A Survey on Multiview Clustering
Clustering is a machine learning paradigm of dividing sample subjects into a number of groups such that subjects in the same groups are more similar to those in other groups. With advances in information acquisition technologies, samples can frequently be viewed from different angles or in different...
Saved in:
Published in | IEEE transactions on artificial intelligence Vol. 2; no. 2; pp. 146 - 168 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Clustering is a machine learning paradigm of dividing sample subjects into a number of groups such that subjects in the same groups are more similar to those in other groups. With advances in information acquisition technologies, samples can frequently be viewed from different angles or in different modalities, generating multiview data. Multiview clustering (MVC), that clusters subjects into subgroups using multiview data, has attracted more and more attentions. Although MVC methods have been developed rapidly, there has not been enough survey to summarize and analyze the current progress. Therefore, we propose a novel taxonomy of the MVC approaches. Similar to other machine learning methods, we categorize them into generative and discriminative classes. In the discriminative class, based on the way of view integration, we split it further into five groups-common eigenvector matrix, common coefficient matrix, common indicator matrix, direct combination, and combination after projection. Furthermore, we relate MVC to other topics: multiview representation, ensemble clustering, multitask clustering, multiview supervised, and semisupervised learning. Several representative real-world applications are elaborated for practitioners. Some benchmark multiview datasets are introduced and representative MVC algorithms from each group are empirically evaluated to analyze how they perform on benchmark datasets. To promote future development of MVC approaches, we point out several open problems that may require further investigation and thorough examination.
Impact Statement- Multiview clustering has gained the success in a variety of applications in the past decade. In order to obtain a comprehensive picture of the MVC development, we provide a new categorization of existing MVC methods and introduce the representative algorithms in each category. At last, we point out open problems that are worth investigating to advance the MVC study. More promising MVC methods to solve these open problems may appear following this review paper from which a large number of applications can benefit. |
---|---|
AbstractList | Clustering is a machine learning paradigm of dividing sample subjects into a number of groups such that subjects in the same groups are more similar to those in other groups. With advances in information acquisition technologies, samples can frequently be viewed from different angles or in different modalities, generating multiview data. Multiview clustering (MVC), that clusters subjects into subgroups using multiview data, has attracted more and more attentions. Although MVC methods have been developed rapidly, there has not been enough survey to summarize and analyze the current progress. Therefore, we propose a novel taxonomy of the MVC approaches. Similar to other machine learning methods, we categorize them into generative and discriminative classes. In the discriminative class, based on the way of view integration, we split it further into five groups-common eigenvector matrix, common coefficient matrix, common indicator matrix, direct combination, and combination after projection. Furthermore, we relate MVC to other topics: multiview representation, ensemble clustering, multitask clustering, multiview supervised, and semisupervised learning. Several representative real-world applications are elaborated for practitioners. Some benchmark multiview datasets are introduced and representative MVC algorithms from each group are empirically evaluated to analyze how they perform on benchmark datasets. To promote future development of MVC approaches, we point out several open problems that may require further investigation and thorough examination.
Impact Statement- Multiview clustering has gained the success in a variety of applications in the past decade. In order to obtain a comprehensive picture of the MVC development, we provide a new categorization of existing MVC methods and introduce the representative algorithms in each category. At last, we point out open problems that are worth investigating to advance the MVC study. More promising MVC methods to solve these open problems may appear following this review paper from which a large number of applications can benefit. |
Author | Bi, Jinbo Sun, Shiliang Chao, Guoqing |
Author_xml | – sequence: 1 givenname: Guoqing orcidid: 0000-0002-2410-650X surname: Chao fullname: Chao, Guoqing email: guoqingchao10@gmail.com organization: School of Computer Science and Technology, Harbin Institute of Technology, Weihai, China – sequence: 2 givenname: Shiliang orcidid: 0000-0001-7069-3752 surname: Sun fullname: Sun, Shiliang email: slsun@cs.ecnu.edu.cn organization: School of Computer Science and Technology, East China Normal University, Shanghai, China – sequence: 3 givenname: Jinbo orcidid: 0000-0001-6996-4092 surname: Bi fullname: Bi, Jinbo email: jinbo.bi@uconn.edu organization: Department of Computer Science, University of Connecticut, Storrs, CT, USA |
BookMark | eNp9kE1Lw0AQhhep2Fp7F7zkDyTOzu6mu8dQ_ChUPFjPYbOZyEpMZJNW-u9NaBHx4OmdwzwzPO8lmzRtQ4xdc0g4B3O7zdYJAvJEQKq0kWdshqnhsVSaT37NU7bouncAQMURcXnBpkIJ0BLVjEVZ9LILezpEbRM97ere7z19Rat61_UUfPN2xc4rW3e0OOWcvd7fbVeP8eb5Yb3KNrFDBBnzlKRGTQYQLBVaalssnS0FST58G6NyJJx02loBJAssypRUhaY0ZWHFnKXHuy60XReoyp3vbe_bpg_W1zmHfLTOB-t8tM5P1gMIf8DP4D9sOPyH3BwRT0Q_60YYNfQivgELpmEj |
CODEN | ITAICB |
CitedBy_id | crossref_primary_10_1109_TGRS_2025_3540269 crossref_primary_10_1007_s10489_021_02978_z crossref_primary_10_1080_21642583_2024_2437159 crossref_primary_10_1016_j_knosys_2023_110816 crossref_primary_10_1016_j_engappai_2024_107857 crossref_primary_10_1007_s10044_023_01167_7 crossref_primary_10_1007_s00521_023_08975_2 crossref_primary_10_1016_j_inffus_2021_09_009 crossref_primary_10_1007_s00357_023_09441_3 crossref_primary_10_1016_j_knosys_2024_111871 crossref_primary_10_1109_JAS_2023_123579 crossref_primary_10_1016_j_engappai_2023_106379 crossref_primary_10_1016_j_inffus_2024_102245 crossref_primary_10_1016_j_ins_2023_119655 crossref_primary_10_1093_bib_bbae511 crossref_primary_10_1109_LSP_2023_3327536 crossref_primary_10_1155_2022_2522202 crossref_primary_10_3390_s21206775 crossref_primary_10_1016_j_patcog_2024_110307 crossref_primary_10_1109_TKDE_2023_3333522 crossref_primary_10_1109_TNNLS_2024_3357087 crossref_primary_10_1145_3698875 crossref_primary_10_1109_TFUZZ_2024_3416537 crossref_primary_10_1007_s44243_024_00047_w crossref_primary_10_1145_3708887 crossref_primary_10_1007_s10489_022_03541_0 crossref_primary_10_1142_S2737480724500134 crossref_primary_10_1007_s00138_023_01455_6 crossref_primary_10_1007_s41019_022_00190_8 crossref_primary_10_1109_TIP_2023_3297410 crossref_primary_10_1007_s10489_022_03816_6 crossref_primary_10_1016_j_ins_2023_119622 crossref_primary_10_1016_j_inffus_2023_101884 crossref_primary_10_3724_SP_J_1089_2022_19522 crossref_primary_10_1109_TBDATA_2023_3334674 crossref_primary_10_1145_3543848 crossref_primary_10_1016_j_psychres_2023_115265 crossref_primary_10_1109_TCSVT_2023_3276362 crossref_primary_10_1007_s10489_022_03205_z crossref_primary_10_1016_j_eswa_2022_119458 crossref_primary_10_1016_j_sigpro_2023_109014 crossref_primary_10_1109_TBDATA_2023_3325045 crossref_primary_10_1016_j_knosys_2025_113314 crossref_primary_10_26599_BDMA_2023_9020004 crossref_primary_10_1016_j_neucom_2024_127870 crossref_primary_10_1109_TKDE_2022_3202561 crossref_primary_10_1016_j_knosys_2024_112948 crossref_primary_10_1016_j_knosys_2024_111733 crossref_primary_10_1109_TAI_2024_3403511 crossref_primary_10_1109_TKDE_2024_3445992 crossref_primary_10_1109_TMM_2022_3194332 crossref_primary_10_1109_TNNLS_2023_3256066 crossref_primary_10_1109_TMM_2024_3374570 crossref_primary_10_1109_LSP_2023_3302234 crossref_primary_10_1007_s00224_024_10174_y crossref_primary_10_1016_j_knosys_2023_111324 crossref_primary_10_3390_app12105094 crossref_primary_10_5753_jbcs_2024_3483 crossref_primary_10_1007_s11063_022_10789_7 crossref_primary_10_1109_TPAMI_2022_3217137 crossref_primary_10_1109_TKDE_2021_3112114 crossref_primary_10_1016_j_ipm_2022_103054 crossref_primary_10_1016_j_knosys_2022_108250 crossref_primary_10_1109_TETCI_2023_3306027 crossref_primary_10_1016_j_aei_2024_102799 crossref_primary_10_1016_j_eswa_2023_121518 crossref_primary_10_1109_ACCESS_2022_3232285 crossref_primary_10_1109_TAI_2021_3139573 crossref_primary_10_1109_TBDATA_2022_3163584 crossref_primary_10_1016_j_sigpro_2024_109597 crossref_primary_10_1016_j_patcog_2023_109349 crossref_primary_10_1016_j_patcog_2024_111140 crossref_primary_10_1109_TNNLS_2023_3274289 crossref_primary_10_1007_s13042_023_01866_x crossref_primary_10_1007_s10489_022_03209_9 crossref_primary_10_1109_TEVC_2022_3220187 crossref_primary_10_1109_TBME_2022_3190050 crossref_primary_10_1016_j_engappai_2024_108336 crossref_primary_10_1007_s11063_021_10710_8 crossref_primary_10_1016_j_neucom_2024_128627 crossref_primary_10_1016_j_patcog_2025_111418 crossref_primary_10_1007_s13042_024_02403_0 crossref_primary_10_1016_j_eswa_2024_125386 crossref_primary_10_1109_TKDE_2022_3171911 crossref_primary_10_1016_j_ins_2023_119426 crossref_primary_10_1109_TMM_2024_3387298 crossref_primary_10_1109_TNNLS_2023_3261460 crossref_primary_10_1016_j_inffus_2024_102498 crossref_primary_10_1109_TAI_2022_3187060 crossref_primary_10_1109_TCSVT_2023_3299318 crossref_primary_10_1016_j_patcog_2024_110839 crossref_primary_10_1109_TAI_2023_3266191 crossref_primary_10_1109_TNNLS_2022_3201498 crossref_primary_10_1109_TIP_2024_3444320 crossref_primary_10_1109_TKDE_2023_3332682 crossref_primary_10_1109_TKDE_2024_3423307 crossref_primary_10_1016_j_eswa_2022_119484 crossref_primary_10_1016_j_patcog_2024_110605 crossref_primary_10_1109_TAI_2023_3314405 crossref_primary_10_1109_TETCI_2023_3306233 crossref_primary_10_1109_TETCI_2024_3406704 crossref_primary_10_1109_TMM_2021_3136098 crossref_primary_10_1109_TKDE_2023_3293498 crossref_primary_10_1016_j_knosys_2022_110092 crossref_primary_10_1109_TPAMI_2023_3257407 crossref_primary_10_1007_s10489_022_03406_6 crossref_primary_10_1016_j_knosys_2024_111421 crossref_primary_10_1016_j_eswa_2024_125165 crossref_primary_10_1016_j_jksuci_2024_102129 crossref_primary_10_1007_s13748_023_00312_x crossref_primary_10_1007_s44196_024_00601_w crossref_primary_10_1109_TKDE_2023_3236698 crossref_primary_10_1109_TMM_2021_3112230 crossref_primary_10_1016_j_inffus_2022_10_020 crossref_primary_10_1109_TNNLS_2023_3244021 crossref_primary_10_1007_s10489_023_04474_y crossref_primary_10_1016_j_knosys_2022_110145 crossref_primary_10_1016_j_knosys_2024_112562 crossref_primary_10_1109_LSP_2024_3455988 crossref_primary_10_1016_j_ins_2023_03_016 crossref_primary_10_1016_j_engappai_2024_109509 crossref_primary_10_1109_TAI_2024_3445892 crossref_primary_10_1111_exsy_12857 crossref_primary_10_1016_j_patcog_2024_110944 crossref_primary_10_1016_j_ins_2024_121187 crossref_primary_10_1016_j_ins_2024_121186 crossref_primary_10_1109_TSG_2024_3411306 crossref_primary_10_1016_j_patcog_2023_109657 crossref_primary_10_1145_3638061 crossref_primary_10_1002_ett_4863 crossref_primary_10_1016_j_ins_2022_10_026 crossref_primary_10_1109_TFUZZ_2022_3196735 crossref_primary_10_1016_j_ins_2024_120899 crossref_primary_10_1007_s00357_024_09462_6 crossref_primary_10_1016_j_ins_2024_120739 crossref_primary_10_1016_j_patcog_2022_109281 crossref_primary_10_1016_j_ijar_2023_108968 crossref_primary_10_1109_TFUZZ_2024_3466175 crossref_primary_10_1109_TKDE_2023_3312794 crossref_primary_10_1145_3674839 crossref_primary_10_1016_j_trc_2024_104607 crossref_primary_10_1016_j_ins_2022_02_018 crossref_primary_10_1016_j_neucom_2024_128687 crossref_primary_10_1016_j_neunet_2025_107409 crossref_primary_10_1016_j_knosys_2024_112302 crossref_primary_10_1016_j_patcog_2024_110592 crossref_primary_10_1109_TMM_2021_3138638 crossref_primary_10_1016_j_eswa_2024_124683 crossref_primary_10_1016_j_inffus_2024_102501 crossref_primary_10_1007_s11704_024_40004_w crossref_primary_10_1007_s13042_024_02105_7 crossref_primary_10_1007_s11227_023_05572_x crossref_primary_10_1109_TAI_2023_3271964 crossref_primary_10_1109_TKDE_2022_3231929 crossref_primary_10_1109_TCSVT_2022_3200451 crossref_primary_10_1016_j_ins_2023_03_119 crossref_primary_10_1109_JSTARS_2022_3158761 crossref_primary_10_1016_j_eswa_2024_124103 crossref_primary_10_1109_TMM_2021_3110098 crossref_primary_10_1007_s00521_023_08386_3 crossref_primary_10_1016_j_ins_2023_02_089 crossref_primary_10_3390_electronics13030649 crossref_primary_10_1016_j_jksuci_2023_101904 crossref_primary_10_1016_j_ins_2024_121532 crossref_primary_10_1016_j_neucom_2024_128101 crossref_primary_10_54392_irjmt2513 crossref_primary_10_1016_j_fss_2023_108630 crossref_primary_10_1016_j_dsp_2024_104879 crossref_primary_10_1109_TCSVT_2024_3437756 crossref_primary_10_1109_TNNLS_2022_3201562 crossref_primary_10_1088_1361_6501_ad6022 crossref_primary_10_1093_bib_bbac372 crossref_primary_10_1016_j_asoc_2024_111278 crossref_primary_10_1016_j_neunet_2024_106503 crossref_primary_10_56714_bjrs_50_2_26 crossref_primary_10_1016_j_ins_2024_120335 crossref_primary_10_1109_TNNLS_2023_3238041 crossref_primary_10_1016_j_eswa_2024_125454 crossref_primary_10_1016_j_ins_2022_05_074 crossref_primary_10_1109_TPAMI_2025_3526790 crossref_primary_10_1109_TAI_2022_3207112 crossref_primary_10_3390_axioms11120722 crossref_primary_10_1145_3653022 crossref_primary_10_1016_j_fss_2024_109135 crossref_primary_10_3233_JIFS_235967 crossref_primary_10_1109_ACCESS_2024_3389979 crossref_primary_10_1016_j_knosys_2024_112106 crossref_primary_10_1016_j_eswa_2025_127235 crossref_primary_10_1007_s10489_022_03551_y crossref_primary_10_3390_math11061509 crossref_primary_10_1287_ijoc_2023_0016 crossref_primary_10_1016_j_inffus_2025_103012 crossref_primary_10_1007_s00521_022_07326_x crossref_primary_10_1007_s10489_021_03092_w crossref_primary_10_1016_j_knosys_2023_110424 crossref_primary_10_1007_s11042_023_15645_x crossref_primary_10_1016_j_knosys_2023_110425 crossref_primary_10_1007_s00530_024_01637_w crossref_primary_10_1109_TKDE_2024_3443534 crossref_primary_10_1109_TKDE_2023_3270311 crossref_primary_10_1016_j_neunet_2023_10_001 crossref_primary_10_1109_TCE_2024_3376397 crossref_primary_10_1109_TCSVT_2024_3382761 crossref_primary_10_1109_TKDE_2024_3484161 crossref_primary_10_1016_j_neunet_2024_106849 crossref_primary_10_1093_biostatistics_kxae020 crossref_primary_10_1016_j_patcog_2023_109836 crossref_primary_10_1109_TAI_2021_3123126 |
Cites_doi | 10.1109/TIP.2016.2553459 10.1145/2747879 10.1038/44565 10.1162/0899766042321814 10.1007/978-3-319-04114-8_13 10.1016/j.neunet.2017.02.003 10.1109/34.868688 10.24963/ijcai.2019/623 10.1109/ICDM.2004.10095 10.1145/1553374.1553391 10.1109/TPAMI.2016.2599174 10.1016/j.ins.2019.04.039 10.1109/CVPR.2015.7298657 10.1145/279943.279962 10.1109/TPAMI.2002.1017623 10.1145/860435.860485 10.1137/1.9781611972832.26 10.1093/nar/gky889 10.1109/TPAMI.2013.57 10.1016/j.knosys.2018.09.009 10.1109/TKDE.2018.2873378 10.1007/11551188_45 10.1111/j.2517-6161.1977.tb01600.x 10.1007/s10844-014-0307-6 10.1016/j.inffus.2016.09.008 10.1145/1526709.1526922 10.1109/CVPR42600.2020.01463 10.1007/978-3-642-04180-8_45 10.1109/MSP.2010.939739 10.1145/1390156.1390279 10.1145/1150402.1150510 10.1109/TKDE.2015.2503743 10.1109/TPAMI.2007.1115 10.1109/TSP.2013.2295553 10.1007/978-3-319-57529-2_32 10.1007/s11063-018-9823-7 10.1016/j.patcog.2015.12.007 10.1023/B:NEPL.0000011135.19145.1b 10.1109/TKDE.2020.3028422 10.1109/ICASSP.2016.7471631 10.1007/3-540-28349-8_2 10.1016/j.neucom.2016.06.035 10.1109/ICDM.2009.125 10.1109/TKDE.2012.95 10.1145/3182181 10.1109/DICTA.2016.7797034 10.1109/TKDE.2016.2603983 10.1145/1835449.1835633 10.1016/j.inffus.2017.02.007 10.1007/3-540-47887-6_54 10.1109/TMM.2007.911778 10.1109/TIP.2015.2457339 10.1016/j.neucom.2011.02.004 10.1109/TIP.2017.2665976 10.1109/TPAMI.2014.2343221 10.1109/TFUZZ.2018.2883022 10.1145/3182384 10.1111/j.1541-0420.2010.01392.x 10.1109/TPAMI.2018.2879108 10.1073/pnas.0308531101 10.1016/j.ins.2019.02.008 10.1109/ICDM.2012.43 10.1109/ICDM.2009.138 10.1109/ICCV.2013.328 10.1186/1471-2156-15-73 10.1007/s10994-016-5624-2 10.1109/TPAMI.2016.2598339 10.1109/ICPR.2014.648 10.1145/1015330.1015424 10.1145/2647868.2654902 10.1145/1273496.1273642 10.1109/CVPR.2005.177 10.1109/TCYB.2018.2887094 10.1137/1.9781611972788.74 10.1137/1.9781611972757.70 10.1016/j.neunet.2019.10.010 10.1023/B:VISI.0000029664.99615.94 10.1007/978-3-642-04277-5_21 10.1109/TNN.2010.2081999 10.24963/ijcai.2017/396 10.1016/j.neucom.2017.09.060 10.1007/978-3-642-04274-4_2 10.1016/j.patcog.2020.107524 10.3390/make1010020 10.1109/BigData.2017.8257992 10.1016/j.knosys.2019.06.006 10.1109/ICPR.2016.7899961 10.1142/S0218001411008683 10.1093/bioinformatics/btt425 10.1016/j.ins.2019.01.018 10.1109/ICIP.2013.6738834 10.1109/ICDM.2013.117 10.1016/j.patcog.2018.09.016 10.1093/bioinformatics/btq569 10.1109/TIP.2020.3010631 10.1109/TPAMI.2010.224 10.1137/1.9781611972832.28 10.1002/ima.22121 10.1007/s11222-007-9033-z 10.1109/TKDE.2011.262 10.24963/ijcai.2017/357 10.1145/1497577.1497578 10.1609/aaai.v34i04.6180 10.1109/CVPR.2016.578 10.1088/1742-6596/1060/1/012024 10.1109/TNNLS.2015.2442256 10.1016/j.neucom.2015.01.017 10.1109/CVPR.2017.237 10.1016/j.neucom.2017.06.005 10.1109/BIBM.2013.6732509 10.1109/TNN.2009.2019722 10.1016/j.patcog.2018.11.025 10.3233/IDA-160816 10.24963/ijcai.2019/409 10.1007/s13042-018-00902-5 10.1109/ICDM.2007.94 10.1145/2324796.2324825 10.1109/TPAMI.2018.2877660 10.1145/1557019.1557118 10.1109/TCYB.2014.2334595 10.1109/ICCV.2015.482 10.1109/TPAMI.2018.2847335 10.1109/TPAMI.2013.50 10.1109/TPAMI.2004.1262185 10.1016/j.patcog.2017.08.024 10.1109/CVPR.2007.383223 10.1162/089976698300017467 10.18637/jss.v045.i02 10.1109/TPAMI.2020.2974828 10.1016/j.ins.2016.06.004 10.1109/CVPR.2011.5995740 10.1109/TPAMI.2011.255 10.1145/2806416.2806526 10.1016/j.patcog.2020.107676 10.1198/jasa.2010.tm09415 10.1137/1.9781611972795.55 10.1609/aaai.v34i04.6052 10.26599/BDMA.2018.9020003 10.1109/BigData.2016.7840701 10.1007/978-3-030-04212-7_18 10.1109/TKDE.2017.2650229 10.1109/BHI.2016.7455910 10.1016/j.ins.2017.11.038 10.1016/j.neucom.2019.03.062 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TAI.2021.3065894 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2691-4581 |
EndPage | 168 |
ExternalDocumentID | 10_1109_TAI_2021_3065894 9395530 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation grantid: IIS-1718738 funderid: 10.13039/100006435 – fundername: National Institutes of Health grantid: K02DA043063 funderid: 10.13039/100000009 – fundername: NIH grantid: R01DA051922; R01MH119678 |
GroupedDBID | 0R~ 97E AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IEDLZ IFIPE JAVBF M~E OCL RIA RIE AAYXX CITATION |
ID | FETCH-LOGICAL-c2204-16e4828e9020aeb848ab7cad3e413533e41fce3c4c8aa30e4b2bd6e5f29d9dba3 |
IEDL.DBID | RIE |
ISSN | 2691-4581 |
IngestDate | Wed Aug 27 16:28:38 EDT 2025 Thu Apr 24 22:59:19 EDT 2025 Wed Aug 27 07:40:20 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2204-16e4828e9020aeb848ab7cad3e413533e41fce3c4c8aa30e4b2bd6e5f29d9dba3 |
ORCID | 0000-0001-7069-3752 0000-0001-6996-4092 0000-0002-2410-650X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8925043 |
PMID | 35308425 |
PageCount | 23 |
ParticipantIDs | crossref_primary_10_1109_TAI_2021_3065894 ieee_primary_9395530 crossref_citationtrail_10_1109_TAI_2021_3065894 |
PublicationCentury | 2000 |
PublicationDate | 2021-April 2021-4-00 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-April |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on artificial intelligence |
PublicationTitleAbbrev | TAI |
PublicationYear | 2021 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref57 sindhwani (ref157) 0 ref207 ref56 ref59 cai (ref189) 2005 ref206 ref53 ref203 ref55 ref201 ref54 ref202 tao (ref58) 0 saxe (ref2) 2016 ref209 tian (ref131) 0 jin (ref161) 0 ref210 ref51 ref50 ref46 huang (ref208) 2019; 97 ref48 ref42 shi (ref19) 2000; 22 ref41 vert (ref71) 2004 ref44 gönen (ref81) 2011; 12 ref43 (ref101) 0 ref49 ref5 ref100 ref40 (ref112) 0 rasiwasia (ref102) 0 ref35 ref34 ref31 ref30 ref33 samangooei (ref176) 0 dy (ref196) 2004; 5 ref38 srivastava (ref124) 2014; 15 wu (ref164) 2011; 33 zhao (ref39) 0 ref24 ref23 ref25 ref20 ref22 trivedi (ref103) 0 xie (ref144) 0 ref28 ref27 ng (ref18) 0 ref29 sun (ref160) 2016; 27 lütkepohl (ref21) 1997 ref200 belkin (ref14) 0 ref129 ref96 ref127 ref99 ref98 lewis (ref187) 2004; 5 chang (ref212) 0 zhu (ref135) 2019 yuanpeng (ref118) 2019; 27 ref93 ref133 gu (ref148) 0 ref92 ref134 ref95 ref94 ref130 ref91 ref90 ref89 ref139 ref137 ref85 ref88 ref87 wang (ref128) 0 niu (ref211) 0 ref82 ref145 ref84 ref142 ref83 ref143 ref140 ref108 ref78 ref109 ref106 ref107 ref104 kumar (ref17) 0 ref74 ref105 ref76 wang (ref32) 0 ref111 ref70 ref73 zhang (ref138) 0 ref72 ref110 ref119 ref67 ref117 ref69 ref63 ref116 ref66 ref113 ref65 senbabao?lu (ref141) 2014; 4 akata (ref45) 0 zhao (ref204) 0 ref60 ref122 ref123 dempster (ref7) 1977; 39 ref62 ref121 zhang (ref150) 0 ref168 ref169 ref170 zhao (ref37) 0 yu (ref165) 0 banerjee (ref9) 2005; 6 yan (ref192) 0 ref177 xu (ref3) 2013 ref178 ref175 ref173 ref174 ref171 mao (ref126) 2015 ref179 sun (ref97) 0 ref180 ref181 lange (ref115) 0 ref188 ref186 ref184 ref185 cai (ref47) 0 ref183 ref149 ref146 ref147 c (ref162) 2015; 25 sun (ref159) 0 ref155 shao (ref61) 0 ref153 valizadegan (ref75) 0 gönen (ref80) 0 ref154 joachims (ref68) 0 ref151 yang (ref6) 2018; 1 kumar (ref16) 0 ref158 xu (ref64) 0 ref166 lanckriet (ref77) 2004; 5 ref167 ref163 ref13 ref12 ye (ref26) 0 ref15 ref11 ref10 xie (ref132) 0 li (ref120) 2016 yu (ref156) 2011; 12 (ref4) 2014; 23 xia (ref114) 0 zhang (ref152) 0 law (ref205) 0 liu (ref86) 0 ref1 ref191 jiang (ref172) 0 ref199 ref197 ref198 ref195 ngiam (ref125) 0 sun (ref136) 0 sonnenburg (ref79) 0 ref193 ref194 lashkari (ref8) 0 yu (ref182) 2012; 34 cai (ref190) 2014; 45 wang (ref52) 0 li (ref36) 0 |
References_xml | – start-page: 1413 year: 0 ident: ref17 article-title: Co-regularized multi-view spectral clustering publication-title: Proc Adv Neural Inf Process Syst – ident: ref188 doi: 10.1109/TIP.2016.2553459 – ident: ref147 doi: 10.1145/2747879 – ident: ref41 doi: 10.1038/44565 – start-page: 831 year: 0 ident: ref211 article-title: Multiple non-redundant spectral clustering views publication-title: Proc 27th Int Conf Int Conf Mach Learn – ident: ref98 doi: 10.1162/0899766042321814 – ident: ref177 doi: 10.1007/978-3-319-04114-8_13 – ident: ref56 doi: 10.1016/j.neunet.2017.02.003 – start-page: 281 year: 0 ident: ref138 article-title: Solving cluster ensemble problems by bipartite graph partitioning publication-title: Proc 21st Int Conf Mach Learn – volume: 23 start-page: 2031 year: 2014 ident: ref4 article-title: A survey of multi-view machine learning publication-title: S Sun – start-page: 825 year: 0 ident: ref8 article-title: Convex clustering with exemplar-based models publication-title: Proc Adv Neural Inf Process Syst – start-page: 2392 year: 0 ident: ref37 article-title: Incomplete multi-modal visual data grouping publication-title: Proc 25th Int Joint Conf Artif Intell – volume: 22 start-page: 888 year: 2000 ident: ref19 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans Pattern Anal Mach Learn doi: 10.1109/34.868688 – ident: ref122 doi: 10.24963/ijcai.2019/623 – ident: ref10 doi: 10.1109/ICDM.2004.10095 – ident: ref100 doi: 10.1145/1553374.1553391 – ident: ref130 doi: 10.1109/TPAMI.2016.2599174 – year: 2013 ident: ref3 article-title: A survey on multi-view learning – ident: ref181 doi: 10.1016/j.ins.2019.04.039 – start-page: 4123 year: 0 ident: ref58 article-title: Reliable multi-view clustering publication-title: Proc 32nd AAAI Conf Artif Intell – ident: ref111 doi: 10.1109/CVPR.2015.7298657 – ident: ref23 doi: 10.1145/279943.279962 – year: 2005 ident: ref189 article-title: Using graph model for face analysis – ident: ref167 doi: 10.1109/TPAMI.2002.1017623 – ident: ref42 doi: 10.1145/860435.860485 – ident: ref25 doi: 10.1137/1.9781611972832.26 – ident: ref186 doi: 10.1093/nar/gky889 – ident: ref29 doi: 10.1109/TPAMI.2013.57 – ident: ref76 doi: 10.1016/j.knosys.2018.09.009 – ident: ref116 doi: 10.1109/TKDE.2018.2873378 – ident: ref11 doi: 10.1007/11551188_45 – start-page: 35 year: 2004 ident: ref71 publication-title: A primer on kernel methods – year: 2019 ident: ref135 article-title: Multi-view deep subspace clustering networks – volume: 39 start-page: 1 year: 1977 ident: ref7 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J Roy Statist Soc Ser B doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: ref174 doi: 10.1007/s10844-014-0307-6 – ident: ref155 doi: 10.1016/j.inffus.2016.09.008 – ident: ref169 doi: 10.1145/1526709.1526922 – start-page: 1083 year: 0 ident: ref128 article-title: On deep multi-view representation learning publication-title: Proc 32nd Int Conf Int Conf Mach Learn – start-page: 1 year: 0 ident: ref103 article-title: Muliview clusterting with incomplete views publication-title: Proc Neural Inf Process Syst Workshop Mach Learn Social Comput – start-page: 368 year: 0 ident: ref148 article-title: Learning a kernel for multi-task clustering publication-title: Proc 25th AAAI Conf Artif Intell – volume: 45 start-page: 1669 year: 2014 ident: ref190 article-title: Optimized data fusion for kernel k-means clustering publication-title: IEEE Trans Cybern – start-page: 393 year: 0 ident: ref16 article-title: A co-training approach for multi-view spectral clustering publication-title: Proc 28th Int Conf Mach Learn – ident: ref134 doi: 10.1109/CVPR42600.2020.01463 – ident: ref53 doi: 10.1007/978-3-642-04180-8_45 – ident: ref28 doi: 10.1109/MSP.2010.939739 – ident: ref158 doi: 10.1145/1390156.1390279 – ident: ref69 doi: 10.1145/1150402.1150510 – start-page: 2598 year: 0 ident: ref47 article-title: Multi-view k-means clustering on big data publication-title: Proc 23rd Int Joint Conf Artif Intell – start-page: 929 year: 0 ident: ref165 article-title: Color texture moments for content-based image retrieval publication-title: Proc Int Conf Image Process – ident: ref109 doi: 10.1109/TKDE.2015.2503743 – ident: ref83 doi: 10.1109/TPAMI.2007.1115 – ident: ref27 doi: 10.1109/TSP.2013.2295553 – start-page: 674 year: 0 ident: ref212 article-title: Multiple clustering views from multiple uncertain experts publication-title: Proc Int Conf Mach Learn – ident: ref173 doi: 10.1007/978-3-319-57529-2_32 – ident: ref20 doi: 10.1007/s11063-018-9823-7 – ident: ref62 doi: 10.1016/j.patcog.2015.12.007 – ident: ref87 doi: 10.1023/B:NEPL.0000011135.19145.1b – ident: ref123 doi: 10.1109/TKDE.2020.3028422 – year: 2015 ident: ref126 article-title: Deep captioning with multimodal recurrent neural networks (m-RNN – volume: 12 start-page: 2649 year: 2011 ident: ref156 article-title: Bayesian co-training publication-title: J Mach Learn Res – ident: ref206 doi: 10.1109/ICASSP.2016.7471631 – ident: ref1 doi: 10.1007/3-540-28349-8_2 – ident: ref105 doi: 10.1016/j.neucom.2016.06.035 – ident: ref54 doi: 10.1109/ICDM.2009.125 – start-page: 1968 year: 0 ident: ref36 article-title: Partial multi-view clustering publication-title: Proc 28th AAAI Conf Artif Intell – ident: ref117 doi: 10.1109/TKDE.2012.95 – ident: ref143 doi: 10.1145/3182181 – ident: ref55 doi: 10.1109/DICTA.2016.7797034 – start-page: 590 year: 0 ident: ref192 article-title: Fast spectral clustering of data using sequential matrix compression publication-title: Proc 17th Eur Conf Mach Learn – ident: ref153 doi: 10.1109/TKDE.2016.2603983 – ident: ref171 doi: 10.1145/1835449.1835633 – ident: ref5 doi: 10.1016/j.inffus.2017.02.007 – start-page: 689 year: 0 ident: ref125 article-title: Multimodal deep learning publication-title: Proc 28th Int Conf Int Conf Mach Learn – ident: ref199 doi: 10.1007/3-540-47887-6_54 – ident: ref179 doi: 10.1109/TMM.2007.911778 – ident: ref33 doi: 10.1109/TIP.2015.2457339 – ident: ref146 doi: 10.1016/j.neucom.2011.02.004 – start-page: 1001 year: 0 ident: ref136 article-title: Self-supervised deep multi-view subspace clustering publication-title: Proc Asian Conf Mach Learn – ident: ref48 doi: 10.1109/TIP.2017.2665976 – ident: ref149 doi: 10.1109/TPAMI.2014.2343221 – start-page: 1293 year: 0 ident: ref131 article-title: Learning deep representations for graph clustering publication-title: Proc 28th AAAI Conf Artif Intell – start-page: 823 year: 0 ident: ref102 article-title: Cluster canonical correlation analysis publication-title: Proc 31th Annu Int Conf Mach Learn – volume: 27 start-page: 1543 year: 2019 ident: ref118 article-title: A multi-view and multi-exemplar fuzzy clustering approach: Theoretical analysis and experimental studies publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2018.2883022 – ident: ref49 doi: 10.1145/3182384 – ident: ref108 doi: 10.1111/j.1541-0420.2010.01392.x – year: 2016 ident: ref2 publication-title: The Blind Men and the Elephant – start-page: 723 year: 0 ident: ref115 article-title: Fusion of similarity data in clustering publication-title: Proc 18th Int Conf Neural Inf Process Syst – ident: ref90 doi: 10.1109/TPAMI.2018.2879108 – ident: ref44 doi: 10.1073/pnas.0308531101 – volume: 12 start-page: 2211 year: 2011 ident: ref81 article-title: Multiple kernel learning algorithms publication-title: J Mach Learn Res – ident: ref59 doi: 10.1016/j.ins.2019.02.008 – start-page: 3196 year: 0 ident: ref204 article-title: Self-paced learning for matrix factorization publication-title: Proc 29th AAAI Conf Artif Intell – ident: ref84 doi: 10.1109/ICDM.2012.43 – start-page: 2149 year: 0 ident: ref114 article-title: Robust multi-view spectral clustering via low-rank and sparse decomposition publication-title: Proc 28th AAAI Conf Artif Intell – ident: ref95 doi: 10.1109/ICDM.2009.138 – ident: ref163 doi: 10.1109/ICCV.2013.328 – ident: ref107 doi: 10.1186/1471-2156-15-73 – ident: ref209 doi: 10.1007/s10994-016-5624-2 – ident: ref129 doi: 10.1109/TPAMI.2016.2598339 – ident: ref85 doi: 10.1109/ICPR.2014.648 – volume: 5 start-page: 27 year: 2004 ident: ref77 article-title: Learning the kernel matrix with semidefinite programming publication-title: J Mach Learn Res – volume: 5 start-page: 361 year: 2004 ident: ref187 article-title: RCV1: A new benchmark collection for text categorization research publication-title: J Mach Learn Res – start-page: 1583 year: 0 ident: ref26 article-title: Co-regularized kernel k-means for multi-view clustering publication-title: Proc 23rd Int Conf Pattern Recognit – ident: ref78 doi: 10.1145/1015330.1015424 – volume: 5 start-page: 845 year: 2004 ident: ref196 article-title: Feature selection for unsupervised learning publication-title: J Mach Learn Res – ident: ref127 doi: 10.1145/2647868.2654902 – start-page: 4055 year: 0 ident: ref152 article-title: Multi-task multi-view clustering for non-negative data publication-title: Proc 24th Int Conf Artif Intell – ident: ref113 doi: 10.1145/1273496.1273642 – ident: ref166 doi: 10.1109/CVPR.2005.177 – ident: ref15 doi: 10.1109/TCYB.2018.2887094 – ident: ref104 doi: 10.1137/1.9781611972788.74 – start-page: 318 year: 0 ident: ref61 article-title: Multiple incomplete views clustering via weighted nonnegative matrix factorization with l21 regularization publication-title: Proc Eur Conf Mach Learn Knowl Discovery Databases – ident: ref50 doi: 10.1137/1.9781611972757.70 – ident: ref57 doi: 10.1016/j.neunet.2019.10.010 – ident: ref168 doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 97 year: 2019 ident: ref208 article-title: Auto-weighted multi-view clustering via deep matrix decomposition publication-title: Pattern Recognit – start-page: 1 year: 0 ident: ref101 article-title: Correlational spectral clustering publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref12 doi: 10.1007/978-3-642-04277-5_21 – ident: ref13 doi: 10.1109/TNN.2010.2081999 – ident: ref65 doi: 10.24963/ijcai.2017/396 – ident: ref92 doi: 10.1016/j.neucom.2017.09.060 – start-page: 51 year: 0 ident: ref144 article-title: Multi-view clustering ensembles publication-title: Proc Int Conf Mach Learn Cybern – ident: ref74 doi: 10.1007/978-3-642-04274-4_2 – ident: ref110 doi: 10.1016/j.patcog.2020.107524 – ident: ref198 doi: 10.3390/make1010020 – start-page: 20 year: 0 ident: ref112 article-title: Spectral clustering with two views publication-title: Proc 22th Annu Int Conf Mach Learn Workshop Learn Multiple Views – start-page: 1417 year: 0 ident: ref75 article-title: Generalized maximum margin clustering and unsupervised kernel learning publication-title: Proc Adv Neural Inf Process Syst – start-page: 2997 year: 0 ident: ref172 article-title: Collaborative PLSA for multi-view clustering publication-title: Proc 21st Int Conf Pattern Recognit – ident: ref201 doi: 10.1109/BigData.2017.8257992 – volume: 4 start-page: 1 year: 2014 ident: ref141 article-title: Critical limitations of consensus clustering in class discovery publication-title: Int J Pattern Recognit Artif Intell – start-page: 67 year: 1997 ident: ref21 publication-title: Handbook of Mactrices – ident: ref40 doi: 10.1016/j.knosys.2019.06.006 – ident: ref202 doi: 10.1109/ICPR.2016.7899961 – ident: ref137 doi: 10.1142/S0218001411008683 – ident: ref140 doi: 10.1093/bioinformatics/btt425 – start-page: 2357 year: 0 ident: ref150 article-title: Self-adapted multi-task clustering publication-title: Proc 25th Int Joint Conf Artif Intell – start-page: 824 year: 0 ident: ref157 article-title: A co-regularized approach to semi-supervised learning with multiple views publication-title: Proc Int Conf Mach Learn Workshop Learn Multiple Views – ident: ref145 doi: 10.1016/j.ins.2019.01.018 – ident: ref139 doi: 10.1109/ICIP.2013.6738834 – volume: 15 start-page: 2949 year: 2014 ident: ref124 article-title: Multimodal learning with deep Boltzmann machines publication-title: J Mach Learn Res – start-page: 151 year: 0 ident: ref161 article-title: Cross-modal image clustering via canonical correlation analysis publication-title: Proc 29th AAAI Conf Artif Intell – ident: ref88 doi: 10.1109/ICDM.2013.117 – ident: ref35 doi: 10.1016/j.patcog.2018.09.016 – ident: ref183 doi: 10.1093/bioinformatics/btq569 – start-page: 352 year: 0 ident: ref52 article-title: Multi-view clustering and feature learning via structured sparsity publication-title: Proc 30th Int Conf Mach Learn – ident: ref170 doi: 10.1109/TIP.2020.3010631 – volume: 33 start-page: 1489 year: 2011 ident: ref164 article-title: Centrist: A visual descriptor for scene categorization publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.224 – ident: ref46 doi: 10.1137/1.9781611972832.28 – volume: 25 start-page: 56 year: 2015 ident: ref162 article-title: Multiview cluster ensembles for multimodal MRI segmentation publication-title: Int J Imag Syst Technol doi: 10.1002/ima.22121 – ident: ref22 doi: 10.1007/s11222-007-9033-z – ident: ref93 doi: 10.1109/TKDE.2011.262 – start-page: 478 year: 0 ident: ref132 article-title: Unsupervised deep embedding for clustering analysis publication-title: Proc 33rd Int Conf Mach Learn – ident: ref67 doi: 10.24963/ijcai.2017/357 – ident: ref195 doi: 10.1145/1497577.1497578 – ident: ref94 doi: 10.1609/aaai.v34i04.6180 – start-page: 2921 year: 0 ident: ref39 article-title: Multi-view clustering via deep matrix factorization publication-title: Proc 31st AAAI Conf Artif Intell – start-page: 1273 year: 0 ident: ref79 article-title: A general and efficient multiple kernel learning algorithm publication-title: Proc 18th Int Conf Neural Inf Process Syst – ident: ref66 doi: 10.1109/CVPR.2016.578 – ident: ref185 doi: 10.1088/1742-6596/1060/1/012024 – volume: 27 start-page: 1445 year: 2016 ident: ref160 article-title: Alternative multi-view maximum entropy discrimination publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2015.2442256 – start-page: 352 year: 0 ident: ref80 article-title: Localized multiple kernel learning publication-title: Proc 25th Int Conf Mach Learn – ident: ref30 doi: 10.1016/j.neucom.2015.01.017 – ident: ref207 doi: 10.1109/CVPR.2017.237 – ident: ref72 doi: 10.1016/j.neucom.2017.06.005 – ident: ref106 doi: 10.1109/BIBM.2013.6732509 – ident: ref91 doi: 10.1109/TNN.2009.2019722 – ident: ref89 doi: 10.1016/j.patcog.2018.11.025 – start-page: 849 year: 0 ident: ref18 article-title: On spectral clustering: Analysis and an algorithm publication-title: Proc Adv Neural Inf Process Syst – ident: ref70 doi: 10.3233/IDA-160816 – ident: ref133 doi: 10.24963/ijcai.2019/409 – ident: ref180 doi: 10.1007/s13042-018-00902-5 – ident: ref210 doi: 10.1109/ICDM.2007.94 – start-page: 2153 year: 0 ident: ref32 article-title: Iterative views agreement: An iterative low-rank based structured optimization method to multi-view spectral clustering publication-title: Proc 25th Int Joint Conf Artif Intell – start-page: 3974 year: 0 ident: ref64 article-title: Multi-view self-paced learning for clustering publication-title: Proc 24th Int Joint Conf Artif Intell – year: 0 ident: ref176 article-title: Social event detection via sparse multi-modal feature selection and incremental density based clustering publication-title: Proc MediaEval – ident: ref175 doi: 10.1145/2324796.2324825 – ident: ref34 doi: 10.1109/TPAMI.2018.2877660 – start-page: 250 year: 0 ident: ref68 article-title: Composite kernels for hypertext categorisation publication-title: Proc 18th Int Conf Mach Learn – start-page: 1888 year: 0 ident: ref86 article-title: Multiple kernel k-means clustering with matrix-induced regularization publication-title: Proc 30th AAAI Conf Artif Intell – ident: ref193 doi: 10.1145/1557019.1557118 – ident: ref96 doi: 10.1109/TCYB.2014.2334595 – ident: ref51 doi: 10.1109/ICCV.2015.482 – start-page: 585 year: 0 ident: ref14 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering publication-title: Proc Adv Neural Inf Process Syst – ident: ref194 doi: 10.1109/TPAMI.2018.2847335 – start-page: 1706 year: 0 ident: ref159 article-title: Multi-view maximum entropy discrimination publication-title: Proc 23th Int Joint Conf Artif Intell – start-page: 1 year: 0 ident: ref45 article-title: Non-negative matrix factorization in multimodality data for segmentation and label prediction publication-title: Proc 16th Comput Vis Winter Workshop – ident: ref121 doi: 10.1109/TPAMI.2013.50 – year: 2016 ident: ref120 article-title: Multi-view representation learning: A survey from shallow methods to deep methods – ident: ref191 doi: 10.1109/TPAMI.2004.1262185 – ident: ref31 doi: 10.1016/j.patcog.2017.08.024 – ident: ref178 doi: 10.1109/CVPR.2007.383223 – ident: ref82 doi: 10.1162/089976698300017467 – ident: ref200 doi: 10.18637/jss.v045.i02 – ident: ref203 doi: 10.1109/TPAMI.2020.2974828 – ident: ref99 doi: 10.1016/j.ins.2016.06.004 – ident: ref24 doi: 10.1109/CVPR.2011.5995740 – start-page: 757 year: 0 ident: ref97 article-title: Multi-view sparse co-clustering via proximal alternating linearized minimization publication-title: Proc 32th Annu Int Conf Mach Learn – volume: 34 start-page: 1031 year: 2012 ident: ref182 article-title: Optimized data fusion for kernel k-means clustering publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2011.255 – ident: ref38 doi: 10.1145/2806416.2806526 – ident: ref60 doi: 10.1016/j.patcog.2020.107676 – ident: ref197 doi: 10.1198/jasa.2010.tm09415 – ident: ref73 doi: 10.1137/1.9781611972795.55 – ident: ref119 doi: 10.1609/aaai.v34i04.6052 – volume: 1 start-page: 83 year: 2018 ident: ref6 article-title: Multi-view clustering: A survey publication-title: Big data mining and analytics doi: 10.26599/BDMA.2018.9020003 – volume: 6 start-page: 1705 year: 2005 ident: ref9 article-title: Clustering with Bregman divergences publication-title: J Mach Learn Res – start-page: 1985 year: 0 ident: ref205 article-title: Deep spectral clustering learning publication-title: Proc the 34th Int Conf Mach Learn – ident: ref63 doi: 10.1109/BigData.2016.7840701 – ident: ref154 doi: 10.1007/978-3-030-04212-7_18 – ident: ref142 doi: 10.1109/TKDE.2017.2650229 – ident: ref184 doi: 10.1109/BHI.2016.7455910 – ident: ref43 doi: 10.1016/j.ins.2017.11.038 – ident: ref151 doi: 10.1016/j.neucom.2019.03.062 |
SSID | ssj0002512227 |
Score | 2.604407 |
Snippet | Clustering is a machine learning paradigm of dividing sample subjects into a number of groups such that subjects in the same groups are more similar to those... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 146 |
SubjectTerms | Canonical correlation analysis (CCA) clustering Clustering algorithms Computer science data mining k-means Machine learning Mixture models multiview learning nonnegative matrix factorization (NMF) Semisupervised learning spectral clustering subspace clustering survey Taxonomy Web pages |
Title | A Survey on Multiview Clustering |
URI | https://ieeexplore.ieee.org/document/9395530 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFH60PXlxq2Jdyhy8CCaNyWSZYyktVagXW-gtzPJysbRSGkEP_nbnZUNFxFNCMg-GLxPe_j6Aa8OFfaOkI2MMHB5JdBJpnZVYGGsdRYmnDMU7Zo_RdMEfluGyBbdNLwwiFsVn6NJtkcs3G51TqGwgAkEsN21oW8et7NVq4imkp30_rjORnhjMh_fW__PvXCJHTwQx8ARWmvJO35TQF1aVQqlMDmBWb6esJXl2851y9fuPSY3_3e8h7FfWJRuWx-EIWrg-hoOauYFVP3IX2JA95dtXfGObNSt6cClDwEarnOYmWG12AovJeD6aOhVXgqN9n0YPRsit84TCmn8SVcITqWItTYCcmC3okmkMNNeJlIGHXPnKRBhmvjDCKBmcQme9WeMZMCkwC0WmY6UNjyMUEkP7NQVSl6v1VnowqMFLdTVInPgsVmnhUHgitcinhHxaId-Dm0bipRyi8cfaLgHZrKswPP_98QXskXBZSnMJnd02xytrJexUH9qzj3G_OCSftQa5fA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFH5BPOhFVDTi2oMXE1ugnS5zJEQCClyEhFszy-MiKYZQE_31zusWNcZ4atOZaSZfp3n7-wBuNeNmRApbhOjZLBBoR8IYKyHXRjsKoo7U5O-YTIPhnD0u_EUN7qtaGETMks_Qodsslq_XKiVXWZt7nFhudmDXyH2_m1drVR4VktSuG5axyA5vz3ojYwG6XYfo0SNOHDyeWU-Rp29i6AuvSiZWBg2YlBvKs0lenHQrHfXxo1fjf3d8CAeFfmn18gNxBDVMjqFRcjdYxa_cBKtnPaebN3y31omVVeFSjMDqr1LqnGDk2QnMBw-z_tAu2BJs5brUfDBAZswn5EYBFCgjFgkZKqE9ZMRtQZelQk8xFQnhdZBJV-oA_aXLNddSeKdQT9YJnoElOC59vlShVJqFAXKBvvmeHKnO1dgrLWiX4MWqaCVOjBarODMpOjw2yMeEfFwg34K7asVr3kbjj7lNArKaV2B4_vvjG9gbzibjeDyaPl3APr0oT6y5hPp2k-KV0Rm28jo7Kp8va7uU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Multiview+Clustering&rft.jtitle=IEEE+transactions+on+artificial+intelligence&rft.au=Chao%2C+Guoqing&rft.au=Sun%2C+Shiliang&rft.au=Bi%2C+Jinbo&rft.date=2021-04-01&rft.pub=IEEE&rft.eissn=2691-4581&rft.volume=2&rft.issue=2&rft.spage=146&rft.epage=168&rft_id=info:doi/10.1109%2FTAI.2021.3065894&rft_id=info%3Apmid%2F35308425&rft.externalDocID=9395530 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-4581&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-4581&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-4581&client=summon |