EduPlanner: LLM-Based Multiagent Systems for Customized and Intelligent Instructional Design

Large language models (LLMs) have significantly advanced smart education in the artificial general intelligence era. A promising application lies in the automatic generalization of instructional design for curriculum and learning activities, focusing on two key aspects: 1) customized generation: gen...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on learning technologies Vol. 18; pp. 416 - 427
Main Authors Zhang, Xueqiao, Zhang, Chao, Sun, Jianwen, Xiao, Jun, Yang, Yi, Luo, Yawei
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text
ISSN1939-1382
2372-0050
DOI10.1109/TLT.2025.3561332

Cover

Abstract Large language models (LLMs) have significantly advanced smart education in the artificial general intelligence era. A promising application lies in the automatic generalization of instructional design for curriculum and learning activities, focusing on two key aspects: 1) customized generation: generating niche-targeted teaching content based on students' varying learning abilities and states and 2) intelligent optimization: iteratively optimizing content based on feedback from learning effectiveness or test scores. Currently, a single large LLM cannot effectively manage the entire process, posing a challenge for designing intelligent teaching plans. To address these issues, we developed EduPlanner, an LLM-based multiagent system comprising an evaluator agent, an optimizer agent, and a question analyst, working in adversarial collaboration to generate customized and intelligent instructional design for curriculum and learning activities. Taking mathematics lessons as our example, EduPlanner employs a novel Skill-Tree structure to accurately model the background mathematics knowledge of student groups, personalizing instructional design for curriculum and learning activities according to students' knowledge levels and learning abilities. In addition, we introduce the CIDDP, an LLM-based 5-D evaluation module encompassing C larity, I ntegrity, D epth, P racticality, and P ertinence, to comprehensively assess mathematics lesson plan quality and bootstrap intelligent optimization. Experiments conducted on the GSM8K and Algebra datasets demonstrate that EduPlanner excels in evaluating and optimizing instructional design for curriculum and learning activities. Ablation studies further validate the significance and effectiveness of each component within the framework.
AbstractList Large language models (LLMs) have significantly advanced smart education in the artificial general intelligence era. A promising application lies in the automatic generalization of instructional design for curriculum and learning activities, focusing on two key aspects: 1) customized generation: generating niche-targeted teaching content based on students' varying learning abilities and states and 2) intelligent optimization: iteratively optimizing content based on feedback from learning effectiveness or test scores. Currently, a single large LLM cannot effectively manage the entire process, posing a challenge for designing intelligent teaching plans. To address these issues, we developed EduPlanner, an LLM-based multiagent system comprising an evaluator agent, an optimizer agent, and a question analyst, working in adversarial collaboration to generate customized and intelligent instructional design for curriculum and learning activities. Taking mathematics lessons as our example, EduPlanner employs a novel Skill-Tree structure to accurately model the background mathematics knowledge of student groups, personalizing instructional design for curriculum and learning activities according to students' knowledge levels and learning abilities. In addition, we introduce the CIDDP, an LLM-based 5-D evaluation module encompassing C larity, I ntegrity, D epth, P racticality, and P ertinence, to comprehensively assess mathematics lesson plan quality and bootstrap intelligent optimization. Experiments conducted on the GSM8K and Algebra datasets demonstrate that EduPlanner excels in evaluating and optimizing instructional design for curriculum and learning activities. Ablation studies further validate the significance and effectiveness of each component within the framework.
Author Luo, Yawei
Zhang, Xueqiao
Xiao, Jun
Zhang, Chao
Sun, Jianwen
Yang, Yi
Author_xml – sequence: 1
  givenname: Xueqiao
  orcidid: 0009-0003-8185-6002
  surname: Zhang
  fullname: Zhang, Xueqiao
  organization: School of Software Technology, Zhejiang University, Ningbo, China
– sequence: 2
  givenname: Chao
  surname: Zhang
  fullname: Zhang, Chao
  organization: School of Software Technology, Zhejiang University, Ningbo, China
– sequence: 3
  givenname: Jianwen
  orcidid: 0000-0002-0951-1072
  surname: Sun
  fullname: Sun, Jianwen
  organization: Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan, China
– sequence: 4
  givenname: Jun
  orcidid: 0000-0002-6142-9914
  surname: Xiao
  fullname: Xiao, Jun
  organization: College of Computer Science and Technology, Zhejiang University, Hangzhou, China
– sequence: 5
  givenname: Yi
  orcidid: 0000-0002-0512-880X
  surname: Yang
  fullname: Yang, Yi
  organization: College of Computer Science and Technology, Zhejiang University, Hangzhou, China
– sequence: 6
  givenname: Yawei
  orcidid: 0000-0002-7037-1806
  surname: Luo
  fullname: Luo, Yawei
  email: yaweiluo@zju.edu.cn
  organization: School of Software Technology, Zhejiang University, Ningbo, China
BookMark eNpNkLFOwzAURS1UJNrCzsCQH0h5tmOnZoNSIFIqkCgbUuTkvVRBqYNiZyhfT0s7MN3lnDucCRu5zhFj1xxmnIO5XefrmQChZlJpLqU4Y2MhUxEDKBixMTfSxFzOxQWbeP8FoEVqxJh9LnF4a61z1N9Feb6KH6wnjFZDGxq7IRei950PtPVR3fXRYvCh2zY_e8I6jDIXqG2bPyxzPvRDFZrO2TZ6JN9s3CU7r23r6eq0U_bxtFwvXuL89Tlb3OdxJbgJcamRAEupZK0RrcUUNKVJAnVpE10qkMakUiAqqiQi6Tna2laorEKZzLmcMjj-Vn3nfU918d03W9vvCg7FoU6xr1Mc6hSnOnvl5qg0RPQPN1pDkshf3LJkyQ
CODEN ITLTAT
Cites_doi 10.1609/aaai.v38i16.29714
10.4018/979-8-3693-6527-4.ch003
10.1631/FITEE.2300747
10.1109/TLT.2023.3242712
10.1109/TLT.2020.2988253
10.18653/v1/2024.acl-long.810
10.1109/TTS.2023.3239586
10.1038/s43588-024-00629-0
10.1109/INDICON49873.2020.9342150
10.1007/s10639-020-10116-4
10.1145/3573051.3593393
10.1109/EDUCON46332.2021.9453959
10.1145/3586183.3606763
10.1016/j.chb.2024.108346
10.1145/3581783.3612044
10.1109/TLT.2019.2911072
10.1016/j.actpsy.2023.103856
10.1109/JIOT.2019.2902410
10.1109/TLT.2024.3355015
10.1073/pnas.2115730119
10.18653/v1/2024.acl-long.776
10.1109/CAI59869.2024.00223
10.1109/TLT.2024.3384765
10.18653/v1/2024.emnlp-main.697
10.1007/s11432-024-4242-0
10.23919/MIPRO.2019.8756685
10.1109/TLT.2025.3529994
10.1145/3051457.3051466
10.1007/s11858-023-01487-2
10.1109/TLT.2024.3520413
10.1016/j.knosys.2023.111071
10.1109/TLT.2023.3264772
10.1016/j.heliyon.2024.e31887
10.18653/v1/2023.emnlp-main.814
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TLT.2025.3561332
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Education
Mathematics
EISSN 2372-0050
EndPage 427
ExternalDocumentID 10_1109_TLT_2025_3561332
10966044
Genre orig-research
GrantInformation_xml – fundername: Science and Technology
  grantid: 2023QNRC001
– fundername: National Key R&D Program of China
  grantid: SQ2023AAA01005
– fundername: Key Research and Development Program
  grantid: 2024Z292
– fundername: Young Elite Scientists Sponsorship Program by the China
– fundername: National Natural Science Foundation of China
  grantid: 62293554; U2336212
  funderid: 10.13039/501100001809
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LZ24F020002
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AAKDD
AAKPC
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABOPQ
ABQJQ
ABVLG
ACGFO
ACHQT
ACIWK
ADDVE
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c219t-b6de0db353f6ddaad706e7440fba46b50399732dd5ec3dde68dafacd5a5d34813
IEDL.DBID RIE
ISSN 1939-1382
IngestDate Tue Jul 01 05:05:37 EDT 2025
Wed Aug 27 02:03:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c219t-b6de0db353f6ddaad706e7440fba46b50399732dd5ec3dde68dafacd5a5d34813
ORCID 0000-0002-6142-9914
0009-0003-8185-6002
0000-0002-0512-880X
0000-0002-0951-1072
0000-0002-7037-1806
PageCount 12
ParticipantIDs crossref_primary_10_1109_TLT_2025_3561332
ieee_primary_10966044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE transactions on learning technologies
PublicationTitleAbbrev TLT
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
Papineni (ref38) 2002
ref14
Zheng (ref30) 2024
Lin (ref37) 2004
ref53
ref52
ref54
Cobbe (ref17) 2021
ref16
ref19
Lifshitz (ref31) 2024
He-Yueya (ref18) 2023
Wu (ref34) 2024
Xu (ref10) 2024
ref51
ref50
ref46
ref45
ref48
ref47
Yang (ref35) 2023
ref42
ref41
ref43
(ref44) 2024
Hong (ref33) 2023
ref49
ref8
ref7
ref9
ref4
ref6
ref5
Zheng (ref39) 2024
Li (ref27) 2024
Wang (ref28) 2023
Jinxin (ref11) 2023
ref32
ref2
ref1
Yuan (ref40) 2024
Wu (ref3) 2018
Li (ref36) 2023
ref24
He-Yueya (ref15) 2024
ref23
ref26
ref25
ref20
ref22
ref21
ref29
Chen (ref12) 2023
References_xml – volume-title: Proc. 12th Int. Conf. Learn.
  year: 2023
  ident: ref12
  article-title: AgentVerse: Facilitating multi-agent collaboration and exploring emergent behaviors in agents
– ident: ref9
  doi: 10.1609/aaai.v38i16.29714
– start-page: 68
  volume-title: Proc. 17th Int. Conf. Educ. Data Mining
  year: 2024
  ident: ref15
  article-title: Evaluating and optimizing educational content with large language model judgments
– year: 2018
  ident: ref3
  article-title: A research on teaching management of teachers in Tianzhi Normal University affiliated technical school
– ident: ref24
  doi: 10.4018/979-8-3693-6527-4.ch003
– volume-title: Meta
  year: 2024
  ident: ref44
  article-title: Introducing Meta Llama 3: The most capable openly available LLM to date
– volume-title: Proc. 12th Int. Conf. Learn. Representations
  year: 2023
  ident: ref33
  article-title: MetaGPT: Meta programming for multi-agent collaborative framework
– ident: ref29
  doi: 10.1631/FITEE.2300747
– volume-title: Proc. 3rd Workshop Math. Reasoning AI at NeurIPS’23
  year: 2023
  ident: ref18
  article-title: Solving math word problems by combining language models with symbolic solvers
– year: 2023
  ident: ref35
  article-title: Auto-GPT for online decision making: Benchmarks and additional opinions
– ident: ref48
  doi: 10.1109/TLT.2023.3242712
– ident: ref46
  doi: 10.1109/TLT.2020.2988253
– year: 2023
  ident: ref11
  article-title: CGMI: Configurable general multi-agent interaction framework
– ident: ref14
  doi: 10.18653/v1/2024.acl-long.810
– ident: ref47
  doi: 10.1109/TTS.2023.3239586
– ident: ref2
  doi: 10.1038/s43588-024-00629-0
– ident: ref53
  doi: 10.1109/INDICON49873.2020.9342150
– year: 2024
  ident: ref10
  article-title: EduAgent: Generative student agents in learning
– ident: ref49
  doi: 10.1007/s10639-020-10116-4
– volume-title: Proc. 12th Int. Conf. Learn. Representations
  year: 2024
  ident: ref30
  article-title: Steve-eye: Equipping LLM-based embodied agents with visual perception in open worlds
– year: 2021
  ident: ref17
  article-title: Training verifiers to solve math word problems
– ident: ref25
  doi: 10.1145/3573051.3593393
– ident: ref45
  doi: 10.1109/EDUCON46332.2021.9453959
– ident: ref13
  doi: 10.1145/3586183.3606763
– start-page: 74
  volume-title: Text Summarization Branches Out
  year: 2004
  ident: ref37
  article-title: ROUGE: A package for automatic evaluation of summaries
– ident: ref19
  doi: 10.1016/j.chb.2024.108346
– ident: ref8
  doi: 10.1145/3581783.3612044
– ident: ref50
  doi: 10.1109/TLT.2019.2911072
– volume-title: Proc. Int. Conf. Learn. Representations Workshop Large Lang. Model Agents
  year: 2024
  ident: ref34
  article-title: AutoGen: Enabling next-gen LLM applications via multi-agent conversation
– ident: ref20
  doi: 10.1016/j.actpsy.2023.103856
– start-page: 51991
  volume-title: Proc. 37th Int. Conf. Neural Inf. Process. Syst.
  year: 2023
  ident: ref36
  article-title: CAMEL: Communicative agents for mind exploration of large scale language model society
– ident: ref54
  doi: 10.1109/JIOT.2019.2902410
– year: 2024
  ident: ref27
  article-title: Agent hospital: A simulacrum of hospital with evolvable medical agents
– ident: ref4
  doi: 10.1109/TLT.2024.3355015
– start-page: 69900
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  year: 2024
  ident: ref31
  article-title: STEVE-1: A generative model for text-to-behavior in Minecraft
– ident: ref32
  doi: 10.1073/pnas.2115730119
– ident: ref43
  doi: 10.18653/v1/2024.acl-long.776
– ident: ref6
  doi: 10.1109/CAI59869.2024.00223
– ident: ref16
  doi: 10.1109/TLT.2024.3384765
– year: 2023
  ident: ref28
  article-title: Voyager: An open-ended embodied agent with large language models
  publication-title: Trans. Mach. Learn. Res.
– year: 2024
  ident: ref40
  article-title: Self-rewarding language models
– ident: ref42
  doi: 10.18653/v1/2024.emnlp-main.697
– ident: ref5
  doi: 10.1007/s11432-024-4242-0
– ident: ref52
  doi: 10.23919/MIPRO.2019.8756685
– ident: ref23
  doi: 10.1109/TLT.2025.3529994
– ident: ref26
  doi: 10.1145/3051457.3051466
– start-page: 46595
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  year: 2024
  ident: ref39
  article-title: Judging LLM-as-a-judge with MT-bench and ChatBot arena
– ident: ref1
  doi: 10.1007/s11858-023-01487-2
– ident: ref22
  doi: 10.1109/TLT.2024.3520413
– ident: ref7
  doi: 10.1016/j.knosys.2023.111071
– ident: ref51
  doi: 10.1109/TLT.2023.3264772
– start-page: 311
  volume-title: Proc. 40th Annu. Meeting Assoc. Comput. Linguistics
  year: 2002
  ident: ref38
  article-title: BLEU: A method for automatic evaluation of machine translation
– ident: ref21
  doi: 10.1016/j.heliyon.2024.e31887
– ident: ref41
  doi: 10.18653/v1/2023.emnlp-main.814
SSID ssj0062792
Score 2.3754935
Snippet Large language models (LLMs) have significantly advanced smart education in the artificial general intelligence era. A promising application lies in the...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 416
SubjectTerms Artificial intelligence
Collaboration
Education
Educational technology
Instructional design
intelligent agent
large language models (LLMs)
Mathematical models
Mathematics
Multi-agent systems
multiple agents
Optimization
smart education
Sugar
Training
Title EduPlanner: LLM-Based Multiagent Systems for Customized and Intelligent Instructional Design
URI https://ieeexplore.ieee.org/document/10966044
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4lCLKSx5YGBLS-NGWDQpVi9pOrdQBKbJ9joQQKYJ06a_n7CRQkJDYosRRbJ_j-2zf9x0hlyDbRlsX1B7HJuDQVoGOGA9M14g0RY-QKkdOnkzlcM4fF2JRktU9F8Za64PPbOgu_Vk-LM3KbZXhH-60JDmvkRqOs4KsVU270inhVeeQUe96Np7h6i8WIXMQmcU__M5GIhXvRwZ7ZFrVoAgfeQlXuQ7N-pc447-ruE92S0RJb4shcEC2bNZwyZjLwI0G2Zl8SbN-HJInfOIzFdn3GzoeT4I79GNAPRFXOZ4VLUXMKcJZ2l8hOHx9XmMJlQEdfQl45nT0rT2Ln7_3kSBNMh88zPrDoEyxEBicqvJAS7ARaCZYKgGUgk4krdMMTLXiUosI8UuHxQDCGoYzoeyCQuuBUAIchZcdkXq2zOwxoT2jJEP0FltluepKBTK2HCLgXQVonxa5qgyQvBVKGolfgUS9BI2VOGMlpbFapOm6dqNc0asnf9w_Jdvu9WJr5IzUsfn2HMFCri_8IPkE_1G_oQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDMDAoxRRnh5YGFLS-NGWDQpVC0mnVOqAFDk-R0KIFEG79NdzdtJSkJDYosRKrDvH99m-7ztCLkE2dWpsUnsQaI9DU3mpz7in21pkGUaETFlycjSU_RF_HItxSVZ3XBhjjEs-Mw176c7yYaJndqsM_3CrJcn5OtnAwM9FQddaTLzSauEtTiL9znUcxrj-C0SDWZDMgh-RZ6WUioskvV0yXPShSCB5bcymaUPPf8kz_ruTe2SnxJT0thgE-2TN5FVbjrlM3aiS7Wgpzvp5QJ7xiatVZD5uaBhG3h1GMqCOiqss04qWMuYUAS3tzhAevr3MsYXKgQ6WEp5TOvhWn8XP37tckBoZ9R7ibt8riyx4GierqZdKMD6kTLBMAigFLV8aqxqYpYrLVPiIYFosABBGM5wLZRsU-g-EEmBJvOyQVPJJbo4I7WglGeK3wCjDVVsqkIHh4ANvK0D_1MnVwgHJe6Glkbg1iN9J0FmJdVZSOqtOata0K-0Kqx7_cf-CbPbjKEzCwfDphGzZVxUbJaekgqYwZwgdpum5GzBfMwjC7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EduPlanner%3A+LLM-Based+Multiagent+Systems+for+Customized+and+Intelligent+Instructional+Design&rft.jtitle=IEEE+transactions+on+learning+technologies&rft.au=Zhang%2C+Xueqiao&rft.au=Zhang%2C+Chao&rft.au=Sun%2C+Jianwen&rft.au=Xiao%2C+Jun&rft.date=2025&rft.pub=IEEE&rft.eissn=2372-0050&rft.volume=18&rft.spage=416&rft.epage=427&rft_id=info:doi/10.1109%2FTLT.2025.3561332&rft.externalDocID=10966044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1382&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1382&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1382&client=summon