFCgjFgkZKqE9ZMRtQZelQk8xFQnhdZBJV-oA_aXLNddSeKdQT9YJnoElOC59vlShVJqFAXKBvvmeHKnO1dgrLWiX4MWqaCVOjBarODMpOjw2yMeEfFwg34K7asVr3kbjj7lNArKaV2B4_vvjG9gbzibjeDyaPl3APr0oT6y5hPp2k-KV0Rm28jo7Kp8va7uU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Multiview+Clustering&rft.jtitle=IEEE+transactions+on+artificial+intelligence&rft.au=Chao%2C+Guoqing&rft.au=Sun%2C+Shiliang&rft.au=Bi%2C+Jinbo&rft.date=2021-04-01&rft.pub=IEEE&rft.eissn=2691-4581&rft.volume=2&rft.issue=2&rft.spage=146&rft.epage=168&rft_id=info:doi/10.1109%2FTAI.2021.3065894&rft_id=info%3Apmid%2F35308425&rft.externalDocID=9395530
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-4581&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-4581&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-4581&client=summon