A unified approach to resists materials design for the advanced lithographic technologies

New resist materials and processes are necessary to pattern ≤ 0.25 μm design rule circuits with advanced deep-UV, X-ray and e-beam lithographic technologies. Chemically amplified positive resist systems introduced to meet the high sensitivity and resolution requirements of the deep-uv, e-beam and x-...

Full description

Saved in:
Bibliographic Details
Published inMicroelectronic engineering Vol. 27; no. 1; pp. 367 - 370
Main Authors Nalamasu, O., Reichmanis, E., Timko, A.G., Tarascon, R., Novembre, A.E., Slater, S., Holzwarth, H., Falcigno, P., Mu¨nzel, N.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 1995
Online AccessGet full text

Cover

Loading…
Abstract New resist materials and processes are necessary to pattern ≤ 0.25 μm design rule circuits with advanced deep-UV, X-ray and e-beam lithographic technologies. Chemically amplified positive resist systems introduced to meet the high sensitivity and resolution requirements of the deep-uv, e-beam and x-ray exposure tools suffered from marginal adhesion, poor etch resistance and deteriorating process performance with post-exposure delay (PED) time. Improved resist systems such as those based on materials poly(4-acetoxystyrene-4-t-butoxycarbonyloxystyrene-sulfone) (PASTBSS) terpolymers resolved the adhesion problems and improved the etch resistance and post-exposure delay time stability. Theses resists, however, still required a covercoat for good process performance. Additionally, all the current commercial chemically amplified positive resists show varied degrees of “foot” formation on Titanium Nitride and Silicon Nitride substrates and strong linewidth dependence on PEB temperature (large Δlw/°C). We have developed a new multi-component positive chemically amplified resist called ARCH (Advanced Resist CHemically Amplified), that in addition to exhibiting excellent resolution with deep-uv, x-ray and e-beam exposures, displays no noticeable foot on Titanium Nitride, Silicon Nitride and BPSG substrates. Initial results with deep-uv lithography also indicate that linewidth dependence on post-exposure bake (PEB) is minimal. This chemically amplified resist system exhibits linear 0.25 μm resolution with a GCA XLS excimer laser stepper (0.53 NA, 248 nm) and 0.14 μm resolution with a pulsed laser point source proximity print x-ray stepper (λ centered at 1.4 nm) and 0.1 μm resolution with a JEOL JBX-5DII e-beam exposure system (at 50 keV).
AbstractList New resist materials and processes are necessary to pattern ≤ 0.25 μm design rule circuits with advanced deep-UV, X-ray and e-beam lithographic technologies. Chemically amplified positive resist systems introduced to meet the high sensitivity and resolution requirements of the deep-uv, e-beam and x-ray exposure tools suffered from marginal adhesion, poor etch resistance and deteriorating process performance with post-exposure delay (PED) time. Improved resist systems such as those based on materials poly(4-acetoxystyrene-4-t-butoxycarbonyloxystyrene-sulfone) (PASTBSS) terpolymers resolved the adhesion problems and improved the etch resistance and post-exposure delay time stability. Theses resists, however, still required a covercoat for good process performance. Additionally, all the current commercial chemically amplified positive resists show varied degrees of “foot” formation on Titanium Nitride and Silicon Nitride substrates and strong linewidth dependence on PEB temperature (large Δlw/°C). We have developed a new multi-component positive chemically amplified resist called ARCH (Advanced Resist CHemically Amplified), that in addition to exhibiting excellent resolution with deep-uv, x-ray and e-beam exposures, displays no noticeable foot on Titanium Nitride, Silicon Nitride and BPSG substrates. Initial results with deep-uv lithography also indicate that linewidth dependence on post-exposure bake (PEB) is minimal. This chemically amplified resist system exhibits linear 0.25 μm resolution with a GCA XLS excimer laser stepper (0.53 NA, 248 nm) and 0.14 μm resolution with a pulsed laser point source proximity print x-ray stepper (λ centered at 1.4 nm) and 0.1 μm resolution with a JEOL JBX-5DII e-beam exposure system (at 50 keV).
Author Nalamasu, O.
Timko, A.G.
Falcigno, P.
Holzwarth, H.
Tarascon, R.
Novembre, A.E.
Mu¨nzel, N.
Reichmanis, E.
Slater, S.
Author_xml – sequence: 1
  givenname: O.
  surname: Nalamasu
  fullname: Nalamasu, O.
  organization: AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974USA
– sequence: 2
  givenname: E.
  surname: Reichmanis
  fullname: Reichmanis, E.
  organization: AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974USA
– sequence: 3
  givenname: A.G.
  surname: Timko
  fullname: Timko, A.G.
  organization: AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974USA
– sequence: 4
  givenname: R.
  surname: Tarascon
  fullname: Tarascon, R.
  organization: AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974USA
– sequence: 5
  givenname: A.E.
  surname: Novembre
  fullname: Novembre, A.E.
  organization: AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974USA
– sequence: 6
  givenname: S.
  surname: Slater
  fullname: Slater, S.
  organization: OCG Microelectronic Materials Inc., 200 Massasoit Ave., E. Providence, R.I. 02914USA
– sequence: 7
  givenname: H.
  surname: Holzwarth
  fullname: Holzwarth, H.
  organization: OCG Microelectronic Materials AG, Klybeckstrasse 141, CH-4002, Basel ,Switzerland
– sequence: 8
  givenname: P.
  surname: Falcigno
  fullname: Falcigno, P.
  organization: OCG Microelectronic Materials AG, Klybeckstrasse 141, CH-4002, Basel ,Switzerland
– sequence: 9
  givenname: N.
  surname: Mu¨nzel
  fullname: Mu¨nzel, N.
  organization: OCG Microelectronic Materials AG, Klybeckstrasse 141, CH-4002, Basel ,Switzerland
BookMark eNp9kEtLAzEUhYNUsFb_gYssdTGaTB6T2Qil1AcU3OjCVcgkdzqRdjIkseC_d8aKSxeXC5fzHe4552jWhx4QuqLklhIq78apiprR6rrmN4TQUhTrEzSnqmKFEFLN0PxPcobOU_oYRZITNUfvS_zZ-9aDw2YYYjC2wzngCMmnnPDeZIje7BJ242Xb4zZEnDvAxh1Mb0dq53MXttEMnbc4g-36sAtbD-kCnbYjCJe_e4HeHtavq6di8_L4vFpuClvSOhfCqKZhTeUYqRoA1ghaMkdVKWtlGDcOBC8VNUyo1irhKskVsZJUTkIrZcMWiB99bQwpRWj1EP3exC9NiZ7q0VN2PWXXNdc_9ej1iN0fMRh_O3iIOlkPUyQfwWbtgv_f4BsEKG8z
CitedBy_id crossref_primary_10_1016_j_jprocont_2008_04_021
crossref_primary_10_1016_j_applthermaleng_2020_115118
crossref_primary_10_1016_0167_9317_96_00009_3
Cites_doi 10.2494/photopolymer.6.457
10.1021/cm00015a009
10.1143/JJAP.32.6059
ContentType Journal Article
Copyright 1995 Elsevier Science B.V. All rights reserved
Copyright_xml – notice: 1995 Elsevier Science B.V. All rights reserved
DBID AAYXX
CITATION
DOI 10.1016/0167-9317(94)00125-E
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5568
EndPage 370
ExternalDocumentID 10_1016_0167_9317_94_00125_E
016793179400125E
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMV
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M24
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSV
SSZ
T5K
UHS
WUQ
XFK
ZMT
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c219t-5a8bb3b7d307bee3b5123d182698a34ade54281a358fc85d76480c607d6ef66b3
IEDL.DBID .~1
ISSN 0167-9317
IngestDate Thu Sep 26 16:09:53 EDT 2024
Fri Feb 23 02:28:19 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c219t-5a8bb3b7d307bee3b5123d182698a34ade54281a358fc85d76480c607d6ef66b3
PageCount 4
ParticipantIDs crossref_primary_10_1016_0167_9317_94_00125_E
elsevier_sciencedirect_doi_10_1016_0167_9317_94_00125_E
PublicationCentury 1900
PublicationDate 1995-00-00
PublicationDateYYYYMMDD 1995-01-01
PublicationDate_xml – year: 1995
  text: 1995-00-00
PublicationDecade 1990
PublicationTitle Microelectronic engineering
PublicationYear 1995
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nalamasu (bib3) 1993; 6
Tarascon (bib4) 1994; 2195
Tanaka (bib6) 1993; 32
Reichmanis (bib1) 1992; 3
Nalamasu (bib2) 1993; 1925
M. Hintermaier et. al, 23 (1993) 295.
10.1016/0167-9317(94)00125-E_bib5
Reichmanis (10.1016/0167-9317(94)00125-E_bib1) 1992; 3
Tanaka (10.1016/0167-9317(94)00125-E_bib6) 1993; 32
Nalamasu (10.1016/0167-9317(94)00125-E_bib2) 1993; 1925
Nalamasu (10.1016/0167-9317(94)00125-E_bib3) 1993; 6
Tarascon (10.1016/0167-9317(94)00125-E_bib4) 1994; 2195
References_xml – volume: 6
  start-page: 457
  year: 1993
  ident: bib3
  publication-title: J. Photopolym. Sci. Technol.
  contributor:
    fullname: Nalamasu
– volume: 1925
  start-page: 155
  year: 1993
  ident: bib2
  publication-title: Proc. SPIE
  contributor:
    fullname: Nalamasu
– volume: 3
  start-page: 394
  year: 1992
  ident: bib1
  publication-title: Chemistry of Materials
  contributor:
    fullname: Reichmanis
– volume: 2195
  start-page: 258
  year: 1994
  ident: bib4
  publication-title: Proc. SPIE
  contributor:
    fullname: Tarascon
– volume: 32
  start-page: 6059
  year: 1993
  ident: bib6
  publication-title: Jpn. J. Appl. Phys.
  contributor:
    fullname: Tanaka
– volume: 6
  start-page: 457
  year: 1993
  ident: 10.1016/0167-9317(94)00125-E_bib3
  publication-title: J. Photopolym. Sci. Technol.
  doi: 10.2494/photopolymer.6.457
  contributor:
    fullname: Nalamasu
– volume: 3
  start-page: 394
  year: 1992
  ident: 10.1016/0167-9317(94)00125-E_bib1
  publication-title: Chemistry of Materials
  doi: 10.1021/cm00015a009
  contributor:
    fullname: Reichmanis
– volume: 1925
  start-page: 155
  year: 1993
  ident: 10.1016/0167-9317(94)00125-E_bib2
  contributor:
    fullname: Nalamasu
– volume: 2195
  start-page: 258
  year: 1994
  ident: 10.1016/0167-9317(94)00125-E_bib4
  contributor:
    fullname: Tarascon
– ident: 10.1016/0167-9317(94)00125-E_bib5
– volume: 32
  start-page: 6059
  year: 1993
  ident: 10.1016/0167-9317(94)00125-E_bib6
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.32.6059
  contributor:
    fullname: Tanaka
SSID ssj0016408
Score 1.4829437
Snippet New resist materials and processes are necessary to pattern ≤ 0.25 μm design rule circuits with advanced deep-UV, X-ray and e-beam lithographic technologies....
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 367
Title A unified approach to resists materials design for the advanced lithographic technologies
URI https://dx.doi.org/10.1016/0167-9317(94)00125-E
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQEwyIpygveWCAIaSJH4nHCqWqkGCiUpks27FFlrSCdOW3c3biqkiIgdWyLet8vvvOvvuM0K0ojeGOwEnzNJdUlDoRjvqXQk4zlztCmK9Gfn7hszl9WrDFVi2MT6scbH9v04O1HlrSQZrpqmlSnz8viNcn77JZ5QvYwfuBSj98bbI8IBgIn9IFem_fO1bPZTzdtN0Jeh_mSKrfvdOWx5keooMBKuJJv5ojtGPbY7S_RSB4gt4meN02DmAkjuTguFtiCKFh9z4xoNFewXAdEjUwIFQMiA_Hl38MIPy9J61uDO7iNTtEz6doPq1eH2fJ8FlCYsDodAlTpdZEFzUcWm0t0eDJSe2jB1EqQlVtGUQamSKsdKZkdcFpOTZ8XNTcOs41OUO77bK15wjnaiwUzJcr34nBoVfg2XWmuc55UZgRSqKQ5KrnxJAxWcwLVXqhSkFlEKqsRqiIkpQ_9laC2f5z5MW_R16ivb743F-WXKHd7mNtrwE-dPomKMg3Qbm9iQ
link.rule.ids 315,783,787,4031,4509,27935,27936,27937,45597
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYAB8RTl6YEBhpAmfiQeK5SqQNuplcpk2XmILGkF6cpv55xHVSTEwGrZlnU-331n330GuJNhHIuM4kmzNJdMhsaRGbMvhYJ5mZ9Rym018ngihjP2MufzjVoYm1bZ2P7aplfWumlxG2m6yzx3bf68pFafrMvm0TbsMAuPUacfv9ZpHhgNVL_SVfzetntbPucJd912L9lDNYkT_e6eNlzO4BAOGqxI-vVyjmArLY5hf4NB8ATe-mRV5BniSNKyg5NyQTCGxu37JAhHaw0jSZWpQRCiEoR8pH36J4jC32vW6jwmZXvPjuHzKcwG0fRp6DS_JTgxWp3S4To0hpogwVNr0pQadOU0seGDDDVlOkk5hhqepjzM4pAngWBhLxa9IBFpJoShZ9ApFkV6DsTXPalxPl_bThxPvUbXbjwjjC-CIO6C0wpJLWtSDNVmi1mhKitUJZmqhKqiLgStJNWPzVVot_8cefHvkbewO5yOR2r0PHm9hL26Et3enFxBp_xYpdeIJUpzUynLN-6BwLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+unified+approach+to+resists+materials+design+for+the+advanced+lithographic+technologies&rft.jtitle=Microelectronic+engineering&rft.au=Nalamasu%2C+O.&rft.au=Reichmanis%2C+E.&rft.au=Timko%2C+A.G.&rft.au=Tarascon%2C+R.&rft.date=1995&rft.issn=0167-9317&rft.volume=27&rft.issue=1-4&rft.spage=367&rft.epage=370&rft_id=info:doi/10.1016%2F0167-9317%2894%2900125-E&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_0167_9317_94_00125_E
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9317&client=summon