Online Linear Quadratic Tracking With Regret Guarantees

Online learning algorithms for dynamical systems provide finite time guarantees for control in the presence of sequentially revealed cost functions. We pose the classical linear quadratic tracking problem in the framework of online optimization where the time-varying reference state is unknown a pri...

Full description

Saved in:
Bibliographic Details
Published inIEEE control systems letters Vol. 7; p. 1
Main Authors Karapetyan, Aren, Bolliger, Diego, Tsiamis, Anastasios, Balta, Efe C., Lygeros, John
Format Journal Article
LanguageEnglish
Published IEEE 01.01.2023
Subjects
Online AccessGet full text
ISSN2475-1456
2475-1456
DOI10.1109/LCSYS.2023.3345809

Cover

Abstract Online learning algorithms for dynamical systems provide finite time guarantees for control in the presence of sequentially revealed cost functions. We pose the classical linear quadratic tracking problem in the framework of online optimization where the time-varying reference state is unknown a priori and is revealed after the applied control input. We show the equivalence of this problem to the control of linear systems subject to adversarial disturbances and propose a novel online gradient descent-based algorithm to achieve efficient tracking in finite time. We provide a dynamic regret upper bound scaling linearly with the path length of the reference trajectory and a numerical example to corroborate the theoretical guarantees.
AbstractList Online learning algorithms for dynamical systems provide finite time guarantees for control in the presence of sequentially revealed cost functions. We pose the classical linear quadratic tracking problem in the framework of online optimization where the time-varying reference state is unknown a priori and is revealed after the applied control input. We show the equivalence of this problem to the control of linear systems subject to adversarial disturbances and propose a novel online gradient descent-based algorithm to achieve efficient tracking in finite time. We provide a dynamic regret upper bound scaling linearly with the path length of the reference trajectory and a numerical example to corroborate the theoretical guarantees.
Author Karapetyan, Aren
Balta, Efe C.
Tsiamis, Anastasios
Lygeros, John
Bolliger, Diego
Author_xml – sequence: 1
  givenname: Aren
  orcidid: 0000-0001-8493-5820
  surname: Karapetyan
  fullname: Karapetyan, Aren
  organization: Department of Information Technology and Electrical Engineering, Automatic Control Laboratory, ETH Zürich, Zürich, Switzerland
– sequence: 2
  givenname: Diego
  surname: Bolliger
  fullname: Bolliger, Diego
  organization: School of Engineering, ZHAW Zurich University of Applied Sciences, Winterthur, Switzerland
– sequence: 3
  givenname: Anastasios
  orcidid: 0000-0002-7935-7541
  surname: Tsiamis
  fullname: Tsiamis, Anastasios
  organization: Department of Information Technology and Electrical Engineering, Automatic Control Laboratory, ETH Zürich, Zürich, Switzerland
– sequence: 4
  givenname: Efe C.
  orcidid: 0000-0001-8596-8739
  surname: Balta
  fullname: Balta, Efe C.
  organization: Inspire AG, Zürich, Switzerland
– sequence: 5
  givenname: John
  orcidid: 0000-0002-6159-1962
  surname: Lygeros
  fullname: Lygeros, John
  organization: Department of Information Technology and Electrical Engineering, Automatic Control Laboratory, ETH Zürich, Zürich, Switzerland
BookMark eNpNj8FKAzEQhoNUsNa-gHjIC2ydJLub5CiLVmGhaCviKWST2RqtW0m2B9_ere2hl38Gfr5hvksy6rYdEnLNYMYY6Nu6Wr4vZxy4mAmRFwr0GRnzXBYZy4tydLJfkGlKnwDAFJfA9ZjIRbcJHdJ6CBvp8876aPvg6Cpa9xW6NX0L_Qd9wXXEns53NtquR0xX5Ly1m4TT45yQ14f7VfWY1Yv5U3VXZ44z3WeuKbQsmVQgFIBvhn9LCd75VnqQjdfCMt5oRJt7QAeet4UfQgntmMqlmBB-uOviNqWIrfmJ4dvGX8PA7O3Nv73Z25uj_QDdHKCAiCeAKIeWiT-Bylea
CODEN ICSLBO
Cites_doi 10.1109/CDC51059.2022.9992705
10.1109/CDC51059.2022.9992965
10.1109/CDC51059.2022.9992773
10.23919/ACC50511.2021.9483108
10.1016/j.ifacol.2023.10.1340
10.1109/IEEECONF56349.2022.10052021
10.1016/j.ifacol.2023.10.1342
10.1002/9781118122631
10.1016/j.ifacol.2020.12.1258
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LCSYS.2023.3345809
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2475-1456
EndPage 1
ExternalDocumentID 10_1109_LCSYS_2023_3345809
10368091
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
EJD
RIG
ID FETCH-LOGICAL-c219t-cb597617803800db110670dcdf7d07bd93a12b9eea4d0ec0d2f5dd2f839c18473
IEDL.DBID RIE
ISSN 2475-1456
IngestDate Tue Jul 01 04:06:43 EDT 2025
Wed Aug 27 02:35:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c219t-cb597617803800db110670dcdf7d07bd93a12b9eea4d0ec0d2f5dd2f839c18473
ORCID 0000-0001-8493-5820
0000-0002-7935-7541
0000-0001-8596-8739
0000-0002-6159-1962
PageCount 1
ParticipantIDs ieee_primary_10368091
crossref_primary_10_1109_LCSYS_2023_3345809
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE control systems letters
PublicationTitleAbbrev LCSYS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
References ref12
ref11
Beuchat (ref19) 2023
Abbasi-Yadkori (ref3)
ref10
Yu (ref18) 2020; 33
Foster (ref2)
Green (ref14) 2012
Zinkevich (ref13)
ref17
ref16
ref9
ref4
Karapetyan (ref20) 2020
ref6
ref5
Li (ref7) 2019; 32
Hazan (ref1)
Kakade (ref15)
Hauswirth (ref8) 2021
References_xml – start-page: 1
  year: 2023
  ident: ref19
  article-title: N-rotor vehicles: Modelling, control, and estimation
  publication-title: ETH Zurich Res. Collection
– ident: ref17
  doi: 10.1109/CDC51059.2022.9992705
– ident: ref6
  doi: 10.1109/CDC51059.2022.9992965
– ident: ref12
  doi: 10.1109/CDC51059.2022.9992773
– ident: ref16
  doi: 10.23919/ACC50511.2021.9483108
– ident: ref5
  doi: 10.1016/j.ifacol.2023.10.1340
– volume: 33
  start-page: 1994
  year: 2020
  ident: ref18
  article-title: The power of predictions in Online control
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref9
  doi: 10.1109/IEEECONF56349.2022.10052021
– start-page: 369
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref3
  article-title: Tracking adversarial targets
– ident: ref10
  doi: 10.1016/j.ifacol.2023.10.1342
– ident: ref11
  doi: 10.1002/9781118122631
– volume-title: Linear Robust Control
  year: 2012
  ident: ref14
– year: 2021
  ident: ref8
  article-title: Optimization algorithms as robust feedback controllers
  publication-title: arXiv:2103.11329
– start-page: 408
  volume-title: Proc. Algorithmic Learn. Theory
  ident: ref1
  article-title: The nonstochastic control problem
– volume-title: Distributed control of flying quadrotors
  year: 2020
  ident: ref20
– start-page: 3211
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref2
  article-title: Logarithmic regret for adversarial Online control
– ident: ref4
  doi: 10.1016/j.ifacol.2020.12.1258
– start-page: 928
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref13
  article-title: Online convex programming and generalized infinitesimal gradient ascent
– volume: 32
  start-page: 1
  year: 2019
  ident: ref7
  article-title: Online optimal control with linear dynamics and predictions: Algorithms and regret analysis
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 267
  volume-title: Proc. Nineteen. Int. Conf. Mach. Learn.
  ident: ref15
  article-title: Approximately optimal approximate reinforcement learning
SSID ssj0001827029
Score 2.22022
Snippet Online learning algorithms for dynamical systems provide finite time guarantees for control in the presence of sequentially revealed cost functions. We pose...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Complexity theory
Cost function
Costs
Heuristic algorithms
Online Control
Optimal Tracking
Steady-state
Target tracking
Trajectory
Title Online Linear Quadratic Tracking With Regret Guarantees
URI https://ieeexplore.ieee.org/document/10368091
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60Jy8-sGJ9sQdvkrjtbrLZoxRLES1oLdZTyL5QhFY0ufjrndlNsQiClxBCFpZvJ5n5ZvebIeS8D9TYCMkT54VHSU6WFNzmicuBOwCdqEzoWnI3ycczcTPP5q1YPWhhnHPh8JlL8Tbs5dulaTBVBl84zwuGWvVNsLMo1vpJqBQorVIrYQxTl7fD6fM0xf7gKeciK_DQ4ZrzWeumEpzJaIdMVtOIZ0je0qbWqfn6VaHx3_PcJdttWEmvoh3skQ232Ccy1hGlwDfBnul9U1lcb0PBQRlMkdOn1_qFPjjg3DVFY0GY3WeXzEbXj8Nx0jZKSAz8cOrEaKAFqPVjHOI_q_tYF45ZY720TGqreNUfaOVcJSxzhtmBzyxcIDgywPAkPyCdxXLhDgmVivnMMGEHrBAQammv8sxXEDXJAsf0yMUKwfI91sMoA49gqgx4l4h32eLdI11EZ-3NCMzRH8-PyRYOjymOE9KpPxp3Ck6_1mdhsb8BJImoNw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kHvTiAyvW5x68SeK2u5tNjlIsVduCtsV6CtlHqAitaHLx1zuzSbEIgpcQQhKWbzeZ-WbnmyHksg3U2AjFA5eLHCU5Moi5jQIXAXcAOpEZ37VkOIr6U3E_k7NarO61MM45n3zmQjz1e_l2aUoMlcEXzqOYoVZ9Ewy_kJVc6yekEqO4KllJY1hyPeiOX8YhdggPORcyxrTDNfOz1k_Fm5PeLhmtBlJlkbyFZaFD8_WrRuO_R7pHdmrHkt5UK2GfbLjFAVFVJVEKjBNWNH0sM4szbiiYKINBcvr8WszpkwPWXVBcLgi0-2ySae920u0HdauEwMAvpwiMBmKAaj_GwQO0uo2V4Zg1NleWKW0TnrU7OnEuE5Y5w2wnlxYO4B4Z4HiKH5LGYrlwR4SqhOXSMGE7LBbgbOk8iWSegd-kYnymRa5WCKbvVUWM1DMJlqQe7xTxTmu8W6SJ6KzdWQFz_Mf1C7LVnwwH6eBu9HBCtvFVVcDjlDSKj9KdgQtQ6HM_8d8nHKuE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Linear+Quadratic+Tracking+With+Regret+Guarantees&rft.jtitle=IEEE+control+systems+letters&rft.au=Karapetyan%2C+Aren&rft.au=Bolliger%2C+Diego&rft.au=Tsiamis%2C+Anastasios&rft.au=Balta%2C+Efe+C.&rft.date=2023-01-01&rft.issn=2475-1456&rft.eissn=2475-1456&rft.volume=7&rft.spage=3950&rft.epage=3955&rft_id=info:doi/10.1109%2FLCSYS.2023.3345809&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LCSYS_2023_3345809
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1456&client=summon