Optimal weighted least-squares methods
We consider the problem of reconstructing an unknown bounded function u defined on a domain X ⊂ R d from noiseless or noisy samples of u at n points (x i)i=1,...,n. We measure the reconstruction error in a norm L 2 (X, dρ) for some given probability measure dρ. Given a linear space Vm with dim(Vm) =...
Saved in:
Published in | SMAI Journal of Computational Mathematics Vol. 3; pp. 181 - 203 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Société de Mathématiques Appliquées et Industrielles (SMAI)
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2426-8399 2426-8399 |
DOI | 10.5802/smai-jcm.24 |
Cover
Loading…
Abstract | We consider the problem of reconstructing an unknown bounded function u defined on a domain X ⊂ R d from noiseless or noisy samples of u at n points (x i)i=1,...,n. We measure the reconstruction error in a norm L 2 (X, dρ) for some given probability measure dρ. Given a linear space Vm with dim(Vm) = m ≤ n, we study in general terms the weighted least-squares approximations from the spaces Vm based on independent random samples. It is well known that least-squares approximations can be inaccurate and unstable when m is too close to n, even in the noiseless case. Recent results from [4, 5] have shown the interest of using weighted least squares for reducing the number n of samples that is needed to achieve an accuracy comparable to that of best approximation in Vm, compared to standard least squares as studied in [3]. The contribution of the present paper is twofold. From the theoretical perspective, we establish results in expectation and in probability for weighted least squares in general approximation spaces Vm. These results show that for an optimal choice of sampling measure dµ and weight w, which depends on the space Vm and on the measure dρ, stability and optimal accuracy are achieved under the mild condition that n scales linearly with m up to an additional logarithmic factor. In contrast to [3], the present analysis covers cases where the function u and its approximants from Vm are unbounded, which might occur for instance in the relevant case where X = R d and dρ is the Gaussian measure. From the numerical perspective, we propose a sampling method which allows one to generate independent and identically distributed samples from the optimal measure dµ. This method becomes of interest in the multivariate setting where dµ is generally not of tensor product type. We illustrate this for particular examples of approximation spaces Vm of polynomial type, where the domain X is allowed to be unbounded and high or even infinite dimensional, motivated by certain applications to parametric and stochastic PDEs. |
---|---|
AbstractList | We consider the problem of reconstructing an unknown bounded function u defined on a domain X ⊂ R d from noiseless or noisy samples of u at n points (x i)i=1,...,n. We measure the reconstruction error in a norm L 2 (X, dρ) for some given probability measure dρ. Given a linear space Vm with dim(Vm) = m ≤ n, we study in general terms the weighted least-squares approximations from the spaces Vm based on independent random samples. It is well known that least-squares approximations can be inaccurate and unstable when m is too close to n, even in the noiseless case. Recent results from [4, 5] have shown the interest of using weighted least squares for reducing the number n of samples that is needed to achieve an accuracy comparable to that of best approximation in Vm, compared to standard least squares as studied in [3]. The contribution of the present paper is twofold. From the theoretical perspective, we establish results in expectation and in probability for weighted least squares in general approximation spaces Vm. These results show that for an optimal choice of sampling measure dµ and weight w, which depends on the space Vm and on the measure dρ, stability and optimal accuracy are achieved under the mild condition that n scales linearly with m up to an additional logarithmic factor. In contrast to [3], the present analysis covers cases where the function u and its approximants from Vm are unbounded, which might occur for instance in the relevant case where X = R d and dρ is the Gaussian measure. From the numerical perspective, we propose a sampling method which allows one to generate independent and identically distributed samples from the optimal measure dµ. This method becomes of interest in the multivariate setting where dµ is generally not of tensor product type. We illustrate this for particular examples of approximation spaces Vm of polynomial type, where the domain X is allowed to be unbounded and high or even infinite dimensional, motivated by certain applications to parametric and stochastic PDEs. |
Author | Cohen, Albert Migliorati, Giovanni |
Author_xml | – sequence: 1 givenname: Albert surname: Cohen fullname: Cohen, Albert – sequence: 2 givenname: Giovanni surname: Migliorati fullname: Migliorati, Giovanni |
BackLink | https://hal.science/hal-01354003$$DView record in HAL |
BookMark | eNptkE1Lw0AQhhepYK09-QdyEkRSZ3fztcdS1AqBXnpfJtmJ2ZKPml0V_70JVRDxNMPM-868PJds1vUdMXbNYRVnIO5dizY8lO1KRGdsLiKRhJlUavarv2BL5w4AIJSQaSLm7GZ39LbFJvgg-1J7MkFD6HzoXt9wIBe05OveuCt2XmHjaPldF2z_-LDfbMN89_S8WedhKbiKwoobk6IUSZFBFiemwJRIUlFySFVRJYjjKjZlRjEYRWOKqFCJSBEymQLJBbs9na2x0cdhDDZ86h6t3q5zPc2AyzgCkO981PKTthx65waqdGk9ett3fkDbaA56wqInLHrEokU0eu7-eH6e_Kf-Asu9ZwM |
CitedBy_id | crossref_primary_10_1016_j_jco_2020_101545 crossref_primary_10_1016_j_jmaa_2023_127570 crossref_primary_10_2139_ssrn_3471164 crossref_primary_10_1007_s00780_021_00465_4 crossref_primary_10_1016_j_ymssp_2023_110728 crossref_primary_10_1051_m2an_2021070 crossref_primary_10_1090_mcom_3710 crossref_primary_10_1137_24M1648703 crossref_primary_10_1137_23M160178X crossref_primary_10_1090_mcom_3825 crossref_primary_10_1016_j_jco_2023_101790 crossref_primary_10_1016_j_jat_2022_105706 crossref_primary_10_1137_23M1613773 crossref_primary_10_1007_s10444_024_10114_x crossref_primary_10_1016_j_cma_2021_114105 crossref_primary_10_1142_S0219530524500271 crossref_primary_10_3390_pr12071435 crossref_primary_10_3390_rs14143252 crossref_primary_10_1093_imanum_drac017 crossref_primary_10_21105_joss_04249 crossref_primary_10_1016_j_cma_2017_12_019 crossref_primary_10_1051_m2an_2023081 crossref_primary_10_1017_S0962492920000021 crossref_primary_10_1016_j_jco_2022_101653 crossref_primary_10_1007_s10444_024_10147_2 crossref_primary_10_4213_rm10175 crossref_primary_10_1515_jag_2023_0092 crossref_primary_10_1016_j_jco_2022_101662 crossref_primary_10_1016_j_acha_2023_02_004 crossref_primary_10_3389_fams_2021_702486 crossref_primary_10_1016_j_compstruc_2022_106808 crossref_primary_10_1007_s10444_019_09723_8 crossref_primary_10_1016_j_cma_2021_114290 crossref_primary_10_2139_ssrn_4132094 crossref_primary_10_1016_j_jat_2021_105603 crossref_primary_10_1137_22M1472693 crossref_primary_10_1177_00202940231193022 crossref_primary_10_1137_21M1461988 crossref_primary_10_1007_s00365_023_09618_4 crossref_primary_10_1007_s10208_020_09458_9 crossref_primary_10_1051_m2an_2019045 crossref_primary_10_2139_ssrn_3076519 crossref_primary_10_1007_s00365_018_9428_4 crossref_primary_10_1016_j_jcp_2019_02_046 crossref_primary_10_1007_s00365_019_09467_0 crossref_primary_10_1007_s00365_021_09555_0 crossref_primary_10_1137_21M1410580 crossref_primary_10_1016_j_ress_2024_110594 crossref_primary_10_1007_s00184_024_00954_4 crossref_primary_10_1137_18M1234151 crossref_primary_10_1137_21M1411950 crossref_primary_10_1007_s10474_019_00945_2 crossref_primary_10_1016_j_compbiomed_2022_106407 crossref_primary_10_1007_s43670_021_00013_3 crossref_primary_10_1016_j_asr_2022_06_041 crossref_primary_10_1090_mcom_3979 crossref_primary_10_1007_s10208_021_09504_0 crossref_primary_10_1016_j_jcp_2024_112926 crossref_primary_10_1002_qre_3572 crossref_primary_10_1016_j_cma_2022_115845 crossref_primary_10_1007_s41109_024_00641_3 crossref_primary_10_1017_fms_2020_23 crossref_primary_10_1016_j_cma_2024_117269 crossref_primary_10_1093_imanum_draa023 crossref_primary_10_1088_1361_6382_abf894 crossref_primary_10_3934_fods_2025001 crossref_primary_10_1002_bit_28509 crossref_primary_10_1016_j_aei_2024_102834 crossref_primary_10_21105_joss_05489 crossref_primary_10_1002_jnm_2725 crossref_primary_10_2139_ssrn_4049696 crossref_primary_10_2139_ssrn_3401539 crossref_primary_10_3390_w14172625 crossref_primary_10_1007_s43670_022_00040_8 crossref_primary_10_1016_j_cma_2023_116205 crossref_primary_10_1016_j_cma_2018_03_020 crossref_primary_10_5802_smai_jcm_96 crossref_primary_10_1016_j_cma_2024_117657 crossref_primary_10_1007_s11222_022_10087_1 crossref_primary_10_1109_TIM_2022_3203441 crossref_primary_10_1007_s10208_020_09481_w crossref_primary_10_1615_JMachLearnModelComput_2024055261 crossref_primary_10_1111_mafi_12226 crossref_primary_10_1016_j_jat_2020_105455 crossref_primary_10_1016_j_cma_2019_112759 crossref_primary_10_1109_LRA_2025_3540634 crossref_primary_10_1088_1361_6382_ac5ba1 crossref_primary_10_1016_j_cam_2020_113372 crossref_primary_10_1214_20_AAP1615 crossref_primary_10_1002_cnm_3395 crossref_primary_10_1016_j_physa_2023_128521 crossref_primary_10_1137_18M1189749 crossref_primary_10_1137_20M1315774 crossref_primary_10_4213_rm10175e crossref_primary_10_1016_j_cma_2019_03_049 crossref_primary_10_1090_mcom_3896 crossref_primary_10_1002_mma_7197 crossref_primary_10_1016_j_acha_2022_12_001 crossref_primary_10_1016_j_jco_2021_101569 crossref_primary_10_1016_j_jco_2021_101602 crossref_primary_10_1137_19M1266496 crossref_primary_10_1007_s11042_022_12417_x crossref_primary_10_1007_s00158_024_03899_4 crossref_primary_10_1137_18M1198387 crossref_primary_10_1093_imanum_drae017 crossref_primary_10_1137_19M1279459 crossref_primary_10_5802_smai_jcm_117 crossref_primary_10_1016_j_jco_2021_101618 crossref_primary_10_1109_TIM_2022_3207826 crossref_primary_10_1016_j_jco_2021_101575 crossref_primary_10_1007_s10543_023_00956_0 crossref_primary_10_1007_s00211_023_01358_8 crossref_primary_10_1016_j_jat_2022_105835 crossref_primary_10_1007_s00365_021_09558_x crossref_primary_10_1016_j_measurement_2024_116024 crossref_primary_10_1016_j_jat_2020_105472 crossref_primary_10_1137_22M1477131 crossref_primary_10_1007_s13137_021_00184_0 |
Cites_doi | 10.1007/978-1-4613-8643-8 10.1007/978-3-662-03329-6 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.5802/smai-jcm.24 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2426-8399 |
EndPage | 203 |
ExternalDocumentID | oai_HAL_hal_01354003v1 10_5802_smai_jcm_24 |
GroupedDBID | AAYXX AEXTA ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E 1XC ARCSS VOOES |
ID | FETCH-LOGICAL-c2194-f1dd7a326b80856dba7ee3ebc1079bf6aa26b5dc8e50d9e2924b9627a08370e3 |
ISSN | 2426-8399 |
IngestDate | Fri May 09 12:27:49 EDT 2025 Tue Jul 01 02:20:16 EDT 2025 Thu Apr 24 22:55:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ran-dom matrices error analysis weighted least squares polynomial approximation Math classification 41A10 multivariate approximation convergence rates conditional sampling |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2194-f1dd7a326b80856dba7ee3ebc1079bf6aa26b5dc8e50d9e2924b9627a08370e3 |
ORCID | 0000-0002-8866-5343 0000-0002-6317-5663 |
OpenAccessLink | https://hal.science/hal-01354003 |
PageCount | 23 |
ParticipantIDs | hal_primary_oai_HAL_hal_01354003v1 crossref_citationtrail_10_5802_smai_jcm_24 crossref_primary_10_5802_smai_jcm_24 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-00-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017-00-00 |
PublicationDecade | 2010 |
PublicationTitle | SMAI Journal of Computational Mathematics |
PublicationYear | 2017 |
Publisher | Société de Mathématiques Appliquées et Industrielles (SMAI) |
Publisher_xml | – name: Société de Mathématiques Appliquées et Industrielles (SMAI) |
References | key202007021043449823_8 key202007021043449823_7 key202007021043449823_6 key202007021043449823_5 key202007021043449823_9 key202007021043449823_11 key202007021043449823_10 key202007021043449823_13 key202007021043449823_12 key202007021043449823_4 key202007021043449823_3 key202007021043449823_2 key202007021043449823_1 key202007021043449823_14 |
References_xml | – ident: key202007021043449823_6 – ident: key202007021043449823_3 – ident: key202007021043449823_9 – ident: key202007021043449823_4 – ident: key202007021043449823_10 – ident: key202007021043449823_11 – ident: key202007021043449823_7 – ident: key202007021043449823_8 – ident: key202007021043449823_2 – ident: key202007021043449823_12 – ident: key202007021043449823_1 – ident: key202007021043449823_14 – ident: key202007021043449823_5 doi: 10.1007/978-1-4613-8643-8 – ident: key202007021043449823_13 doi: 10.1007/978-3-662-03329-6 |
SSID | ssj0002923762 |
Score | 2.4782324 |
Snippet | We consider the problem of reconstructing an unknown bounded function u defined on a domain X ⊂ R d from noiseless or noisy samples of u at n points (x... |
SourceID | hal crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
StartPage | 181 |
SubjectTerms | Mathematics Numerical Analysis |
Title | Optimal weighted least-squares methods |
URI | https://hal.science/hal-01354003 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZ4XLggECBgAUWo4rDIbJ5NfKwQqCAChy1Sb5FfXbpqw6MFJA78dmbs1KTQA3CJItdOG3_J-Jup5xtCGiySTZEmARUxj2ichCllIfepAqorBPeVNrUB88tm-zo-7ybd95J1JrtkLI7ky8y8kp-gCm2AK2bJfgNZd1FogHPAF46AMBy_hPEVvO9DmONnE98E6jjASjx0dP-IWUVVdehRnX_-zVtnhzUSaos6TAKCudNwdUzbpW-0UAzL7ZHJ-_8GffP0mMA67mgty349hGBzJa2NwQWaAkeyVkvPaKuMZFQzcoEtslKtl6HRKPhkipPMSLuOhrxP_8vhkc2Unha8_rAQue2B4Jjg8AIHFzC4CON5shiCI4CmN399j6KFDHf14F9F7lfbJEwc_6f25VO0Y_5mEjU3LKKzQparmfdaFstVMqfLNXJQ4ehNcPSmcPQqHNdJ5_Skc9ymVf0KKmEdiGkvUCrlwI9FBsS2qQRPtY60kOByM9Frcg4fJUpmOvEV03AvscBaSNxHRSIdbZCF8rbUm8TjKvSlFoxJxsF_z7jkqtfTYcoypngSbJHfk7srZKXtjiVGBsWMqdwiDdf5zkqazO62D9PkeqAMebt1UWAbuA1A9P3oKdj-2rV-kSV87mzoaocsjB8e9S6QubHYM3i-ATIXT5o |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+weighted+least-squares+methods&rft.jtitle=SMAI+Journal+of+Computational+Mathematics&rft.au=Cohen%2C+Albert&rft.au=Migliorati%2C+Giovanni&rft.date=2017&rft.issn=2426-8399&rft.eissn=2426-8399&rft.volume=3&rft.spage=181&rft.epage=203&rft_id=info:doi/10.5802%2Fsmai-jcm.24&rft.externalDBID=n%2Fa&rft.externalDocID=10_5802_smai_jcm_24 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2426-8399&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2426-8399&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2426-8399&client=summon |