Enhanced Distributed Outlier-Resilient Fusion Estimation With Novel Dimensionality Reduction Under IT-2 T-S Fuzzy System

This article addresses an enhanced distributed outlier-resilient fusion estimation problem using an interval type-2 (IT-2) Takagi-Sugeno (T-S) fuzzy model, integrating outlier detection schemes and dimensionality reduction (DR) strategies. First, the IT-2 T-S fuzzy model is employed to handle system...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 32; no. 11; pp. 6044 - 6055
Main Authors Yang, Yunyi, Wen, Guoguang, Wang, Yidi, Peng, Zhaoxia, Xiong, Kai
Format Journal Article
LanguageEnglish
Published IEEE 01.11.2024
Subjects
Online AccessGet full text
ISSN1063-6706
1941-0034
DOI10.1109/TFUZZ.2024.3436941

Cover

Loading…
Abstract This article addresses an enhanced distributed outlier-resilient fusion estimation problem using an interval type-2 (IT-2) Takagi-Sugeno (T-S) fuzzy model, integrating outlier detection schemes and dimensionality reduction (DR) strategies. First, the IT-2 T-S fuzzy model is employed to handle system uncertainty and nonlinearity effectively. Then, the outlier-resilient local estimator is proposed using the zonotope-based set-membership filters (ZSMFs), where the outlier detection scheme only relies on the intersection between the predicted set and the measurement set. Furthermore, the compressed local estimate (LE) are designed when there are bandwidth constraints in sensor networks, and a novel DR strategy is proposed to design this compressed LE, where the compression matrix is determined by the Round-Robin protocol (RRP). After this, based on the compressed LEs, a distributed resilient zonotopic fusion estimator (DRZFE) is derived by the matrix-weighted fusion method. Note that the computational load of the DRZFE is reduced effectively due to the zonotope order reduction and the RRP-based DR independent of the online optimization. Moreover, the compensation of outliers and the compensating state estimate of RRP-based DR may improve the resilience of the algorithm and reduce information loss. Finally, two numerical examples are provided to validate the advantages and effectiveness of the proposed methods, and we use root-mean-square-error as the indicator to assess the estimation accuracy.
AbstractList This article addresses an enhanced distributed outlier-resilient fusion estimation problem using an interval type-2 (IT-2) Takagi-Sugeno (T-S) fuzzy model, integrating outlier detection schemes and dimensionality reduction (DR) strategies. First, the IT-2 T-S fuzzy model is employed to handle system uncertainty and nonlinearity effectively. Then, the outlier-resilient local estimator is proposed using the zonotope-based set-membership filters (ZSMFs), where the outlier detection scheme only relies on the intersection between the predicted set and the measurement set. Furthermore, the compressed local estimate (LE) are designed when there are bandwidth constraints in sensor networks, and a novel DR strategy is proposed to design this compressed LE, where the compression matrix is determined by the Round-Robin protocol (RRP). After this, based on the compressed LEs, a distributed resilient zonotopic fusion estimator (DRZFE) is derived by the matrix-weighted fusion method. Note that the computational load of the DRZFE is reduced effectively due to the zonotope order reduction and the RRP-based DR independent of the online optimization. Moreover, the compensation of outliers and the compensating state estimate of RRP-based DR may improve the resilience of the algorithm and reduce information loss. Finally, two numerical examples are provided to validate the advantages and effectiveness of the proposed methods, and we use root-mean-square-error as the indicator to assess the estimation accuracy.
Author Wang, Yidi
Peng, Zhaoxia
Yang, Yunyi
Wen, Guoguang
Xiong, Kai
Author_xml – sequence: 1
  givenname: Yunyi
  orcidid: 0009-0003-2964-5582
  surname: Yang
  fullname: Yang, Yunyi
  email: 21118019@bjtu.edu.cn
  organization: Department of Mathematics and Statistics, Beijing Jiaotong University, Beijing, China
– sequence: 2
  givenname: Guoguang
  orcidid: 0000-0001-9128-1802
  surname: Wen
  fullname: Wen, Guoguang
  email: guoguang.wen@bjtu.edu.cn
  organization: Department of Mathematics and Statistics, Beijing Jiaotong University, Beijing, China
– sequence: 3
  givenname: Yidi
  orcidid: 0000-0003-1797-0882
  surname: Wang
  fullname: Wang, Yidi
  email: wangyidi_nav@163.com
  organization: College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, China
– sequence: 4
  givenname: Zhaoxia
  orcidid: 0000-0002-0275-9614
  surname: Peng
  fullname: Peng, Zhaoxia
  email: pengzhaoxia@buaa.edu.cn
  organization: School of Transportation Science and Engineering, Beihang University, Beijing, China
– sequence: 5
  givenname: Kai
  orcidid: 0000-0001-9546-602X
  surname: Xiong
  fullname: Xiong, Kai
  email: tobelove2001@vip.tom.com
  organization: National Key Laboratory of Space Intelligent Control, Beijing Institute of Control Engineering, Beijing, China
BookMark eNpNkF1rwjAUhsNwMHX7A2MX-QNx-W5zOZxugkzQysCbUtsUM2o6mnSs_vql6sWuzgPnvC-cZwQGtrYagEeCJ4Rg9ZzMt7vdhGLKJ4wzqTi5AUMSBsKY8UFgLBmSEZZ3YOTcF8aECxIPwe_MHjKb6wK-Gucbs2994FXrK6MbtNbOBLAezltnagtnzptj5nv8NP4AP-ofXYXoUdt-n1XGd3CtizY_32xtoRu4SBCFCdqEktOpg5vOeX28B7dlVjn9cJ1jsJ3Pkuk7Wq7eFtOXJcopUR6VpWSaizgmES4JISxnvCyEkPtYlVjSohREyUwIVfBIaSVyzpgqIk4iIWKq2BjQS2_e1M41uky_m_BC06UEp7279Owu7d2lV3ch9HQJGa31v4CkWHLM_gD4H22L
CODEN IEFSEV
Cites_doi 10.1109/MAES.2020.3002001
10.1109/TAC.2023.3240383
10.1109/TCYB.2018.2843358
10.1109/TNSE.2022.3229889
10.1109/TNSE.2021.3137320
10.1109/TAC.2016.2539221
10.1016/j.cosrev.2020.100306
10.1109/ACCESS.2019.2929581
10.1109/TFUZZ.2021.3050854
10.1002/9781118761588.ch1
10.1109/tase.2024.3360600
10.1109/TAC.2019.2934389
10.1109/TASE.2023.3284668
10.1109/TAC.1968.1098790
10.1109/TSMC.2017.2697450
10.1201/b11154
10.1109/TSP.2013.2294603
10.1109/JAS.2021.1003826
10.1109/TFUZZ.2021.3063794
10.1109/TAC.2018.2863659
10.1109/TCYB.2021.3119461
10.1109/TFUZZ.2022.3156735
10.1016/j.automatica.2021.109795
10.1109/tsp.2023.3268472
10.1016/j.automatica.2021.110154
10.1109/TAC.2014.2357113
10.1016/j.inffus.2022.11.012
10.1109/TSP.2014.2323021
10.1109/TSMC.2022.3156848
10.1109/TFUZZ.2022.3221790
10.1109/TSMC.2021.3090150
10.1109/TIV.2023.3312654
10.1109/tcns.2024.3401268
10.1007/s10462-022-10355-6
10.1109/TITS.2023.3234595
10.1109/TPWRS.2023.3263203
10.1109/TFUZZ.2024.3357135
10.1109/TCYB.2022.3155755
10.1016/j.ins.2020.07.041
10.1109/TFUZZ.2022.3197876
10.1016/j.jfranklin.2022.09.054
10.1109/TSMCB.2009.2020436
10.1109/TNNLS.2022.3209135
10.1109/tgrs.2023.3289960
10.1109/TFUZZ.2023.3305088
10.1007/s12652-023-04560-6
10.1109/JSEN.2024.3392581
10.1109/TSMC.2023.3240994
10.1109/TAC.2014.2308451
10.1109/TIV.2022.3173662
10.1109/TCSI.2018.2824306
10.1016/j.ins.2023.119173
10.1109/TAC.2022.3168167
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TFUZZ.2024.3436941
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 6055
ExternalDocumentID 10_1109_TFUZZ_2024_3436941
10620640
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61977004; 62373366; 92371207
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Hunan Province
  grantid: 2024JJ2064
  funderid: 10.13039/501100004735
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c219t-ff63e4588170f1113c34fd556b89f062df5196a559d479e95c4339d7417558293
IEDL.DBID RIE
ISSN 1063-6706
IngestDate Tue Jul 01 01:55:40 EDT 2025
Wed Aug 27 02:33:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c219t-ff63e4588170f1113c34fd556b89f062df5196a559d479e95c4339d7417558293
ORCID 0000-0001-9128-1802
0009-0003-2964-5582
0000-0003-1797-0882
0000-0001-9546-602X
0000-0002-0275-9614
PageCount 12
ParticipantIDs crossref_primary_10_1109_TFUZZ_2024_3436941
ieee_primary_10620640
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref11
  doi: 10.1109/MAES.2020.3002001
– ident: ref39
  doi: 10.1109/TAC.2023.3240383
– ident: ref38
  doi: 10.1109/TCYB.2018.2843358
– ident: ref23
  doi: 10.1109/TNSE.2022.3229889
– ident: ref21
  doi: 10.1109/TNSE.2021.3137320
– ident: ref42
  doi: 10.1109/TAC.2016.2539221
– ident: ref36
  doi: 10.1016/j.cosrev.2020.100306
– ident: ref34
  doi: 10.1109/ACCESS.2019.2929581
– ident: ref40
  doi: 10.1109/TFUZZ.2021.3050854
– ident: ref51
  doi: 10.1002/9781118761588.ch1
– ident: ref22
  doi: 10.1109/tase.2024.3360600
– ident: ref18
  doi: 10.1109/TAC.2019.2934389
– ident: ref27
  doi: 10.1109/TASE.2023.3284668
– ident: ref17
  doi: 10.1109/TAC.1968.1098790
– ident: ref30
  doi: 10.1109/TSMC.2017.2697450
– ident: ref15
  doi: 10.1201/b11154
– ident: ref53
  doi: 10.1109/TSP.2013.2294603
– ident: ref32
  doi: 10.1109/JAS.2021.1003826
– ident: ref5
  doi: 10.1109/TFUZZ.2021.3063794
– ident: ref49
  doi: 10.1109/TAC.2018.2863659
– ident: ref45
  doi: 10.1109/TCYB.2021.3119461
– ident: ref8
  doi: 10.1109/TFUZZ.2022.3156735
– ident: ref14
  doi: 10.1016/j.automatica.2021.109795
– ident: ref26
  doi: 10.1109/tsp.2023.3268472
– ident: ref47
  doi: 10.1016/j.automatica.2021.110154
– ident: ref43
  doi: 10.1109/TAC.2014.2357113
– ident: ref16
  doi: 10.1016/j.inffus.2022.11.012
– ident: ref41
  doi: 10.1109/TSP.2014.2323021
– ident: ref44
  doi: 10.1109/TSMC.2022.3156848
– ident: ref4
  doi: 10.1109/TFUZZ.2022.3221790
– ident: ref50
  doi: 10.1109/TSMC.2021.3090150
– ident: ref48
  doi: 10.1109/TIV.2023.3312654
– ident: ref12
  doi: 10.1109/tcns.2024.3401268
– ident: ref3
  doi: 10.1007/s10462-022-10355-6
– ident: ref24
  doi: 10.1109/TITS.2023.3234595
– ident: ref33
  doi: 10.1109/TPWRS.2023.3263203
– ident: ref37
  doi: 10.1109/TFUZZ.2024.3357135
– ident: ref9
  doi: 10.1109/TCYB.2022.3155755
– ident: ref20
  doi: 10.1016/j.ins.2020.07.041
– ident: ref35
  doi: 10.1109/TFUZZ.2022.3197876
– ident: ref52
  doi: 10.1016/j.jfranklin.2022.09.054
– ident: ref1
  doi: 10.1109/TSMCB.2009.2020436
– ident: ref31
  doi: 10.1109/TNNLS.2022.3209135
– ident: ref25
  doi: 10.1109/tgrs.2023.3289960
– ident: ref7
  doi: 10.1109/TFUZZ.2023.3305088
– ident: ref2
  doi: 10.1007/s12652-023-04560-6
– ident: ref13
  doi: 10.1109/JSEN.2024.3392581
– ident: ref6
  doi: 10.1109/TSMC.2023.3240994
– ident: ref29
  doi: 10.1109/TAC.2014.2308451
– ident: ref28
  doi: 10.1109/TIV.2022.3173662
– ident: ref46
  doi: 10.1109/TCSI.2018.2824306
– ident: ref10
  doi: 10.1016/j.ins.2023.119173
– ident: ref19
  doi: 10.1109/TAC.2022.3168167
SSID ssj0014518
Score 2.4529753
Snippet This article addresses an enhanced distributed outlier-resilient fusion estimation problem using an interval type-2 (IT-2) Takagi-Sugeno (T-S) fuzzy model,...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 6044
SubjectTerms Anomaly detection
Dimensionality reduction
Dimensionality reduction (DR)
distributed fusion estimation
Estimation
Fuzzy systems
interval type-2 (IT-2) Takagi–Sugeno (T–S) fuzzy system
Noise measurement
outlier detection
Protocols
Robot sensing systems
Round–Robin protocol (RRP)
Takagi-Sugeno model
zonotopic set-membership filter
Title Enhanced Distributed Outlier-Resilient Fusion Estimation With Novel Dimensionality Reduction Under IT-2 T-S Fuzzy System
URI https://ieeexplore.ieee.org/document/10620640
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7qSQ8-K77JwZukbjfZbPco2lIFK2iL0suS7Ca0qK3ormh_vTPJVqogeAtLErKZPL7JzDdDyLHVwsSZCJmytslEw4ZM51qxyFoVaiWkUGjRve7KTl9cPUQPFVndcWGMMc75zNSx6Gz5-SQr8akMdrgM0fK0SBZBc_NkrW-TgYganvcmOZNxIGcMmSA57bX7gwHogqGoc8GRuvnjFppLq-JulfYa6c7G451JHutloevZ9Feoxn8PeJ2sVviSnvkFsUEWzHiTrM1yN9BqK2-SlblAhFvkozUeOlcAeoGBdDEHFpRvygIQ6iu7NW-jJ-RN0naJj2u0BeeCpzzS-1ExpN3Ju3mCps_oDV9Be3qLQWFdHZdbiV72WEh77A46mU4_qQ-VXiP9dqt33mFVTgaWwdlWMGslN8hubcSBxTT1GRc2jyKpm4mFv80tQEKpQE_JRZyYJMoE50kOuCWOoiZgi22yNJ6MzQ6h2nAMTmgzWEWCC6kVoBUFcLIZhEbkapeczGSUvvjQG6lTWYIkdRJNUaJpJdFdUsP5n6vpp37vj-_7ZBmbe1rhAVkqXktzCPii0EduXX0B70LNRA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH7a2AE4wMaYYGObD9wmlzR2nOY4QauyQZFYKhCXyE5sFY21E0sQ9K_nPTudyiSk3aLIsRw___js977vAew7I21ayphr53pcdl3MTWU0T5zTsdFSSU0e3dORGo7lt8vksiWrey6MtdYHn9kOPXpffjUrG7oqwxmuYvI8vYRXuPHLLNC1_joNZNINzDcluEojteDIRNlBPhhfXeFpMJYdIQWRN5_sQ0uJVfy-MtiE0aJFIZzkZ6epTaec_yPW-N9Nfg0bLcJkX8OQeAMv7HQLNhfZG1g7mbdgfUmK8C3c96cTHwzAjkhKl7Jg4fNZUyNGveXn9s_1DTEn2aCh6zXWx5UhkB7ZxXU9YaPZnb3BT39RPHwL7tk5ycL6Mj67EjvOecxy_gMrmc8fWBBL34bxoJ8fDnmblYGXuLrV3DklLPFbu2nkKFF9KaSrkkSZXubwbyuHoFBpPKlUMs1slpRSiKxC5JImSQ_RxTtYmc6mdgeYsYLkCV2J40gKqYxGvKIRUPai2MpK78KXhY2K30F8o_CHligrvEULsmjRWnQXtqn_l0qGrn__zPvPsDrMT0-Kk-PR9w-wRlUFkuEerNS3jf2IaKM2n_wYewTio9CU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Distributed+Outlier-Resilient+Fusion+Estimation+With+Novel+Dimensionality+Reduction+Under+IT-2+T%E2%80%93S+Fuzzy+System&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Yang%2C+Yunyi&rft.au=Wen%2C+Guoguang&rft.au=Wang%2C+Yidi&rft.au=Peng%2C+Zhaoxia&rft.date=2024-11-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=32&rft.issue=11&rft.spage=6044&rft.epage=6055&rft_id=info:doi/10.1109%2FTFUZZ.2024.3436941&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2024_3436941
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon