Simultaneously Improving Flame Retardant Performance, Thermal Stability and Conductivity of Copolymers of Polyethylene‐octene by Addition of a Ternary Composite Flame Retardant System
The development of high efficiency and low‐cost refractories has always been a subject that attract people‘s attention. Although polyethylene‐octene copolymers (POE) has excellent mechanical properties, it is easy to be ignited, which seriously hinders its multi‐field applications. In this paper, a...
Saved in:
Published in | ChemistrySelect (Weinheim) Vol. 7; no. 33 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
06.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2365-6549 2365-6549 |
DOI | 10.1002/slct.202201778 |
Cover
Loading…
Abstract | The development of high efficiency and low‐cost refractories has always been a subject that attract people‘s attention. Although polyethylene‐octene copolymers (POE) has excellent mechanical properties, it is easy to be ignited, which seriously hinders its multi‐field applications. In this paper, a novel ternary composite flame retardant system, ammonium polyphosphate (APP)/expanded graphite (EG)/sepiolite (SEP), was proposed and applied to POE to prepare high flame‐retardant POE composites. The experimental results showed that the addition of SEP could play a good reinforcing role, so as to improve the mechanical properties of POE/APP composites. Thermogravimetric analysis (TGA) showed that when the ratio of EG and SEP was 1 : 1, the initial thermal decomposition temperature decreased significantly, which was conducive to the early degradation and carbonization of POE/APP composites. The thermal conductivity test showed that the addition of SEP can reduce the thermal conductivity of POE/APP composites. In addition, the flame retardant test results revealed that when the ratio of EG and SEP was 1 : 1, the oxygen index (LOI) increased to 25.3 %, the heat release rate (HRR) decreased to 140 kW/m2, the total heat release (THR) decreased to 70 MJ/m2, and the carbon layer produced by combustion was dense and uniform, which contribute to the great heat insulation. In conclusion, the addition of an appropriate amount of ternary compound flame retardant (EG/SEP/APP) could have an excellent synergistic flame retardant effect on POE/APP composites, and the processing method was simple and efficient, which would benefit to broad application of the prepared POE composites.
The addition of an appropriate amount of ternary compound flame retardant (expanded graphite/sepiolite/ammonium polyphosphate) can effectively improve the flame retardancy of polyethylene‐octene (POE) composites such as increasing their oxygen index (LOI) and reducing their heat release rate (HRR) and total heat release (THR) and effectively improve the thermal stability and conductivity of POE composites, which greatly broadens their application in heat transfer materials. |
---|---|
AbstractList | The development of high efficiency and low‐cost refractories has always been a subject that attract people‘s attention. Although polyethylene‐octene copolymers (POE) has excellent mechanical properties, it is easy to be ignited, which seriously hinders its multi‐field applications. In this paper, a novel ternary composite flame retardant system, ammonium polyphosphate (APP)/expanded graphite (EG)/sepiolite (SEP), was proposed and applied to POE to prepare high flame‐retardant POE composites. The experimental results showed that the addition of SEP could play a good reinforcing role, so as to improve the mechanical properties of POE/APP composites. Thermogravimetric analysis (TGA) showed that when the ratio of EG and SEP was 1 : 1, the initial thermal decomposition temperature decreased significantly, which was conducive to the early degradation and carbonization of POE/APP composites. The thermal conductivity test showed that the addition of SEP can reduce the thermal conductivity of POE/APP composites. In addition, the flame retardant test results revealed that when the ratio of EG and SEP was 1 : 1, the oxygen index (LOI) increased to 25.3 %, the heat release rate (HRR) decreased to 140 kW/m
2
, the total heat release (THR) decreased to 70 MJ/m
2
, and the carbon layer produced by combustion was dense and uniform, which contribute to the great heat insulation. In conclusion, the addition of an appropriate amount of ternary compound flame retardant (EG/SEP/APP) could have an excellent synergistic flame retardant effect on POE/APP composites, and the processing method was simple and efficient, which would benefit to broad application of the prepared POE composites. The development of high efficiency and low‐cost refractories has always been a subject that attract people‘s attention. Although polyethylene‐octene copolymers (POE) has excellent mechanical properties, it is easy to be ignited, which seriously hinders its multi‐field applications. In this paper, a novel ternary composite flame retardant system, ammonium polyphosphate (APP)/expanded graphite (EG)/sepiolite (SEP), was proposed and applied to POE to prepare high flame‐retardant POE composites. The experimental results showed that the addition of SEP could play a good reinforcing role, so as to improve the mechanical properties of POE/APP composites. Thermogravimetric analysis (TGA) showed that when the ratio of EG and SEP was 1 : 1, the initial thermal decomposition temperature decreased significantly, which was conducive to the early degradation and carbonization of POE/APP composites. The thermal conductivity test showed that the addition of SEP can reduce the thermal conductivity of POE/APP composites. In addition, the flame retardant test results revealed that when the ratio of EG and SEP was 1 : 1, the oxygen index (LOI) increased to 25.3 %, the heat release rate (HRR) decreased to 140 kW/m2, the total heat release (THR) decreased to 70 MJ/m2, and the carbon layer produced by combustion was dense and uniform, which contribute to the great heat insulation. In conclusion, the addition of an appropriate amount of ternary compound flame retardant (EG/SEP/APP) could have an excellent synergistic flame retardant effect on POE/APP composites, and the processing method was simple and efficient, which would benefit to broad application of the prepared POE composites. The addition of an appropriate amount of ternary compound flame retardant (expanded graphite/sepiolite/ammonium polyphosphate) can effectively improve the flame retardancy of polyethylene‐octene (POE) composites such as increasing their oxygen index (LOI) and reducing their heat release rate (HRR) and total heat release (THR) and effectively improve the thermal stability and conductivity of POE composites, which greatly broadens their application in heat transfer materials. |
Author | Feng, Xi Yu, Chunming Zhang, Yafeng |
Author_xml | – sequence: 1 givenname: Yafeng orcidid: 0000-0002-2632-9547 surname: Zhang fullname: Zhang, Yafeng email: Yawind80@163.com organization: Xijing University, Xi'an – sequence: 2 givenname: Chunming surname: Yu fullname: Yu, Chunming organization: Wuxi Institute of Technology – sequence: 3 givenname: Xi surname: Feng fullname: Feng, Xi organization: Xijing University, Xi'an |
BookMark | eNqFkM9qGzEQxkVJoY6ba896gNiRtNLKewwmSQ2GhNo9L5J2tlHQSkaSHfaWR8jr9HXyJNnFJQ0tpaf5Zpjf_PlO0YkPHhD6QsmcEsIukjN5zghjhEq5-IAmrCjFrBS8OnmnP6GzlB4IIbRclEzICfq5sd3eZeUh7JPr8arbxXCw_ge-dqoD_A2yio3yGd9BbEPslDdwjrf3MEiHN1lp62zusfINXgbf7E22h7EQ2iHfBdd3ENOY3Q0a8n3vwMPL03MweRBY9_iyaWy2wY9NCm8hehX7Ae52IdkMf12y6VOG7jP62CqX4OxXnKLv11fb5dfZ-vZmtbxczwyj1WJWiUIIYmRZal5JrbkkTSGJ5kORMVEoWumFpg1vZMU4N1qoQpWlIVJQwaEtpmh-nGtiSClCW--i7YYLa0rq0ft69L5-834A-B-AsVmND-aorPs3Vh2xR-ug_8-SerNebn-zr63moT4 |
CitedBy_id | crossref_primary_10_1002_vnl_22005 crossref_primary_10_3390_polym15132927 crossref_primary_10_1002_mame_202400104 crossref_primary_10_1002_pol_20240345 |
Cites_doi | 10.1177/0892705713495432 10.1002/adv.21551 10.1007/s10853-016-0615-z 10.1039/C4RA15971C 10.1515/ipp-2020-3950 10.1002/app.33767 10.1016/j.eurpolymj.2016.01.041 10.1080/25740881.2021.1904982 10.1002/fam.2780 10.1002/app.35317 10.1177/096739111502300507 10.1016/j.polymdegradstab.2017.03.006 10.1002/app.37650 10.1515/epoly-2016-0275 10.1016/j.rinp.2019.102717 10.1016/j.polymdegradstab.2017.07.005 10.1016/j.polymdegradstab.2012.03.043 10.1007/s10853-018-2416-z 10.1080/00222348.2012.659973 10.1002/vnl.21757 10.1021/ie404302b 10.1080/03602559.2014.909473 10.1016/j.compositesb.2014.09.015 10.1177/0731684415618538 10.1007/s10973-019-08162-3 10.1007/s00289-011-0590-0 10.3139/217.2831 10.1016/j.jcis.2021.01.026 10.1007/s10973-019-08466-4 10.1016/j.jiec.2012.11.022 10.3144/expresspolymlett.2010.90 10.3866/PKU.WHXB20100908 10.1002/app.47299 10.1007/s10973-021-11120-7 10.1002/app.38920 10.1016/j.tca.2008.10.025 10.1002/pat.3715 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/slct.202201778 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2365-6549 |
EndPage | n/a |
ExternalDocumentID | 10_1002_slct_202201778 SLCT202201778 |
Genre | article |
GrantInformation_xml | – fundername: Xijing university funderid: XJ21B07 |
GroupedDBID | 0R~ 1OC 33P AAHHS AAHQN AAMNL AANLZ AAYCA AAZKR ABCUV ABDBF ACCFJ ACCZN ACGFS ACPOU ACUHS ACXQS ADBBV ADKYN ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB BFHJK BMXJE DCZOG EBS HGLYW LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI O9- ROL SUPJJ WOHZO WXSBR ZZTAW AAYXX ABJNI AEYWJ AGHNM AGYGG CITATION |
ID | FETCH-LOGICAL-c2198-953550c766b497bb470d370b450c2253a19b8b1d4d79244cb5a3a66c075154ef3 |
ISSN | 2365-6549 |
IngestDate | Tue Jul 01 04:07:49 EDT 2025 Thu Apr 24 23:03:37 EDT 2025 Wed Jan 22 16:24:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2198-953550c766b497bb470d370b450c2253a19b8b1d4d79244cb5a3a66c075154ef3 |
ORCID | 0000-0002-2632-9547 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1002_slct_202201778 crossref_citationtrail_10_1002_slct_202201778 wiley_primary_10_1002_slct_202201778_SLCT202201778 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 6, 2022 2022-09-06 |
PublicationDateYYYYMMDD | 2022-09-06 |
PublicationDate_xml | – month: 09 year: 2022 text: September 6, 2022 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | ChemistrySelect (Weinheim) |
PublicationYear | 2022 |
References | 2021; 26 2015; 5 2012; 124 2017; 28 2021; 147 2013; 127 2021; 589 2013; 129 2019; 15 2016; 76 2014; 29 2020; 10 2016; 35 2017; 138 2012; 97 2012; 30 2012; 51 2013; 19 2021; 36 2015; 23 2017; 52 2017; 96 2015; 69 2015; 28 2010; 26 2017; 17 2015; 132 2019; 138 2020; 139 2020; 26 2019; 136 2017 2020; 44 2009; 483 2017; 143 2012; 68 2021; 60 2010; 4 2018; 53 2011; 121 2014; 53 e_1_2_8_28_1 e_1_2_8_29_1 Fei W. (e_1_2_8_44_1) 2012; 30 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 Strakowska A. (e_1_2_8_30_1) 2020; 10 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_37_1 Cong D. (e_1_2_8_12_1) 2017 Polka M. (e_1_2_8_34_1) 2017; 96 Zhang F. (e_1_2_8_36_1) 2015; 132 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 Xu S. (e_1_2_8_38_1) 2021; 26 e_1_2_8_11_1 e_1_2_8_33_1 |
References_xml | – volume: 147 start-page: 8145 year: 2021 end-page: 8155 publication-title: J. Therm. Anal. Calorim. – volume: 132 year: 2015 publication-title: J. Appl. Polym. Sci. – volume: 35 start-page: 277 year: 2016 end-page: 282 publication-title: Adv. Polym. Technol. – volume: 26 start-page: 2429 year: 2010 end-page: 2436 publication-title: Acta Phys-Chim. Sin. – volume: 30 start-page: 253 year: 2012 end-page: 258 publication-title: Energy Educ. Sci. Tech. – volume: 53 start-page: 1402 year: 2014 end-page: 1407 publication-title: Q. J. P.-P. Polym-Plast. Technol. – volume: 17 start-page: 341 year: 2017 end-page: 348 publication-title: e-Polym. – volume: 96 start-page: 1095 year: 2017 end-page: 1099 publication-title: Przem. Chem. – volume: 44 start-page: 112 year: 2020 end-page: 120 publication-title: Fire Mater. – volume: 26 start-page: 423 year: 2020 end-page: 433 publication-title: J. Vinyl. Addit. Techn. – volume: 68 start-page: 803 year: 2012 end-page: 813 publication-title: Polym. Bull. – volume: 136 start-page: 47299 year: 2019 publication-title: J. Appl. Polym. Sci. – volume: 53 start-page: 4711 year: 2014 end-page: 4717 publication-title: Ind. Eng. Chem. Res. – volume: 26 year: 2021 publication-title: Mater. Today Commun. – volume: 69 start-page: 22 year: 2015 end-page: 30 publication-title: Compos. Pt. B-Eng. – volume: 35 start-page: 435 year: 2016 end-page: 444 publication-title: J. Reinf. Plast. Compos. – volume: 127 start-page: 1323 year: 2013 end-page: 1329 publication-title: J. Appl. Polym. Sci. – volume: 483 start-page: 36 year: 2009 end-page: 40 publication-title: Thermochim. Acta – volume: 28 start-page: 981 year: 2015 end-page: 994 publication-title: J. Thermoplast. Compos. – volume: 121 start-page: 2772 year: 2011 end-page: 2777 publication-title: J. Appl. Polym. Sci. – volume: 5 start-page: 16328 year: 2015 end-page: 16339 publication-title: RSC Adv. – volume: 4 start-page: 743 year: 2010 end-page: 752 publication-title: eXPRESS Polym. Lett. – volume: 139 start-page: 1091 year: 2020 end-page: 1098 publication-title: J. Therm. Anal. Calorim. – volume: 143 start-page: 164 year: 2017 end-page: 175 publication-title: Polym. Degrad. Stab. – volume: 97 start-page: 863 year: 2012 end-page: 869 publication-title: Polym. Degrad. Stab. – volume: 36 start-page: 3 year: 2021 end-page: 12 publication-title: Int. Polym. Process. – volume: 138 start-page: 1011 year: 2019 end-page: 1019 publication-title: J. Therm. Anal. Calorim. – volume: 60 start-page: 1368 year: 2021 end-page: 1376 publication-title: Polym-Plast. Tech Mat. – volume: 15 start-page: 283 year: 2019 end-page: 286 publication-title: Results Phys. – volume: 138 start-page: 142 year: 2017 end-page: 150 publication-title: Polym. Degrad. Stab. – volume: 52 start-page: 3269 year: 2017 end-page: 3280 publication-title: J. Mater. Sci. – volume: 19 start-page: 993 year: 2013 end-page: 999 publication-title: J. Ind. Eng. Chem. – volume: 23 start-page: 345 year: 2015 end-page: 350 publication-title: Polym. Polym. Compos. – volume: 124 start-page: 2814 year: 2012 end-page: 2823 publication-title: J. Appl. Polym. Sci. – volume: 53 start-page: 11378 year: 2018 end-page: 11392 publication-title: J. Mater. Sci. – volume: 129 start-page: 2063 year: 2013 end-page: 2069 publication-title: J. Appl. Polym. Sci. – volume: 51 start-page: 1822 year: 2012 end-page: 1837 publication-title: J. Macromol. Sci. B. – volume: 10 start-page: 18 year: 2020 end-page: 24 publication-title: Appl. Sci.-Basel. – volume: 29 start-page: 447 year: 2014 end-page: 453 publication-title: Int. Polym. Process. – volume: 28 start-page: 971 year: 2017 end-page: 978 publication-title: Polym. Adv. Technol. – start-page: 138 year: 2017 end-page: 150 publication-title: Polym. Degrad. Stab. – volume: 53 start-page: 1402 year: 2014 end-page: 1407 publication-title: Polym-Plast. Technol. – volume: 589 start-page: 525 year: 2021 end-page: 531 publication-title: J. Colloid Interface Sci. – volume: 76 start-page: 196 year: 2016 end-page: 207 publication-title: B. J. E. P. J. Eur. Polym. J. – ident: e_1_2_8_3_1 doi: 10.1177/0892705713495432 – ident: e_1_2_8_13_1 doi: 10.1002/adv.21551 – ident: e_1_2_8_33_1 doi: 10.1007/s10853-016-0615-z – ident: e_1_2_8_11_1 doi: 10.1039/C4RA15971C – ident: e_1_2_8_18_1 doi: 10.1515/ipp-2020-3950 – volume: 96 start-page: 1095 year: 2017 ident: e_1_2_8_34_1 publication-title: Przem. Chem. – ident: e_1_2_8_20_1 doi: 10.1002/app.33767 – volume: 132 start-page: 249923 year: 2015 ident: e_1_2_8_36_1 publication-title: J. Appl. Polym. Sci. – ident: e_1_2_8_16_1 doi: 10.1016/j.eurpolymj.2016.01.041 – ident: e_1_2_8_27_1 doi: 10.1080/25740881.2021.1904982 – volume: 10 start-page: 18 year: 2020 ident: e_1_2_8_30_1 publication-title: Appl. Sci.-Basel. – ident: e_1_2_8_35_1 doi: 10.1002/fam.2780 – ident: e_1_2_8_32_1 doi: 10.1002/app.35317 – ident: e_1_2_8_37_1 doi: 10.1177/096739111502300507 – ident: e_1_2_8_26_1 doi: 10.1016/j.polymdegradstab.2017.03.006 – ident: e_1_2_8_10_1 doi: 10.1002/app.37650 – ident: e_1_2_8_22_1 doi: 10.1515/epoly-2016-0275 – start-page: 138 year: 2017 ident: e_1_2_8_12_1 publication-title: Polym. Degrad. Stab. – ident: e_1_2_8_41_1 doi: 10.1016/j.rinp.2019.102717 – ident: e_1_2_8_29_1 doi: 10.1016/j.polymdegradstab.2017.07.005 – ident: e_1_2_8_42_1 doi: 10.1016/j.polymdegradstab.2012.03.043 – ident: e_1_2_8_23_1 doi: 10.1007/s10853-018-2416-z – ident: e_1_2_8_5_1 doi: 10.1080/00222348.2012.659973 – ident: e_1_2_8_8_1 doi: 10.1002/vnl.21757 – ident: e_1_2_8_9_1 doi: 10.1021/ie404302b – ident: e_1_2_8_17_1 doi: 10.1080/03602559.2014.909473 – ident: e_1_2_8_43_1 doi: 10.1016/j.compositesb.2014.09.015 – ident: e_1_2_8_15_1 doi: 10.1080/03602559.2014.909473 – ident: e_1_2_8_40_1 doi: 10.1177/0731684415618538 – ident: e_1_2_8_21_1 doi: 10.1007/s10973-019-08162-3 – ident: e_1_2_8_14_1 doi: 10.1007/s00289-011-0590-0 – ident: e_1_2_8_31_1 doi: 10.3139/217.2831 – ident: e_1_2_8_39_1 doi: 10.1016/j.jcis.2021.01.026 – ident: e_1_2_8_4_1 doi: 10.1007/s10973-019-08466-4 – ident: e_1_2_8_1_1 doi: 10.1016/j.jiec.2012.11.022 – ident: e_1_2_8_19_1 doi: 10.3144/expresspolymlett.2010.90 – ident: e_1_2_8_28_1 doi: 10.3866/PKU.WHXB20100908 – volume: 30 start-page: 253 year: 2012 ident: e_1_2_8_44_1 publication-title: Energy Educ. Sci. Tech. – ident: e_1_2_8_2_1 doi: 10.1002/app.47299 – ident: e_1_2_8_6_1 doi: 10.1007/s10973-021-11120-7 – ident: e_1_2_8_25_1 doi: 10.1002/app.38920 – ident: e_1_2_8_7_1 doi: 10.1016/j.tca.2008.10.025 – volume: 26 start-page: 447383 year: 2021 ident: e_1_2_8_38_1 publication-title: Mater. Today Commun. – ident: e_1_2_8_24_1 doi: 10.1002/pat.3715 |
SSID | ssj0001686257 |
Score | 2.2297015 |
Snippet | The development of high efficiency and low‐cost refractories has always been a subject that attract people‘s attention. Although polyethylene‐octene copolymers... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | Clays Expanded graphite Flame retardant Phosphorus Polyethylene-octene copolymers |
Title | Simultaneously Improving Flame Retardant Performance, Thermal Stability and Conductivity of Copolymers of Polyethylene‐octene by Addition of a Ternary Composite Flame Retardant System |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fslct.202201778 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZK9wAXxK9Y_uQDEoclS_PnNMduoVoh4NKuKKfI4zgiUknR0h7KiUfgdXgO3oAnYSZ2nERd_vZSta7bpvm-eL6ZjGcYewIhJfilvofuD3hREhceXkVjLwn9GFQqQ13Qfuc3b8XpWfRqGS8Hgx-drKXtBo7Vlwv3lVwGVRxDXGmX7H8g674UB_A54ouPiDA-_hPG85LyAWWl0X1f7Y7aAMEMcaaGDBvEH08d5bk32wNMVhCtx3RL2lTpNjWYpuuKir-abhKUpUH9E3YU17aJcjuNqKKV0i5DYq1QcmuSsJM8LxvxKY8WFGU8N6sNZYXpvSMyldK70njatJ6b1615SPq-02X1QVO_ZxeucAHu97LQ1urWfcVM7sC2-li2owhWPXdZdoMb6BfTrRrRroEBJeGJ2FQ1PdYXjNlFPOlw1VTWsObcGbs9W2Fqz35eKUqpDVAIJaaZUL8ot5sZ_3luLQnmr6cL9_4VdhCg7xIM2cHk5MXJrA390a6cugat-ytNOdFR8Lz_Iz251HWfav2zuMGuW8eFTwwLb7KBrm6xqw602-x7n43csZHX2HOHPe-w8Rm3XOSOixy5yLtc5OuCt1ykV10u_vz6zbCQw443LKRJklsWcsfCvSMxLLzDzmYvF9NTzzYG8RQa2DGlHKBjrRIhIEoTgCgZ5WEygggH0T6F0k9hDH4e5UmK8lVBLEMphEJ5jB6DLsK7bFitK32PcQF5qIWUokAlDiBA4hIFkUbVHqrCh0PmNec_U7ZqPjVvWWWm3neQEV6Zw-uQPXXzP5l6Mb-dGdRw_mVa1uPU_ct86AG71l5bD9lwc77Vj1BKb-CxpeYv0gPMHg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneously+Improving+Flame+Retardant+Performance%2C+Thermal+Stability+and+Conductivity+of+Copolymers+of+Polyethylene%E2%80%90octene+by+Addition+of+a+Ternary+Composite+Flame+Retardant+System&rft.jtitle=ChemistrySelect+%28Weinheim%29&rft.au=Zhang%2C+Yafeng&rft.au=Yu%2C+Chunming&rft.au=Feng%2C+Xi&rft.date=2022-09-06&rft.issn=2365-6549&rft.eissn=2365-6549&rft.volume=7&rft.issue=33&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fslct.202201778&rft.externalDBID=10.1002%252Fslct.202201778&rft.externalDocID=SLCT202201778 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-6549&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-6549&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-6549&client=summon |