Optimal weighted least-squares methods

We consider the problem of reconstructing an unknown bounded function u defined on a domain X ⊂ R d from noiseless or noisy samples of u at n points (x i)i=1,...,n. We measure the reconstruction error in a norm L 2 (X, dρ) for some given probability measure dρ. Given a linear space Vm with dim(Vm) =...

Full description

Saved in:
Bibliographic Details
Published inSMAI Journal of Computational Mathematics Vol. 3; pp. 181 - 203
Main Authors Cohen, Albert, Migliorati, Giovanni
Format Journal Article
LanguageEnglish
Published Société de Mathématiques Appliquées et Industrielles (SMAI) 2017
Subjects
Online AccessGet full text
ISSN2426-8399
2426-8399
DOI10.5802/smai-jcm.24

Cover

Loading…
Abstract We consider the problem of reconstructing an unknown bounded function u defined on a domain X ⊂ R d from noiseless or noisy samples of u at n points (x i)i=1,...,n. We measure the reconstruction error in a norm L 2 (X, dρ) for some given probability measure dρ. Given a linear space Vm with dim(Vm) = m ≤ n, we study in general terms the weighted least-squares approximations from the spaces Vm based on independent random samples. It is well known that least-squares approximations can be inaccurate and unstable when m is too close to n, even in the noiseless case. Recent results from [4, 5] have shown the interest of using weighted least squares for reducing the number n of samples that is needed to achieve an accuracy comparable to that of best approximation in Vm, compared to standard least squares as studied in [3]. The contribution of the present paper is twofold. From the theoretical perspective, we establish results in expectation and in probability for weighted least squares in general approximation spaces Vm. These results show that for an optimal choice of sampling measure dµ and weight w, which depends on the space Vm and on the measure dρ, stability and optimal accuracy are achieved under the mild condition that n scales linearly with m up to an additional logarithmic factor. In contrast to [3], the present analysis covers cases where the function u and its approximants from Vm are unbounded, which might occur for instance in the relevant case where X = R d and dρ is the Gaussian measure. From the numerical perspective, we propose a sampling method which allows one to generate independent and identically distributed samples from the optimal measure dµ. This method becomes of interest in the multivariate setting where dµ is generally not of tensor product type. We illustrate this for particular examples of approximation spaces Vm of polynomial type, where the domain X is allowed to be unbounded and high or even infinite dimensional, motivated by certain applications to parametric and stochastic PDEs.
AbstractList We consider the problem of reconstructing an unknown bounded function u defined on a domain X ⊂ R d from noiseless or noisy samples of u at n points (x i)i=1,...,n. We measure the reconstruction error in a norm L 2 (X, dρ) for some given probability measure dρ. Given a linear space Vm with dim(Vm) = m ≤ n, we study in general terms the weighted least-squares approximations from the spaces Vm based on independent random samples. It is well known that least-squares approximations can be inaccurate and unstable when m is too close to n, even in the noiseless case. Recent results from [4, 5] have shown the interest of using weighted least squares for reducing the number n of samples that is needed to achieve an accuracy comparable to that of best approximation in Vm, compared to standard least squares as studied in [3]. The contribution of the present paper is twofold. From the theoretical perspective, we establish results in expectation and in probability for weighted least squares in general approximation spaces Vm. These results show that for an optimal choice of sampling measure dµ and weight w, which depends on the space Vm and on the measure dρ, stability and optimal accuracy are achieved under the mild condition that n scales linearly with m up to an additional logarithmic factor. In contrast to [3], the present analysis covers cases where the function u and its approximants from Vm are unbounded, which might occur for instance in the relevant case where X = R d and dρ is the Gaussian measure. From the numerical perspective, we propose a sampling method which allows one to generate independent and identically distributed samples from the optimal measure dµ. This method becomes of interest in the multivariate setting where dµ is generally not of tensor product type. We illustrate this for particular examples of approximation spaces Vm of polynomial type, where the domain X is allowed to be unbounded and high or even infinite dimensional, motivated by certain applications to parametric and stochastic PDEs.
Author Cohen, Albert
Migliorati, Giovanni
Author_xml – sequence: 1
  givenname: Albert
  surname: Cohen
  fullname: Cohen, Albert
– sequence: 2
  givenname: Giovanni
  surname: Migliorati
  fullname: Migliorati, Giovanni
BackLink https://hal.science/hal-01354003$$DView record in HAL
BookMark eNptkE1Lw0AQhhepYK09-QdyEkRSZ3fztcdS1AqBXnpfJtmJ2ZKPml0V_70JVRDxNMPM-868PJds1vUdMXbNYRVnIO5dizY8lO1KRGdsLiKRhJlUavarv2BL5w4AIJSQaSLm7GZ39LbFJvgg-1J7MkFD6HzoXt9wIBe05OveuCt2XmHjaPldF2z_-LDfbMN89_S8WedhKbiKwoobk6IUSZFBFiemwJRIUlFySFVRJYjjKjZlRjEYRWOKqFCJSBEymQLJBbs9na2x0cdhDDZ86h6t3q5zPc2AyzgCkO981PKTthx65waqdGk9ett3fkDbaA56wqInLHrEokU0eu7-eH6e_Kf-Asu9ZwM
CitedBy_id crossref_primary_10_1016_j_jco_2020_101545
crossref_primary_10_1016_j_jmaa_2023_127570
crossref_primary_10_2139_ssrn_3471164
crossref_primary_10_1007_s00780_021_00465_4
crossref_primary_10_1016_j_ymssp_2023_110728
crossref_primary_10_1051_m2an_2021070
crossref_primary_10_1090_mcom_3710
crossref_primary_10_1137_24M1648703
crossref_primary_10_1137_23M160178X
crossref_primary_10_1090_mcom_3825
crossref_primary_10_1016_j_jco_2023_101790
crossref_primary_10_1016_j_jat_2022_105706
crossref_primary_10_1137_23M1613773
crossref_primary_10_1007_s10444_024_10114_x
crossref_primary_10_1016_j_cma_2021_114105
crossref_primary_10_1142_S0219530524500271
crossref_primary_10_3390_pr12071435
crossref_primary_10_3390_rs14143252
crossref_primary_10_1093_imanum_drac017
crossref_primary_10_21105_joss_04249
crossref_primary_10_1016_j_cma_2017_12_019
crossref_primary_10_1051_m2an_2023081
crossref_primary_10_1017_S0962492920000021
crossref_primary_10_1016_j_jco_2022_101653
crossref_primary_10_1007_s10444_024_10147_2
crossref_primary_10_4213_rm10175
crossref_primary_10_1515_jag_2023_0092
crossref_primary_10_1016_j_jco_2022_101662
crossref_primary_10_1016_j_acha_2023_02_004
crossref_primary_10_3389_fams_2021_702486
crossref_primary_10_1016_j_compstruc_2022_106808
crossref_primary_10_1007_s10444_019_09723_8
crossref_primary_10_1016_j_cma_2021_114290
crossref_primary_10_2139_ssrn_4132094
crossref_primary_10_1016_j_jat_2021_105603
crossref_primary_10_1137_22M1472693
crossref_primary_10_1177_00202940231193022
crossref_primary_10_1137_21M1461988
crossref_primary_10_1007_s00365_023_09618_4
crossref_primary_10_1007_s10208_020_09458_9
crossref_primary_10_1051_m2an_2019045
crossref_primary_10_2139_ssrn_3076519
crossref_primary_10_1007_s00365_018_9428_4
crossref_primary_10_1016_j_jcp_2019_02_046
crossref_primary_10_1007_s00365_019_09467_0
crossref_primary_10_1007_s00365_021_09555_0
crossref_primary_10_1137_21M1410580
crossref_primary_10_1016_j_ress_2024_110594
crossref_primary_10_1007_s00184_024_00954_4
crossref_primary_10_1137_18M1234151
crossref_primary_10_1137_21M1411950
crossref_primary_10_1007_s10474_019_00945_2
crossref_primary_10_1016_j_compbiomed_2022_106407
crossref_primary_10_1007_s43670_021_00013_3
crossref_primary_10_1016_j_asr_2022_06_041
crossref_primary_10_1090_mcom_3979
crossref_primary_10_1007_s10208_021_09504_0
crossref_primary_10_1016_j_jcp_2024_112926
crossref_primary_10_1002_qre_3572
crossref_primary_10_1016_j_cma_2022_115845
crossref_primary_10_1007_s41109_024_00641_3
crossref_primary_10_1017_fms_2020_23
crossref_primary_10_1016_j_cma_2024_117269
crossref_primary_10_1093_imanum_draa023
crossref_primary_10_1088_1361_6382_abf894
crossref_primary_10_3934_fods_2025001
crossref_primary_10_1002_bit_28509
crossref_primary_10_1016_j_aei_2024_102834
crossref_primary_10_21105_joss_05489
crossref_primary_10_1002_jnm_2725
crossref_primary_10_2139_ssrn_4049696
crossref_primary_10_2139_ssrn_3401539
crossref_primary_10_3390_w14172625
crossref_primary_10_1007_s43670_022_00040_8
crossref_primary_10_1016_j_cma_2023_116205
crossref_primary_10_1016_j_cma_2018_03_020
crossref_primary_10_5802_smai_jcm_96
crossref_primary_10_1016_j_cma_2024_117657
crossref_primary_10_1007_s11222_022_10087_1
crossref_primary_10_1109_TIM_2022_3203441
crossref_primary_10_1007_s10208_020_09481_w
crossref_primary_10_1615_JMachLearnModelComput_2024055261
crossref_primary_10_1111_mafi_12226
crossref_primary_10_1016_j_jat_2020_105455
crossref_primary_10_1016_j_cma_2019_112759
crossref_primary_10_1109_LRA_2025_3540634
crossref_primary_10_1088_1361_6382_ac5ba1
crossref_primary_10_1016_j_cam_2020_113372
crossref_primary_10_1214_20_AAP1615
crossref_primary_10_1002_cnm_3395
crossref_primary_10_1016_j_physa_2023_128521
crossref_primary_10_1137_18M1189749
crossref_primary_10_1137_20M1315774
crossref_primary_10_4213_rm10175e
crossref_primary_10_1016_j_cma_2019_03_049
crossref_primary_10_1090_mcom_3896
crossref_primary_10_1002_mma_7197
crossref_primary_10_1016_j_acha_2022_12_001
crossref_primary_10_1016_j_jco_2021_101569
crossref_primary_10_1016_j_jco_2021_101602
crossref_primary_10_1137_19M1266496
crossref_primary_10_1007_s11042_022_12417_x
crossref_primary_10_1007_s00158_024_03899_4
crossref_primary_10_1137_18M1198387
crossref_primary_10_1093_imanum_drae017
crossref_primary_10_1137_19M1279459
crossref_primary_10_5802_smai_jcm_117
crossref_primary_10_1016_j_jco_2021_101618
crossref_primary_10_1109_TIM_2022_3207826
crossref_primary_10_1016_j_jco_2021_101575
crossref_primary_10_1007_s10543_023_00956_0
crossref_primary_10_1007_s00211_023_01358_8
crossref_primary_10_1016_j_jat_2022_105835
crossref_primary_10_1007_s00365_021_09558_x
crossref_primary_10_1016_j_measurement_2024_116024
crossref_primary_10_1016_j_jat_2020_105472
crossref_primary_10_1137_22M1477131
crossref_primary_10_1007_s13137_021_00184_0
Cites_doi 10.1007/978-1-4613-8643-8
10.1007/978-3-662-03329-6
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.5802/smai-jcm.24
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2426-8399
EndPage 203
ExternalDocumentID oai_HAL_hal_01354003v1
10_5802_smai_jcm_24
GroupedDBID AAYXX
AEXTA
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
1XC
ARCSS
VOOES
ID FETCH-LOGICAL-c2194-f1dd7a326b80856dba7ee3ebc1079bf6aa26b5dc8e50d9e2924b9627a08370e3
ISSN 2426-8399
IngestDate Fri May 09 12:27:49 EDT 2025
Tue Jul 01 02:20:16 EDT 2025
Thu Apr 24 22:55:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ran-dom matrices
error analysis
weighted least squares
polynomial approximation Math classification 41A10
multivariate approximation
convergence rates
conditional sampling
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2194-f1dd7a326b80856dba7ee3ebc1079bf6aa26b5dc8e50d9e2924b9627a08370e3
ORCID 0000-0002-8866-5343
0000-0002-6317-5663
OpenAccessLink https://hal.science/hal-01354003
PageCount 23
ParticipantIDs hal_primary_oai_HAL_hal_01354003v1
crossref_citationtrail_10_5802_smai_jcm_24
crossref_primary_10_5802_smai_jcm_24
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationTitle SMAI Journal of Computational Mathematics
PublicationYear 2017
Publisher Société de Mathématiques Appliquées et Industrielles (SMAI)
Publisher_xml – name: Société de Mathématiques Appliquées et Industrielles (SMAI)
References key202007021043449823_8
key202007021043449823_7
key202007021043449823_6
key202007021043449823_5
key202007021043449823_9
key202007021043449823_11
key202007021043449823_10
key202007021043449823_13
key202007021043449823_12
key202007021043449823_4
key202007021043449823_3
key202007021043449823_2
key202007021043449823_1
key202007021043449823_14
References_xml – ident: key202007021043449823_6
– ident: key202007021043449823_3
– ident: key202007021043449823_9
– ident: key202007021043449823_4
– ident: key202007021043449823_10
– ident: key202007021043449823_11
– ident: key202007021043449823_7
– ident: key202007021043449823_8
– ident: key202007021043449823_2
– ident: key202007021043449823_12
– ident: key202007021043449823_1
– ident: key202007021043449823_14
– ident: key202007021043449823_5
  doi: 10.1007/978-1-4613-8643-8
– ident: key202007021043449823_13
  doi: 10.1007/978-3-662-03329-6
SSID ssj0002923762
Score 2.4782324
Snippet We consider the problem of reconstructing an unknown bounded function u defined on a domain X ⊂ R d from noiseless or noisy samples of u at n points (x...
SourceID hal
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 181
SubjectTerms Mathematics
Numerical Analysis
Title Optimal weighted least-squares methods
URI https://hal.science/hal-01354003
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZ4XLggECBgAUWo4rDIbJ5NfKwQqCAChy1Sb5FfXbpqw6MFJA78dmbs1KTQA3CJItdOG3_J-Jup5xtCGiySTZEmARUxj2ichCllIfepAqorBPeVNrUB88tm-zo-7ybd95J1JrtkLI7ky8y8kp-gCm2AK2bJfgNZd1FogHPAF46AMBy_hPEVvO9DmONnE98E6jjASjx0dP-IWUVVdehRnX_-zVtnhzUSaos6TAKCudNwdUzbpW-0UAzL7ZHJ-_8GffP0mMA67mgty349hGBzJa2NwQWaAkeyVkvPaKuMZFQzcoEtslKtl6HRKPhkipPMSLuOhrxP_8vhkc2Unha8_rAQue2B4Jjg8AIHFzC4CON5shiCI4CmN399j6KFDHf14F9F7lfbJEwc_6f25VO0Y_5mEjU3LKKzQparmfdaFstVMqfLNXJQ4ehNcPSmcPQqHNdJ5_Skc9ymVf0KKmEdiGkvUCrlwI9FBsS2qQRPtY60kOByM9Frcg4fJUpmOvEV03AvscBaSNxHRSIdbZCF8rbUm8TjKvSlFoxJxsF_z7jkqtfTYcoypngSbJHfk7srZKXtjiVGBsWMqdwiDdf5zkqazO62D9PkeqAMebt1UWAbuA1A9P3oKdj-2rV-kSV87mzoaocsjB8e9S6QubHYM3i-ATIXT5o
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+weighted+least-squares+methods&rft.jtitle=SMAI+Journal+of+Computational+Mathematics&rft.au=Cohen%2C+Albert&rft.au=Migliorati%2C+Giovanni&rft.date=2017&rft.issn=2426-8399&rft.eissn=2426-8399&rft.volume=3&rft.spage=181&rft.epage=203&rft_id=info:doi/10.5802%2Fsmai-jcm.24&rft.externalDBID=n%2Fa&rft.externalDocID=10_5802_smai_jcm_24
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2426-8399&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2426-8399&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2426-8399&client=summon