An Improved Compound Gaussian Model for Bivariate Surface EMG Signals Related to Strength Training

Recent literature suggests that the surface electromyography (sEMG) signals have nonstationary statistical characteristics, specifically due to the random nature of the covariance. Thus, the suitability of a statistical model for sEMG signals is determined by the choice of an appropriate model for d...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on human-machine systems Vol. 55; no. 1; pp. 58 - 70
Main Authors Kusuru, Durgesh, Turlapaty, Anish C., Thakur, Mainak
Format Journal Article
LanguageEnglish
Published IEEE 01.02.2025
Subjects
Online AccessGet full text
ISSN2168-2291
2168-2305
DOI10.1109/THMS.2024.3486450

Cover

Loading…
Abstract Recent literature suggests that the surface electromyography (sEMG) signals have nonstationary statistical characteristics, specifically due to the random nature of the covariance. Thus, the suitability of a statistical model for sEMG signals is determined by the choice of an appropriate model for describing the covariance. The purpose of this study is to propose a compound-Gaussian (CG) model for multivariate sEMG signals in which the latent variable of covariance is modeled as a random variable that follows an exponential model. The parameters of the model are estimated using the iterative expectation maximization (EM) algorithm. Further, a new dataset, electromyography analysis of human activities database 2 (EMAHA-DB2), is developed. The proposed model is evaluated through both qualitative and quantitative methods. Based on the model fitting analysis on the sEMG signals from EMAHA-DB2, it is found that the proposed CG model fits more closely to the empirical pdf of sEMG signals than the existing models. In addition, statistical analyses are carried out among the models and estimated parameters under different scenarios. The estimate of the exponential model's rate parameter exhibits a clear relationship with training weights, potentially correlating with underlying motor unit activity. Finally, the average signal power estimates of the channels show distinctive dependency on the training weights, the subject's training experience, and the type of activity.
AbstractList Recent literature suggests that the surface electromyography (sEMG) signals have nonstationary statistical characteristics, specifically due to the random nature of the covariance. Thus, the suitability of a statistical model for sEMG signals is determined by the choice of an appropriate model for describing the covariance. The purpose of this study is to propose a compound-Gaussian (CG) model for multivariate sEMG signals in which the latent variable of covariance is modeled as a random variable that follows an exponential model. The parameters of the model are estimated using the iterative expectation maximization (EM) algorithm. Further, a new dataset, electromyography analysis of human activities database 2 (EMAHA-DB2), is developed. The proposed model is evaluated through both qualitative and quantitative methods. Based on the model fitting analysis on the sEMG signals from EMAHA-DB2, it is found that the proposed CG model fits more closely to the empirical pdf of sEMG signals than the existing models. In addition, statistical analyses are carried out among the models and estimated parameters under different scenarios. The estimate of the exponential model's rate parameter exhibits a clear relationship with training weights, potentially correlating with underlying motor unit activity. Finally, the average signal power estimates of the channels show distinctive dependency on the training weights, the subject's training experience, and the type of activity.
Author Kusuru, Durgesh
Turlapaty, Anish C.
Thakur, Mainak
Author_xml – sequence: 1
  givenname: Durgesh
  orcidid: 0000-0002-9719-6956
  surname: Kusuru
  fullname: Kusuru, Durgesh
  email: durgesh.k@iiits.in
  organization: Bio-Signal Analysis Group, Indian Institute of Information Technology Sri City, Chittoor, Andhra Pradesh, India
– sequence: 2
  givenname: Anish C.
  orcidid: 0000-0003-0078-3845
  surname: Turlapaty
  fullname: Turlapaty, Anish C.
  email: anish.turlapaty@iiits.in
  organization: Bio-Signal Analysis Group, Indian Institute of Information Technology Sri City, Chittoor, Andhra Pradesh, India
– sequence: 3
  givenname: Mainak
  orcidid: 0000-0002-4072-9942
  surname: Thakur
  fullname: Thakur, Mainak
  email: mainak.thakur@iiits.in
  organization: Bio-Signal Analysis Group, Indian Institute of Information Technology Sri City, Chittoor, Andhra Pradesh, India
BookMark eNpNkN1qAjEQhUNpodb6AIVe5AXW5nc3e2nFqqAUuvZ6SbITm6KJZFehb98VLXRuZmDOORy-B3QbYgCEnigZU0rKl81iXY0ZYWLMhcqFJDdowGiuMsaJvP27WUnv0ahtv0k_ikkp1QCZScDL_SHFEzR4GveHeAwNnutj23od8Do2sMMuJvzqTzp53QGujslpC3i2nuPKb4PetfgDdv2rwV3EVZcgbLsvvEnaBx-2j-jO9RoYXfcQfb7NNtNFtnqfL6eTVWYZVV3mmAGijDBOaqFzq5lpSsNLwqkqtBXMEmC5EkVfPBd5YYQiTHHpBChXWsKHiF5ybYptm8DVh-T3Ov3UlNRnTvWZU33mVF859Z7ni8cDwD99IYVSBf8F8VBlwA
CODEN ITHSA6
Cites_doi 10.1016/j.jelekin.2011.04.009
10.1097/00005053-195707000-00032
10.1016/S1050-6411(05)80003-3
10.1109/BRC.2011.5740669
10.2139/ssrn.4639451
10.1111/j.1468-0394.2008.00483.x
10.1109/SSP.2018.8450847
10.1109/TGRS.2009.2033193
10.1016/j.jelekin.2023.102774
10.1519/SSC.0000000000000627
10.1109/EMBC46164.2021.9630143
10.1007/978-88-470-2463-2
10.1109/10.764949
10.1093/ptj/64.12.1813
10.1007/978-1-4612-4380-9_16
10.1113/jphysiol.1975.sp010904
10.1007/978-1-4615-7566-5
10.1109/7.892695
10.1145/1186415.1186544
10.1007/s11517-010-0642-x
10.1113/jphysiol.2007.139477
10.1371/journal.pone.0180112
10.1016/j.jelekin.2016.12.006
10.3389/fphys.2017.00985
10.1249/00005768-199506000-00011
10.1016/S1050-6411(96)00024-7
10.1016/S0195-5616(03)00079-2
10.1109/TBME.2019.2895683
10.1007/BF02442838
10.1016/j.jelekin.2010.09.004
10.1137/1.9780898718898
10.1109/TBME.1980.326652
10.1002/9781119082934
10.3758/s13428-016-0814-1
10.1016/j.ptsp.2010.10.004
10.1109/IEMBS.2004.1403093
10.1016/j.brainresbull.2012.09.012
10.1109/LSP.2006.870353
10.1016/j.compbiomed.2005.04.002
10.1016/j.eswa.2021.115644
10.1016/B978-141603197-0.10033-3
10.1017/9781316882825
10.1007/s11427-012-4400-1
10.1201/9780429428357
10.1080/10671188.1966.10614754
10.1109/TSP.2006.880209
10.1152/jn.1993.70.6.2470
10.1515/BMT.2006.063
10.1038/sdata.2014.53
10.1123/jab.13.2.135
10.2307/4615733
10.2307/2984875
10.1016/0165-1765(80)90024-5
10.1115/1.3138251
10.1093/oso/9780198507659.001.0001
10.1109/PROC.1977.10545
10.1109/TBME.2005.856295
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/THMS.2024.3486450
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2305
EndPage 70
ExternalDocumentID 10_1109_THMS_2024_3486450
10754887
Genre orig-research
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c218t-f2be08b4bf5a4a6ca2bd9b3903187ac42c0e268475556467b4802835f4e8f9c03
IEDL.DBID RIE
ISSN 2168-2291
IngestDate Thu Jul 03 08:25:27 EDT 2025
Wed Aug 27 01:47:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c218t-f2be08b4bf5a4a6ca2bd9b3903187ac42c0e268475556467b4802835f4e8f9c03
ORCID 0000-0002-9719-6956
0000-0002-4072-9942
0000-0003-0078-3845
PageCount 13
ParticipantIDs ieee_primary_10754887
crossref_primary_10_1109_THMS_2024_3486450
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on human-machine systems
PublicationTitleAbbrev THMS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref10
ref54
Mardia (ref46) 1974; 36
ref17
ref16
ref19
ref18
Kusuru (ref38) 2023
ref51
ref50
ref45
ref47
ref41
ref44
ref43
ref8
ref7
ref9
ref4
Kullback (ref48) 1997
ref3
ref6
ref5
ref40
Kelley (ref42) 2003
ref35
ref34
ref37
Criswell (ref55) 2010
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Cohen (ref49) 1983; 2
ref29
ref60
ref61
References_xml – ident: ref24
  doi: 10.1016/j.jelekin.2011.04.009
– ident: ref51
  doi: 10.1097/00005053-195707000-00032
– ident: ref8
  doi: 10.1016/S1050-6411(05)80003-3
– ident: ref20
  doi: 10.1109/BRC.2011.5740669
– year: 2023
  ident: ref38
  article-title: An automatic approach for classification of resistance training status based on sEMG signals
  doi: 10.2139/ssrn.4639451
– ident: ref11
  doi: 10.1111/j.1468-0394.2008.00483.x
– ident: ref41
  doi: 10.1109/SSP.2018.8450847
– ident: ref59
  doi: 10.1109/TGRS.2009.2033193
– ident: ref31
  doi: 10.1016/j.jelekin.2023.102774
– ident: ref53
  doi: 10.1519/SSC.0000000000000627
– ident: ref45
  doi: 10.1109/EMBC46164.2021.9630143
– ident: ref54
  doi: 10.1007/978-88-470-2463-2
– ident: ref3
  doi: 10.1109/10.764949
– ident: ref6
  doi: 10.1093/ptj/64.12.1813
– ident: ref52
  doi: 10.1007/978-1-4612-4380-9_16
– ident: ref13
  doi: 10.1113/jphysiol.1975.sp010904
– ident: ref40
  doi: 10.1007/978-1-4615-7566-5
– ident: ref43
  doi: 10.1109/7.892695
– ident: ref2
  doi: 10.1145/1186415.1186544
– ident: ref30
  doi: 10.1007/s11517-010-0642-x
– ident: ref21
  doi: 10.1113/jphysiol.2007.139477
– ident: ref23
  doi: 10.1371/journal.pone.0180112
– ident: ref15
  doi: 10.1016/j.jelekin.2016.12.006
– ident: ref4
  doi: 10.3389/fphys.2017.00985
– ident: ref56
  doi: 10.1249/00005768-199506000-00011
– ident: ref19
  doi: 10.1016/S1050-6411(96)00024-7
– ident: ref1
  doi: 10.1016/S0195-5616(03)00079-2
– ident: ref10
  doi: 10.1109/TBME.2019.2895683
– ident: ref18
  doi: 10.1007/BF02442838
– ident: ref22
  doi: 10.1016/j.jelekin.2010.09.004
– volume-title: Solving Nonlinear Equations With Newton’s Method
  year: 2003
  ident: ref42
  doi: 10.1137/1.9780898718898
– ident: ref17
  doi: 10.1109/TBME.1980.326652
– ident: ref32
  doi: 10.1002/9781119082934
– volume: 2
  volume-title: Correlation Analysis for the Behavioral Sciences
  year: 1983
  ident: ref49
  article-title: Applied multiple regression
– ident: ref47
  doi: 10.3758/s13428-016-0814-1
– ident: ref25
  doi: 10.1016/j.ptsp.2010.10.004
– ident: ref36
  doi: 10.1109/IEMBS.2004.1403093
– ident: ref16
  doi: 10.1016/j.brainresbull.2012.09.012
– ident: ref35
  doi: 10.1109/LSP.2006.870353
– volume-title: Cram’s Introduction to Surface Electromyography
  year: 2010
  ident: ref55
– ident: ref7
  doi: 10.1016/j.compbiomed.2005.04.002
– ident: ref26
  doi: 10.1016/j.eswa.2021.115644
– ident: ref61
  doi: 10.1016/B978-141603197-0.10033-3
– ident: ref44
  doi: 10.1017/9781316882825
– volume-title: Information Theory and Statistics
  year: 1997
  ident: ref48
– ident: ref14
  doi: 10.1007/s11427-012-4400-1
– ident: ref33
  doi: 10.1201/9780429428357
– ident: ref57
  doi: 10.1080/10671188.1966.10614754
– ident: ref28
  doi: 10.1109/TSP.2006.880209
– ident: ref29
  doi: 10.1152/jn.1993.70.6.2470
– ident: ref9
  doi: 10.1515/BMT.2006.063
– ident: ref27
  doi: 10.1038/sdata.2014.53
– ident: ref5
  doi: 10.1123/jab.13.2.135
– ident: ref60
  doi: 10.2307/4615733
– ident: ref39
  doi: 10.2307/2984875
– ident: ref58
  doi: 10.1016/0165-1765(80)90024-5
– ident: ref34
  doi: 10.1115/1.3138251
– ident: ref50
  doi: 10.1093/oso/9780198507659.001.0001
– volume: 36
  start-page: 115
  year: 1974
  ident: ref46
  article-title: Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies
  publication-title: Sankhy: Indian J. Statist., Ser. B
– ident: ref12
  doi: 10.1109/PROC.1977.10545
– ident: ref37
  doi: 10.1109/TBME.2005.856295
SSID ssj0000825558
Score 2.4296842
Snippet Recent literature suggests that the surface electromyography (sEMG) signals have nonstationary statistical characteristics, specifically due to the random...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 58
SubjectTerms Adaptation models
Compound Gaussian (CG) models
Electromyography
expectation maximization (EM) algorithm
Expectation-maximization algorithms
exponential random variable
Force
Gaussian processes
Muscles
Random variables
surface electromyography (sEMG)
Training
Title An Improved Compound Gaussian Model for Bivariate Surface EMG Signals Related to Strength Training
URI https://ieeexplore.ieee.org/document/10754887
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJz34OXF-kYMnobVL048cp-wDYbtsg91KkqZzKJ3M1oN_ve-lnRRB8FJKCSW8l-T9Xt7Hj5C71DMBLAvhpML4DvfBTxFSKkf6KeOKe1lgsyon03C84M_LYFkXq9taGGOMTT4zLr7aWH660SVelcEOjwBgx1GLtMBzq4q1fi5U0NcJLB8n64WgfSZ6dRSz54mH-XgyA2-QcdfnccixzL5hhxrEKtauDI_IdDejKp3k1S0L5eqvX80a_z3lY3JYI0zar5bECdkz-Sk5aPQdPCOqn9PqNsGkFE8E5FaiI1l-YEklRX60Nwpolj6uP8GXBjhKZ-U2k9rQwWREZ-sVdl2mNpEO_lBsKAa381XxQuc15USHLIaD-dPYqckWHA1WvnAypowXK66yQHIZaslUKpQvcNNHUnOmPYOdYSIQcginq-IxQpMg4ybOhPb8c9LON7m5IBRMHMA6ISNfhtxEMpaZz7QOFDw56KBL7neiT96rnhqJ9UU8kaCeEtRTUuupSzoo1cbASqCXf3y_IvsMKXptYvU1aRfb0twAbijUrV0v35QvvZ4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66HtSDzxXf5uBJ6Nqm6SNHFdf62L3sLuytJGmqonRFWw_-emfSrhRB8FJKCSXMJJlvMo-PkNPMNQEsC-FkwvgO98FPEVIqR_oZ44q7eWCzKgfDMJnwu2kwbYrVbS2MMcYmn5kevtpYfjbTFV6VwQ6PAGDH0SJZAsMfeHW51s-VCno7gWXkZF4I-mfCa-KYnivOx8lgBP4g4z2fxyHHQvuWJWpRq1jL0l8nw_mc6oSSl15Vqp7--tWu8d-T3iBrDcakF_Wi2CQLptgiq63Og9tEXRS0vk8wGcUzAdmV6I2sPrCokiJD2isFPEsvnz_BmwZASkfVey61odeDGzp6fsS-y9Sm0sEfyhnF8HbxWD7RcUM60SWT_vX4KnEaugVHg50vnZwp48aKqzyQXIZaMpUJ5Qvc9pHUnGnXYG-YCIQcwvmqeIzgJMi5iXOhXX-HdIpZYXYJBSMHwE7IyJchN5GMZe4zrQMFTw462CNnc9Gnb3VXjdR6I65IUU8p6ilt9LRHuijV1sBaoPt_fD8hy8l48JA-3A7vD8gKQ8Jem2Z9SDrle2WOAEWU6tiunW-pmcDn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Compound+Gaussian+Model+for+Bivariate+Surface+EMG+Signals+Related+to+Strength+Training&rft.jtitle=IEEE+transactions+on+human-machine+systems&rft.au=Kusuru%2C+Durgesh&rft.au=Turlapaty%2C+Anish+C.&rft.au=Thakur%2C+Mainak&rft.date=2025-02-01&rft.issn=2168-2291&rft.eissn=2168-2305&rft.volume=55&rft.issue=1&rft.spage=58&rft.epage=70&rft_id=info:doi/10.1109%2FTHMS.2024.3486450&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_THMS_2024_3486450
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2291&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2291&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2291&client=summon