Online Linear Quadratic Tracking With Regret Guarantees
Online learning algorithms for dynamical systems provide finite time guarantees for control in the presence of sequentially revealed cost functions. We pose the classical linear quadratic tracking problem in the framework of online optimization where the time-varying reference state is unknown a pri...
Saved in:
Published in | IEEE control systems letters Vol. 7; p. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2475-1456 2475-1456 |
DOI | 10.1109/LCSYS.2023.3345809 |
Cover
Abstract | Online learning algorithms for dynamical systems provide finite time guarantees for control in the presence of sequentially revealed cost functions. We pose the classical linear quadratic tracking problem in the framework of online optimization where the time-varying reference state is unknown a priori and is revealed after the applied control input. We show the equivalence of this problem to the control of linear systems subject to adversarial disturbances and propose a novel online gradient descent-based algorithm to achieve efficient tracking in finite time. We provide a dynamic regret upper bound scaling linearly with the path length of the reference trajectory and a numerical example to corroborate the theoretical guarantees. |
---|---|
AbstractList | Online learning algorithms for dynamical systems provide finite time guarantees for control in the presence of sequentially revealed cost functions. We pose the classical linear quadratic tracking problem in the framework of online optimization where the time-varying reference state is unknown a priori and is revealed after the applied control input. We show the equivalence of this problem to the control of linear systems subject to adversarial disturbances and propose a novel online gradient descent-based algorithm to achieve efficient tracking in finite time. We provide a dynamic regret upper bound scaling linearly with the path length of the reference trajectory and a numerical example to corroborate the theoretical guarantees. |
Author | Karapetyan, Aren Balta, Efe C. Tsiamis, Anastasios Lygeros, John Bolliger, Diego |
Author_xml | – sequence: 1 givenname: Aren orcidid: 0000-0001-8493-5820 surname: Karapetyan fullname: Karapetyan, Aren organization: Department of Information Technology and Electrical Engineering, Automatic Control Laboratory, ETH Zürich, Zürich, Switzerland – sequence: 2 givenname: Diego surname: Bolliger fullname: Bolliger, Diego organization: School of Engineering, ZHAW Zurich University of Applied Sciences, Winterthur, Switzerland – sequence: 3 givenname: Anastasios orcidid: 0000-0002-7935-7541 surname: Tsiamis fullname: Tsiamis, Anastasios organization: Department of Information Technology and Electrical Engineering, Automatic Control Laboratory, ETH Zürich, Zürich, Switzerland – sequence: 4 givenname: Efe C. orcidid: 0000-0001-8596-8739 surname: Balta fullname: Balta, Efe C. organization: Inspire AG, Zürich, Switzerland – sequence: 5 givenname: John orcidid: 0000-0002-6159-1962 surname: Lygeros fullname: Lygeros, John organization: Department of Information Technology and Electrical Engineering, Automatic Control Laboratory, ETH Zürich, Zürich, Switzerland |
BookMark | eNpNj8FKAzEQhoNUsNa-gHjIC2ydJLub5CiLVmGhaCviKWST2RqtW0m2B9_ere2hl38Gfr5hvksy6rYdEnLNYMYY6Nu6Wr4vZxy4mAmRFwr0GRnzXBYZy4tydLJfkGlKnwDAFJfA9ZjIRbcJHdJ6CBvp8876aPvg6Cpa9xW6NX0L_Qd9wXXEns53NtquR0xX5Ly1m4TT45yQ14f7VfWY1Yv5U3VXZ44z3WeuKbQsmVQgFIBvhn9LCd75VnqQjdfCMt5oRJt7QAeet4UfQgntmMqlmBB-uOviNqWIrfmJ4dvGX8PA7O3Nv73Z25uj_QDdHKCAiCeAKIeWiT-Bylea |
CODEN | ICSLBO |
Cites_doi | 10.1109/CDC51059.2022.9992705 10.1109/CDC51059.2022.9992965 10.1109/CDC51059.2022.9992773 10.23919/ACC50511.2021.9483108 10.1016/j.ifacol.2023.10.1340 10.1109/IEEECONF56349.2022.10052021 10.1016/j.ifacol.2023.10.1342 10.1002/9781118122631 10.1016/j.ifacol.2020.12.1258 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/LCSYS.2023.3345809 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2475-1456 |
EndPage | 1 |
ExternalDocumentID | 10_1109_LCSYS_2023_3345809 10368091 |
Genre | orig-research |
GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION EJD RIG |
ID | FETCH-LOGICAL-c219t-cb597617803800db110670dcdf7d07bd93a12b9eea4d0ec0d2f5dd2f839c18473 |
IEDL.DBID | RIE |
ISSN | 2475-1456 |
IngestDate | Tue Jul 01 04:06:43 EDT 2025 Wed Aug 27 02:35:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c219t-cb597617803800db110670dcdf7d07bd93a12b9eea4d0ec0d2f5dd2f839c18473 |
ORCID | 0000-0001-8493-5820 0000-0002-7935-7541 0000-0001-8596-8739 0000-0002-6159-1962 |
PageCount | 1 |
ParticipantIDs | ieee_primary_10368091 crossref_primary_10_1109_LCSYS_2023_3345809 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IEEE control systems letters |
PublicationTitleAbbrev | LCSYS |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref12 ref11 Beuchat (ref19) 2023 Abbasi-Yadkori (ref3) ref10 Yu (ref18) 2020; 33 Foster (ref2) Green (ref14) 2012 Zinkevich (ref13) ref17 ref16 ref9 ref4 Karapetyan (ref20) 2020 ref6 ref5 Li (ref7) 2019; 32 Hazan (ref1) Kakade (ref15) Hauswirth (ref8) 2021 |
References_xml | – start-page: 1 year: 2023 ident: ref19 article-title: N-rotor vehicles: Modelling, control, and estimation publication-title: ETH Zurich Res. Collection – ident: ref17 doi: 10.1109/CDC51059.2022.9992705 – ident: ref6 doi: 10.1109/CDC51059.2022.9992965 – ident: ref12 doi: 10.1109/CDC51059.2022.9992773 – ident: ref16 doi: 10.23919/ACC50511.2021.9483108 – ident: ref5 doi: 10.1016/j.ifacol.2023.10.1340 – volume: 33 start-page: 1994 year: 2020 ident: ref18 article-title: The power of predictions in Online control publication-title: Adv. Neural Inf. Process. Syst. – ident: ref9 doi: 10.1109/IEEECONF56349.2022.10052021 – start-page: 369 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref3 article-title: Tracking adversarial targets – ident: ref10 doi: 10.1016/j.ifacol.2023.10.1342 – ident: ref11 doi: 10.1002/9781118122631 – volume-title: Linear Robust Control year: 2012 ident: ref14 – year: 2021 ident: ref8 article-title: Optimization algorithms as robust feedback controllers publication-title: arXiv:2103.11329 – start-page: 408 volume-title: Proc. Algorithmic Learn. Theory ident: ref1 article-title: The nonstochastic control problem – volume-title: Distributed control of flying quadrotors year: 2020 ident: ref20 – start-page: 3211 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref2 article-title: Logarithmic regret for adversarial Online control – ident: ref4 doi: 10.1016/j.ifacol.2020.12.1258 – start-page: 928 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref13 article-title: Online convex programming and generalized infinitesimal gradient ascent – volume: 32 start-page: 1 year: 2019 ident: ref7 article-title: Online optimal control with linear dynamics and predictions: Algorithms and regret analysis publication-title: Adv. Neural Inf. Process. Syst. – start-page: 267 volume-title: Proc. Nineteen. Int. Conf. Mach. Learn. ident: ref15 article-title: Approximately optimal approximate reinforcement learning |
SSID | ssj0001827029 |
Score | 2.22022 |
Snippet | Online learning algorithms for dynamical systems provide finite time guarantees for control in the presence of sequentially revealed cost functions. We pose... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 1 |
SubjectTerms | Complexity theory Cost function Costs Heuristic algorithms Online Control Optimal Tracking Steady-state Target tracking Trajectory |
Title | Online Linear Quadratic Tracking With Regret Guarantees |
URI | https://ieeexplore.ieee.org/document/10368091 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60Jy8-sGJ9sQdvkrjtbrLZoxRLES1oLdZTyL5QhFY0ufjrndlNsQiClxBCFpZvJ5n5ZvebIeS8D9TYCMkT54VHSU6WFNzmicuBOwCdqEzoWnI3ycczcTPP5q1YPWhhnHPh8JlL8Tbs5dulaTBVBl84zwuGWvVNsLMo1vpJqBQorVIrYQxTl7fD6fM0xf7gKeciK_DQ4ZrzWeumEpzJaIdMVtOIZ0je0qbWqfn6VaHx3_PcJdttWEmvoh3skQ232Ccy1hGlwDfBnul9U1lcb0PBQRlMkdOn1_qFPjjg3DVFY0GY3WeXzEbXj8Nx0jZKSAz8cOrEaKAFqPVjHOI_q_tYF45ZY720TGqreNUfaOVcJSxzhtmBzyxcIDgywPAkPyCdxXLhDgmVivnMMGEHrBAQammv8sxXEDXJAsf0yMUKwfI91sMoA49gqgx4l4h32eLdI11EZ-3NCMzRH8-PyRYOjymOE9KpPxp3Ck6_1mdhsb8BJImoNw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kHvTiAyvW5x68SeK2u5tNjlIsVduCtsV6CtlHqAitaHLx1zuzSbEIgpcQQhKWbzeZ-WbnmyHksg3U2AjFA5eLHCU5Moi5jQIXAXcAOpEZ37VkOIr6U3E_k7NarO61MM45n3zmQjz1e_l2aUoMlcEXzqOYoVZ9Ewy_kJVc6yekEqO4KllJY1hyPeiOX8YhdggPORcyxrTDNfOz1k_Fm5PeLhmtBlJlkbyFZaFD8_WrRuO_R7pHdmrHkt5UK2GfbLjFAVFVJVEKjBNWNH0sM4szbiiYKINBcvr8WszpkwPWXVBcLgi0-2ySae920u0HdauEwMAvpwiMBmKAaj_GwQO0uo2V4Zg1NleWKW0TnrU7OnEuE5Y5w2wnlxYO4B4Z4HiKH5LGYrlwR4SqhOXSMGE7LBbgbOk8iWSegd-kYnymRa5WCKbvVUWM1DMJlqQe7xTxTmu8W6SJ6KzdWQFz_Mf1C7LVnwwH6eBu9HBCtvFVVcDjlDSKj9KdgQtQ6HM_8d8nHKuE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Linear+Quadratic+Tracking+With+Regret+Guarantees&rft.jtitle=IEEE+control+systems+letters&rft.au=Karapetyan%2C+Aren&rft.au=Bolliger%2C+Diego&rft.au=Tsiamis%2C+Anastasios&rft.au=Balta%2C+Efe+C.&rft.date=2023-01-01&rft.issn=2475-1456&rft.eissn=2475-1456&rft.volume=7&rft.spage=3950&rft.epage=3955&rft_id=info:doi/10.1109%2FLCSYS.2023.3345809&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LCSYS_2023_3345809 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1456&client=summon |