Enhanced Distributed Outlier-Resilient Fusion Estimation With Novel Dimensionality Reduction Under IT-2 T-S Fuzzy System
This article addresses an enhanced distributed outlier-resilient fusion estimation problem using an interval type-2 (IT-2) Takagi-Sugeno (T-S) fuzzy model, integrating outlier detection schemes and dimensionality reduction (DR) strategies. First, the IT-2 T-S fuzzy model is employed to handle system...
Saved in:
Published in | IEEE transactions on fuzzy systems Vol. 32; no. 11; pp. 6044 - 6055 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6706 1941-0034 |
DOI | 10.1109/TFUZZ.2024.3436941 |
Cover
Loading…
Abstract | This article addresses an enhanced distributed outlier-resilient fusion estimation problem using an interval type-2 (IT-2) Takagi-Sugeno (T-S) fuzzy model, integrating outlier detection schemes and dimensionality reduction (DR) strategies. First, the IT-2 T-S fuzzy model is employed to handle system uncertainty and nonlinearity effectively. Then, the outlier-resilient local estimator is proposed using the zonotope-based set-membership filters (ZSMFs), where the outlier detection scheme only relies on the intersection between the predicted set and the measurement set. Furthermore, the compressed local estimate (LE) are designed when there are bandwidth constraints in sensor networks, and a novel DR strategy is proposed to design this compressed LE, where the compression matrix is determined by the Round-Robin protocol (RRP). After this, based on the compressed LEs, a distributed resilient zonotopic fusion estimator (DRZFE) is derived by the matrix-weighted fusion method. Note that the computational load of the DRZFE is reduced effectively due to the zonotope order reduction and the RRP-based DR independent of the online optimization. Moreover, the compensation of outliers and the compensating state estimate of RRP-based DR may improve the resilience of the algorithm and reduce information loss. Finally, two numerical examples are provided to validate the advantages and effectiveness of the proposed methods, and we use root-mean-square-error as the indicator to assess the estimation accuracy. |
---|---|
AbstractList | This article addresses an enhanced distributed outlier-resilient fusion estimation problem using an interval type-2 (IT-2) Takagi-Sugeno (T-S) fuzzy model, integrating outlier detection schemes and dimensionality reduction (DR) strategies. First, the IT-2 T-S fuzzy model is employed to handle system uncertainty and nonlinearity effectively. Then, the outlier-resilient local estimator is proposed using the zonotope-based set-membership filters (ZSMFs), where the outlier detection scheme only relies on the intersection between the predicted set and the measurement set. Furthermore, the compressed local estimate (LE) are designed when there are bandwidth constraints in sensor networks, and a novel DR strategy is proposed to design this compressed LE, where the compression matrix is determined by the Round-Robin protocol (RRP). After this, based on the compressed LEs, a distributed resilient zonotopic fusion estimator (DRZFE) is derived by the matrix-weighted fusion method. Note that the computational load of the DRZFE is reduced effectively due to the zonotope order reduction and the RRP-based DR independent of the online optimization. Moreover, the compensation of outliers and the compensating state estimate of RRP-based DR may improve the resilience of the algorithm and reduce information loss. Finally, two numerical examples are provided to validate the advantages and effectiveness of the proposed methods, and we use root-mean-square-error as the indicator to assess the estimation accuracy. |
Author | Wang, Yidi Peng, Zhaoxia Yang, Yunyi Wen, Guoguang Xiong, Kai |
Author_xml | – sequence: 1 givenname: Yunyi orcidid: 0009-0003-2964-5582 surname: Yang fullname: Yang, Yunyi email: 21118019@bjtu.edu.cn organization: Department of Mathematics and Statistics, Beijing Jiaotong University, Beijing, China – sequence: 2 givenname: Guoguang orcidid: 0000-0001-9128-1802 surname: Wen fullname: Wen, Guoguang email: guoguang.wen@bjtu.edu.cn organization: Department of Mathematics and Statistics, Beijing Jiaotong University, Beijing, China – sequence: 3 givenname: Yidi orcidid: 0000-0003-1797-0882 surname: Wang fullname: Wang, Yidi email: wangyidi_nav@163.com organization: College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, China – sequence: 4 givenname: Zhaoxia orcidid: 0000-0002-0275-9614 surname: Peng fullname: Peng, Zhaoxia email: pengzhaoxia@buaa.edu.cn organization: School of Transportation Science and Engineering, Beihang University, Beijing, China – sequence: 5 givenname: Kai orcidid: 0000-0001-9546-602X surname: Xiong fullname: Xiong, Kai email: tobelove2001@vip.tom.com organization: National Key Laboratory of Space Intelligent Control, Beijing Institute of Control Engineering, Beijing, China |
BookMark | eNpNkF1rwjAUhsNwMHX7A2MX-QNx-W5zOZxugkzQysCbUtsUM2o6mnSs_vql6sWuzgPnvC-cZwQGtrYagEeCJ4Rg9ZzMt7vdhGLKJ4wzqTi5AUMSBsKY8UFgLBmSEZZ3YOTcF8aECxIPwe_MHjKb6wK-Gucbs2994FXrK6MbtNbOBLAezltnagtnzptj5nv8NP4AP-ofXYXoUdt-n1XGd3CtizY_32xtoRu4SBCFCdqEktOpg5vOeX28B7dlVjn9cJ1jsJ3Pkuk7Wq7eFtOXJcopUR6VpWSaizgmES4JISxnvCyEkPtYlVjSohREyUwIVfBIaSVyzpgqIk4iIWKq2BjQS2_e1M41uky_m_BC06UEp7279Owu7d2lV3ch9HQJGa31v4CkWHLM_gD4H22L |
CODEN | IEFSEV |
Cites_doi | 10.1109/MAES.2020.3002001 10.1109/TAC.2023.3240383 10.1109/TCYB.2018.2843358 10.1109/TNSE.2022.3229889 10.1109/TNSE.2021.3137320 10.1109/TAC.2016.2539221 10.1016/j.cosrev.2020.100306 10.1109/ACCESS.2019.2929581 10.1109/TFUZZ.2021.3050854 10.1002/9781118761588.ch1 10.1109/tase.2024.3360600 10.1109/TAC.2019.2934389 10.1109/TASE.2023.3284668 10.1109/TAC.1968.1098790 10.1109/TSMC.2017.2697450 10.1201/b11154 10.1109/TSP.2013.2294603 10.1109/JAS.2021.1003826 10.1109/TFUZZ.2021.3063794 10.1109/TAC.2018.2863659 10.1109/TCYB.2021.3119461 10.1109/TFUZZ.2022.3156735 10.1016/j.automatica.2021.109795 10.1109/tsp.2023.3268472 10.1016/j.automatica.2021.110154 10.1109/TAC.2014.2357113 10.1016/j.inffus.2022.11.012 10.1109/TSP.2014.2323021 10.1109/TSMC.2022.3156848 10.1109/TFUZZ.2022.3221790 10.1109/TSMC.2021.3090150 10.1109/TIV.2023.3312654 10.1109/tcns.2024.3401268 10.1007/s10462-022-10355-6 10.1109/TITS.2023.3234595 10.1109/TPWRS.2023.3263203 10.1109/TFUZZ.2024.3357135 10.1109/TCYB.2022.3155755 10.1016/j.ins.2020.07.041 10.1109/TFUZZ.2022.3197876 10.1016/j.jfranklin.2022.09.054 10.1109/TSMCB.2009.2020436 10.1109/TNNLS.2022.3209135 10.1109/tgrs.2023.3289960 10.1109/TFUZZ.2023.3305088 10.1007/s12652-023-04560-6 10.1109/JSEN.2024.3392581 10.1109/TSMC.2023.3240994 10.1109/TAC.2014.2308451 10.1109/TIV.2022.3173662 10.1109/TCSI.2018.2824306 10.1016/j.ins.2023.119173 10.1109/TAC.2022.3168167 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TFUZZ.2024.3436941 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0034 |
EndPage | 6055 |
ExternalDocumentID | 10_1109_TFUZZ_2024_3436941 10620640 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61977004; 62373366; 92371207 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Hunan Province grantid: 2024JJ2064 funderid: 10.13039/501100004735 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c219t-ff63e4588170f1113c34fd556b89f062df5196a559d479e95c4339d7417558293 |
IEDL.DBID | RIE |
ISSN | 1063-6706 |
IngestDate | Tue Jul 01 01:55:40 EDT 2025 Wed Aug 27 02:33:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c219t-ff63e4588170f1113c34fd556b89f062df5196a559d479e95c4339d7417558293 |
ORCID | 0000-0001-9128-1802 0009-0003-2964-5582 0000-0003-1797-0882 0000-0001-9546-602X 0000-0002-0275-9614 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TFUZZ_2024_3436941 ieee_primary_10620640 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on fuzzy systems |
PublicationTitleAbbrev | TFUZZ |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref11 doi: 10.1109/MAES.2020.3002001 – ident: ref39 doi: 10.1109/TAC.2023.3240383 – ident: ref38 doi: 10.1109/TCYB.2018.2843358 – ident: ref23 doi: 10.1109/TNSE.2022.3229889 – ident: ref21 doi: 10.1109/TNSE.2021.3137320 – ident: ref42 doi: 10.1109/TAC.2016.2539221 – ident: ref36 doi: 10.1016/j.cosrev.2020.100306 – ident: ref34 doi: 10.1109/ACCESS.2019.2929581 – ident: ref40 doi: 10.1109/TFUZZ.2021.3050854 – ident: ref51 doi: 10.1002/9781118761588.ch1 – ident: ref22 doi: 10.1109/tase.2024.3360600 – ident: ref18 doi: 10.1109/TAC.2019.2934389 – ident: ref27 doi: 10.1109/TASE.2023.3284668 – ident: ref17 doi: 10.1109/TAC.1968.1098790 – ident: ref30 doi: 10.1109/TSMC.2017.2697450 – ident: ref15 doi: 10.1201/b11154 – ident: ref53 doi: 10.1109/TSP.2013.2294603 – ident: ref32 doi: 10.1109/JAS.2021.1003826 – ident: ref5 doi: 10.1109/TFUZZ.2021.3063794 – ident: ref49 doi: 10.1109/TAC.2018.2863659 – ident: ref45 doi: 10.1109/TCYB.2021.3119461 – ident: ref8 doi: 10.1109/TFUZZ.2022.3156735 – ident: ref14 doi: 10.1016/j.automatica.2021.109795 – ident: ref26 doi: 10.1109/tsp.2023.3268472 – ident: ref47 doi: 10.1016/j.automatica.2021.110154 – ident: ref43 doi: 10.1109/TAC.2014.2357113 – ident: ref16 doi: 10.1016/j.inffus.2022.11.012 – ident: ref41 doi: 10.1109/TSP.2014.2323021 – ident: ref44 doi: 10.1109/TSMC.2022.3156848 – ident: ref4 doi: 10.1109/TFUZZ.2022.3221790 – ident: ref50 doi: 10.1109/TSMC.2021.3090150 – ident: ref48 doi: 10.1109/TIV.2023.3312654 – ident: ref12 doi: 10.1109/tcns.2024.3401268 – ident: ref3 doi: 10.1007/s10462-022-10355-6 – ident: ref24 doi: 10.1109/TITS.2023.3234595 – ident: ref33 doi: 10.1109/TPWRS.2023.3263203 – ident: ref37 doi: 10.1109/TFUZZ.2024.3357135 – ident: ref9 doi: 10.1109/TCYB.2022.3155755 – ident: ref20 doi: 10.1016/j.ins.2020.07.041 – ident: ref35 doi: 10.1109/TFUZZ.2022.3197876 – ident: ref52 doi: 10.1016/j.jfranklin.2022.09.054 – ident: ref1 doi: 10.1109/TSMCB.2009.2020436 – ident: ref31 doi: 10.1109/TNNLS.2022.3209135 – ident: ref25 doi: 10.1109/tgrs.2023.3289960 – ident: ref7 doi: 10.1109/TFUZZ.2023.3305088 – ident: ref2 doi: 10.1007/s12652-023-04560-6 – ident: ref13 doi: 10.1109/JSEN.2024.3392581 – ident: ref6 doi: 10.1109/TSMC.2023.3240994 – ident: ref29 doi: 10.1109/TAC.2014.2308451 – ident: ref28 doi: 10.1109/TIV.2022.3173662 – ident: ref46 doi: 10.1109/TCSI.2018.2824306 – ident: ref10 doi: 10.1016/j.ins.2023.119173 – ident: ref19 doi: 10.1109/TAC.2022.3168167 |
SSID | ssj0014518 |
Score | 2.4529753 |
Snippet | This article addresses an enhanced distributed outlier-resilient fusion estimation problem using an interval type-2 (IT-2) Takagi-Sugeno (T-S) fuzzy model,... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 6044 |
SubjectTerms | Anomaly detection Dimensionality reduction Dimensionality reduction (DR) distributed fusion estimation Estimation Fuzzy systems interval type-2 (IT-2) Takagi–Sugeno (T–S) fuzzy system Noise measurement outlier detection Protocols Robot sensing systems Round–Robin protocol (RRP) Takagi-Sugeno model zonotopic set-membership filter |
Title | Enhanced Distributed Outlier-Resilient Fusion Estimation With Novel Dimensionality Reduction Under IT-2 T-S Fuzzy System |
URI | https://ieeexplore.ieee.org/document/10620640 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7qSQ8-K77JwZukbjfZbPco2lIFK2iL0suS7Ca0qK3ormh_vTPJVqogeAtLErKZPL7JzDdDyLHVwsSZCJmytslEw4ZM51qxyFoVaiWkUGjRve7KTl9cPUQPFVndcWGMMc75zNSx6Gz5-SQr8akMdrgM0fK0SBZBc_NkrW-TgYganvcmOZNxIGcMmSA57bX7gwHogqGoc8GRuvnjFppLq-JulfYa6c7G451JHutloevZ9Feoxn8PeJ2sVviSnvkFsUEWzHiTrM1yN9BqK2-SlblAhFvkozUeOlcAeoGBdDEHFpRvygIQ6iu7NW-jJ-RN0naJj2u0BeeCpzzS-1ExpN3Ju3mCps_oDV9Be3qLQWFdHZdbiV72WEh77A46mU4_qQ-VXiP9dqt33mFVTgaWwdlWMGslN8hubcSBxTT1GRc2jyKpm4mFv80tQEKpQE_JRZyYJMoE50kOuCWOoiZgi22yNJ6MzQ6h2nAMTmgzWEWCC6kVoBUFcLIZhEbkapeczGSUvvjQG6lTWYIkdRJNUaJpJdFdUsP5n6vpp37vj-_7ZBmbe1rhAVkqXktzCPii0EduXX0B70LNRA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH7a2AE4wMaYYGObD9wmlzR2nOY4QauyQZFYKhCXyE5sFY21E0sQ9K_nPTudyiSk3aLIsRw___js977vAew7I21ayphr53pcdl3MTWU0T5zTsdFSSU0e3dORGo7lt8vksiWrey6MtdYHn9kOPXpffjUrG7oqwxmuYvI8vYRXuPHLLNC1_joNZNINzDcluEojteDIRNlBPhhfXeFpMJYdIQWRN5_sQ0uJVfy-MtiE0aJFIZzkZ6epTaec_yPW-N9Nfg0bLcJkX8OQeAMv7HQLNhfZG1g7mbdgfUmK8C3c96cTHwzAjkhKl7Jg4fNZUyNGveXn9s_1DTEn2aCh6zXWx5UhkB7ZxXU9YaPZnb3BT39RPHwL7tk5ycL6Mj67EjvOecxy_gMrmc8fWBBL34bxoJ8fDnmblYGXuLrV3DklLPFbu2nkKFF9KaSrkkSZXubwbyuHoFBpPKlUMs1slpRSiKxC5JImSQ_RxTtYmc6mdgeYsYLkCV2J40gKqYxGvKIRUPai2MpK78KXhY2K30F8o_CHligrvEULsmjRWnQXtqn_l0qGrn__zPvPsDrMT0-Kk-PR9w-wRlUFkuEerNS3jf2IaKM2n_wYewTio9CU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Distributed+Outlier-Resilient+Fusion+Estimation+With+Novel+Dimensionality+Reduction+Under+IT-2+T%E2%80%93S+Fuzzy+System&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Yang%2C+Yunyi&rft.au=Wen%2C+Guoguang&rft.au=Wang%2C+Yidi&rft.au=Peng%2C+Zhaoxia&rft.date=2024-11-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=32&rft.issue=11&rft.spage=6044&rft.epage=6055&rft_id=info:doi/10.1109%2FTFUZZ.2024.3436941&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2024_3436941 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |