EduPlanner: LLM-Based Multiagent Systems for Customized and Intelligent Instructional Design
Large language models (LLMs) have significantly advanced smart education in the artificial general intelligence era. A promising application lies in the automatic generalization of instructional design for curriculum and learning activities, focusing on two key aspects: 1) customized generation: gen...
Saved in:
Published in | IEEE transactions on learning technologies Vol. 18; pp. 416 - 427 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1939-1382 2372-0050 |
DOI | 10.1109/TLT.2025.3561332 |
Cover
Abstract | Large language models (LLMs) have significantly advanced smart education in the artificial general intelligence era. A promising application lies in the automatic generalization of instructional design for curriculum and learning activities, focusing on two key aspects: 1) customized generation: generating niche-targeted teaching content based on students' varying learning abilities and states and 2) intelligent optimization: iteratively optimizing content based on feedback from learning effectiveness or test scores. Currently, a single large LLM cannot effectively manage the entire process, posing a challenge for designing intelligent teaching plans. To address these issues, we developed EduPlanner, an LLM-based multiagent system comprising an evaluator agent, an optimizer agent, and a question analyst, working in adversarial collaboration to generate customized and intelligent instructional design for curriculum and learning activities. Taking mathematics lessons as our example, EduPlanner employs a novel Skill-Tree structure to accurately model the background mathematics knowledge of student groups, personalizing instructional design for curriculum and learning activities according to students' knowledge levels and learning abilities. In addition, we introduce the CIDDP, an LLM-based 5-D evaluation module encompassing C larity, I ntegrity, D epth, P racticality, and P ertinence, to comprehensively assess mathematics lesson plan quality and bootstrap intelligent optimization. Experiments conducted on the GSM8K and Algebra datasets demonstrate that EduPlanner excels in evaluating and optimizing instructional design for curriculum and learning activities. Ablation studies further validate the significance and effectiveness of each component within the framework. |
---|---|
AbstractList | Large language models (LLMs) have significantly advanced smart education in the artificial general intelligence era. A promising application lies in the automatic generalization of instructional design for curriculum and learning activities, focusing on two key aspects: 1) customized generation: generating niche-targeted teaching content based on students' varying learning abilities and states and 2) intelligent optimization: iteratively optimizing content based on feedback from learning effectiveness or test scores. Currently, a single large LLM cannot effectively manage the entire process, posing a challenge for designing intelligent teaching plans. To address these issues, we developed EduPlanner, an LLM-based multiagent system comprising an evaluator agent, an optimizer agent, and a question analyst, working in adversarial collaboration to generate customized and intelligent instructional design for curriculum and learning activities. Taking mathematics lessons as our example, EduPlanner employs a novel Skill-Tree structure to accurately model the background mathematics knowledge of student groups, personalizing instructional design for curriculum and learning activities according to students' knowledge levels and learning abilities. In addition, we introduce the CIDDP, an LLM-based 5-D evaluation module encompassing C larity, I ntegrity, D epth, P racticality, and P ertinence, to comprehensively assess mathematics lesson plan quality and bootstrap intelligent optimization. Experiments conducted on the GSM8K and Algebra datasets demonstrate that EduPlanner excels in evaluating and optimizing instructional design for curriculum and learning activities. Ablation studies further validate the significance and effectiveness of each component within the framework. |
Author | Luo, Yawei Zhang, Xueqiao Xiao, Jun Zhang, Chao Sun, Jianwen Yang, Yi |
Author_xml | – sequence: 1 givenname: Xueqiao orcidid: 0009-0003-8185-6002 surname: Zhang fullname: Zhang, Xueqiao organization: School of Software Technology, Zhejiang University, Ningbo, China – sequence: 2 givenname: Chao surname: Zhang fullname: Zhang, Chao organization: School of Software Technology, Zhejiang University, Ningbo, China – sequence: 3 givenname: Jianwen orcidid: 0000-0002-0951-1072 surname: Sun fullname: Sun, Jianwen organization: Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan, China – sequence: 4 givenname: Jun orcidid: 0000-0002-6142-9914 surname: Xiao fullname: Xiao, Jun organization: College of Computer Science and Technology, Zhejiang University, Hangzhou, China – sequence: 5 givenname: Yi orcidid: 0000-0002-0512-880X surname: Yang fullname: Yang, Yi organization: College of Computer Science and Technology, Zhejiang University, Hangzhou, China – sequence: 6 givenname: Yawei orcidid: 0000-0002-7037-1806 surname: Luo fullname: Luo, Yawei email: yaweiluo@zju.edu.cn organization: School of Software Technology, Zhejiang University, Ningbo, China |
BookMark | eNpNkLFOwzAURS1UJNrCzsCQH0h5tmOnZoNSIFIqkCgbUuTkvVRBqYNiZyhfT0s7MN3lnDucCRu5zhFj1xxmnIO5XefrmQChZlJpLqU4Y2MhUxEDKBixMTfSxFzOxQWbeP8FoEVqxJh9LnF4a61z1N9Feb6KH6wnjFZDGxq7IRei950PtPVR3fXRYvCh2zY_e8I6jDIXqG2bPyxzPvRDFZrO2TZ6JN9s3CU7r23r6eq0U_bxtFwvXuL89Tlb3OdxJbgJcamRAEupZK0RrcUUNKVJAnVpE10qkMakUiAqqiQi6Tna2laorEKZzLmcMjj-Vn3nfU918d03W9vvCg7FoU6xr1Mc6hSnOnvl5qg0RPQPN1pDkshf3LJkyQ |
CODEN | ITLTAT |
Cites_doi | 10.1609/aaai.v38i16.29714 10.4018/979-8-3693-6527-4.ch003 10.1631/FITEE.2300747 10.1109/TLT.2023.3242712 10.1109/TLT.2020.2988253 10.18653/v1/2024.acl-long.810 10.1109/TTS.2023.3239586 10.1038/s43588-024-00629-0 10.1109/INDICON49873.2020.9342150 10.1007/s10639-020-10116-4 10.1145/3573051.3593393 10.1109/EDUCON46332.2021.9453959 10.1145/3586183.3606763 10.1016/j.chb.2024.108346 10.1145/3581783.3612044 10.1109/TLT.2019.2911072 10.1016/j.actpsy.2023.103856 10.1109/JIOT.2019.2902410 10.1109/TLT.2024.3355015 10.1073/pnas.2115730119 10.18653/v1/2024.acl-long.776 10.1109/CAI59869.2024.00223 10.1109/TLT.2024.3384765 10.18653/v1/2024.emnlp-main.697 10.1007/s11432-024-4242-0 10.23919/MIPRO.2019.8756685 10.1109/TLT.2025.3529994 10.1145/3051457.3051466 10.1007/s11858-023-01487-2 10.1109/TLT.2024.3520413 10.1016/j.knosys.2023.111071 10.1109/TLT.2023.3264772 10.1016/j.heliyon.2024.e31887 10.18653/v1/2023.emnlp-main.814 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TLT.2025.3561332 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Education Mathematics |
EISSN | 2372-0050 |
EndPage | 427 |
ExternalDocumentID | 10_1109_TLT_2025_3561332 10966044 |
Genre | orig-research |
GrantInformation_xml | – fundername: Science and Technology grantid: 2023QNRC001 – fundername: National Key R&D Program of China grantid: SQ2023AAA01005 – fundername: Key Research and Development Program grantid: 2024Z292 – fundername: Young Elite Scientists Sponsorship Program by the China – fundername: National Natural Science Foundation of China grantid: 62293554; U2336212 funderid: 10.13039/501100001809 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LZ24F020002 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AAKDD AAKPC AARMG AASAJ AAWTH ABAZT ABJNI ABOPQ ABQJQ ABVLG ACGFO ACHQT ACIWK ADDVE AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c219t-b6de0db353f6ddaad706e7440fba46b50399732dd5ec3dde68dafacd5a5d34813 |
IEDL.DBID | RIE |
ISSN | 1939-1382 |
IngestDate | Tue Jul 01 05:05:37 EDT 2025 Wed Aug 27 02:03:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c219t-b6de0db353f6ddaad706e7440fba46b50399732dd5ec3dde68dafacd5a5d34813 |
ORCID | 0000-0002-6142-9914 0009-0003-8185-6002 0000-0002-0512-880X 0000-0002-0951-1072 0000-0002-7037-1806 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TLT_2025_3561332 ieee_primary_10966044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on learning technologies |
PublicationTitleAbbrev | TLT |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 Papineni (ref38) 2002 ref14 Zheng (ref30) 2024 Lin (ref37) 2004 ref53 ref52 ref54 Cobbe (ref17) 2021 ref16 ref19 Lifshitz (ref31) 2024 He-Yueya (ref18) 2023 Wu (ref34) 2024 Xu (ref10) 2024 ref51 ref50 ref46 ref45 ref48 ref47 Yang (ref35) 2023 ref42 ref41 ref43 (ref44) 2024 Hong (ref33) 2023 ref49 ref8 ref7 ref9 ref4 ref6 ref5 Zheng (ref39) 2024 Li (ref27) 2024 Wang (ref28) 2023 Jinxin (ref11) 2023 ref32 ref2 ref1 Yuan (ref40) 2024 Wu (ref3) 2018 Li (ref36) 2023 ref24 He-Yueya (ref15) 2024 ref23 ref26 ref25 ref20 ref22 ref21 ref29 Chen (ref12) 2023 |
References_xml | – volume-title: Proc. 12th Int. Conf. Learn. year: 2023 ident: ref12 article-title: AgentVerse: Facilitating multi-agent collaboration and exploring emergent behaviors in agents – ident: ref9 doi: 10.1609/aaai.v38i16.29714 – start-page: 68 volume-title: Proc. 17th Int. Conf. Educ. Data Mining year: 2024 ident: ref15 article-title: Evaluating and optimizing educational content with large language model judgments – year: 2018 ident: ref3 article-title: A research on teaching management of teachers in Tianzhi Normal University affiliated technical school – ident: ref24 doi: 10.4018/979-8-3693-6527-4.ch003 – volume-title: Meta year: 2024 ident: ref44 article-title: Introducing Meta Llama 3: The most capable openly available LLM to date – volume-title: Proc. 12th Int. Conf. Learn. Representations year: 2023 ident: ref33 article-title: MetaGPT: Meta programming for multi-agent collaborative framework – ident: ref29 doi: 10.1631/FITEE.2300747 – volume-title: Proc. 3rd Workshop Math. Reasoning AI at NeurIPS’23 year: 2023 ident: ref18 article-title: Solving math word problems by combining language models with symbolic solvers – year: 2023 ident: ref35 article-title: Auto-GPT for online decision making: Benchmarks and additional opinions – ident: ref48 doi: 10.1109/TLT.2023.3242712 – ident: ref46 doi: 10.1109/TLT.2020.2988253 – year: 2023 ident: ref11 article-title: CGMI: Configurable general multi-agent interaction framework – ident: ref14 doi: 10.18653/v1/2024.acl-long.810 – ident: ref47 doi: 10.1109/TTS.2023.3239586 – ident: ref2 doi: 10.1038/s43588-024-00629-0 – ident: ref53 doi: 10.1109/INDICON49873.2020.9342150 – year: 2024 ident: ref10 article-title: EduAgent: Generative student agents in learning – ident: ref49 doi: 10.1007/s10639-020-10116-4 – volume-title: Proc. 12th Int. Conf. Learn. Representations year: 2024 ident: ref30 article-title: Steve-eye: Equipping LLM-based embodied agents with visual perception in open worlds – year: 2021 ident: ref17 article-title: Training verifiers to solve math word problems – ident: ref25 doi: 10.1145/3573051.3593393 – ident: ref45 doi: 10.1109/EDUCON46332.2021.9453959 – ident: ref13 doi: 10.1145/3586183.3606763 – start-page: 74 volume-title: Text Summarization Branches Out year: 2004 ident: ref37 article-title: ROUGE: A package for automatic evaluation of summaries – ident: ref19 doi: 10.1016/j.chb.2024.108346 – ident: ref8 doi: 10.1145/3581783.3612044 – ident: ref50 doi: 10.1109/TLT.2019.2911072 – volume-title: Proc. Int. Conf. Learn. Representations Workshop Large Lang. Model Agents year: 2024 ident: ref34 article-title: AutoGen: Enabling next-gen LLM applications via multi-agent conversation – ident: ref20 doi: 10.1016/j.actpsy.2023.103856 – start-page: 51991 volume-title: Proc. 37th Int. Conf. Neural Inf. Process. Syst. year: 2023 ident: ref36 article-title: CAMEL: Communicative agents for mind exploration of large scale language model society – ident: ref54 doi: 10.1109/JIOT.2019.2902410 – year: 2024 ident: ref27 article-title: Agent hospital: A simulacrum of hospital with evolvable medical agents – ident: ref4 doi: 10.1109/TLT.2024.3355015 – start-page: 69900 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. year: 2024 ident: ref31 article-title: STEVE-1: A generative model for text-to-behavior in Minecraft – ident: ref32 doi: 10.1073/pnas.2115730119 – ident: ref43 doi: 10.18653/v1/2024.acl-long.776 – ident: ref6 doi: 10.1109/CAI59869.2024.00223 – ident: ref16 doi: 10.1109/TLT.2024.3384765 – year: 2023 ident: ref28 article-title: Voyager: An open-ended embodied agent with large language models publication-title: Trans. Mach. Learn. Res. – year: 2024 ident: ref40 article-title: Self-rewarding language models – ident: ref42 doi: 10.18653/v1/2024.emnlp-main.697 – ident: ref5 doi: 10.1007/s11432-024-4242-0 – ident: ref52 doi: 10.23919/MIPRO.2019.8756685 – ident: ref23 doi: 10.1109/TLT.2025.3529994 – ident: ref26 doi: 10.1145/3051457.3051466 – start-page: 46595 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. year: 2024 ident: ref39 article-title: Judging LLM-as-a-judge with MT-bench and ChatBot arena – ident: ref1 doi: 10.1007/s11858-023-01487-2 – ident: ref22 doi: 10.1109/TLT.2024.3520413 – ident: ref7 doi: 10.1016/j.knosys.2023.111071 – ident: ref51 doi: 10.1109/TLT.2023.3264772 – start-page: 311 volume-title: Proc. 40th Annu. Meeting Assoc. Comput. Linguistics year: 2002 ident: ref38 article-title: BLEU: A method for automatic evaluation of machine translation – ident: ref21 doi: 10.1016/j.heliyon.2024.e31887 – ident: ref41 doi: 10.18653/v1/2023.emnlp-main.814 |
SSID | ssj0062792 |
Score | 2.3754935 |
Snippet | Large language models (LLMs) have significantly advanced smart education in the artificial general intelligence era. A promising application lies in the... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 416 |
SubjectTerms | Artificial intelligence Collaboration Education Educational technology Instructional design intelligent agent large language models (LLMs) Mathematical models Mathematics Multi-agent systems multiple agents Optimization smart education Sugar Training |
Title | EduPlanner: LLM-Based Multiagent Systems for Customized and Intelligent Instructional Design |
URI | https://ieeexplore.ieee.org/document/10966044 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4lCLKSx5YGBLS-NGWDQpVi9pOrdQBKbJ9joQQKYJ06a_n7CRQkJDYosRRbJ_j-2zf9x0hlyDbRlsX1B7HJuDQVoGOGA9M14g0RY-QKkdOnkzlcM4fF2JRktU9F8Za64PPbOgu_Vk-LM3KbZXhH-60JDmvkRqOs4KsVU270inhVeeQUe96Np7h6i8WIXMQmcU__M5GIhXvRwZ7ZFrVoAgfeQlXuQ7N-pc447-ruE92S0RJb4shcEC2bNZwyZjLwI0G2Zl8SbN-HJInfOIzFdn3GzoeT4I79GNAPRFXOZ4VLUXMKcJZ2l8hOHx9XmMJlQEdfQl45nT0rT2Ln7_3kSBNMh88zPrDoEyxEBicqvJAS7ARaCZYKgGUgk4krdMMTLXiUosI8UuHxQDCGoYzoeyCQuuBUAIchZcdkXq2zOwxoT2jJEP0FltluepKBTK2HCLgXQVonxa5qgyQvBVKGolfgUS9BI2VOGMlpbFapOm6dqNc0asnf9w_Jdvu9WJr5IzUsfn2HMFCri_8IPkE_1G_oQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDMDAoxRRnh5YGFLS-NGWDQpVC0mnVOqAFDk-R0KIFEG79NdzdtJSkJDYosRKrDvH99m-7ztCLkE2dWpsUnsQaI9DU3mpz7in21pkGUaETFlycjSU_RF_HItxSVZ3XBhjjEs-Mw176c7yYaJndqsM_3CrJcn5OtnAwM9FQddaTLzSauEtTiL9znUcxrj-C0SDWZDMgh-RZ6WUioskvV0yXPShSCB5bcymaUPPf8kz_ruTe2SnxJT0thgE-2TN5FVbjrlM3aiS7Wgpzvp5QJ7xiatVZD5uaBhG3h1GMqCOiqss04qWMuYUAS3tzhAevr3MsYXKgQ6WEp5TOvhWn8XP37tckBoZ9R7ibt8riyx4GierqZdKMD6kTLBMAigFLV8aqxqYpYrLVPiIYFosABBGM5wLZRsU-g-EEmBJvOyQVPJJbo4I7WglGeK3wCjDVVsqkIHh4ANvK0D_1MnVwgHJe6Glkbg1iN9J0FmJdVZSOqtOata0K-0Kqx7_cf-CbPbjKEzCwfDphGzZVxUbJaekgqYwZwgdpum5GzBfMwjC7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EduPlanner%3A+LLM-Based+Multiagent+Systems+for+Customized+and+Intelligent+Instructional+Design&rft.jtitle=IEEE+transactions+on+learning+technologies&rft.au=Zhang%2C+Xueqiao&rft.au=Zhang%2C+Chao&rft.au=Sun%2C+Jianwen&rft.au=Xiao%2C+Jun&rft.date=2025&rft.pub=IEEE&rft.eissn=2372-0050&rft.volume=18&rft.spage=416&rft.epage=427&rft_id=info:doi/10.1109%2FTLT.2025.3561332&rft.externalDocID=10966044 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1382&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1382&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1382&client=summon |