An Improved Compound Gaussian Model for Bivariate Surface EMG Signals Related to Strength Training
Recent literature suggests that the surface electromyography (sEMG) signals have nonstationary statistical characteristics, specifically due to the random nature of the covariance. Thus, the suitability of a statistical model for sEMG signals is determined by the choice of an appropriate model for d...
Saved in:
Published in | IEEE transactions on human-machine systems Vol. 55; no. 1; pp. 58 - 70 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2168-2291 2168-2305 |
DOI | 10.1109/THMS.2024.3486450 |
Cover
Loading…
Abstract | Recent literature suggests that the surface electromyography (sEMG) signals have nonstationary statistical characteristics, specifically due to the random nature of the covariance. Thus, the suitability of a statistical model for sEMG signals is determined by the choice of an appropriate model for describing the covariance. The purpose of this study is to propose a compound-Gaussian (CG) model for multivariate sEMG signals in which the latent variable of covariance is modeled as a random variable that follows an exponential model. The parameters of the model are estimated using the iterative expectation maximization (EM) algorithm. Further, a new dataset, electromyography analysis of human activities database 2 (EMAHA-DB2), is developed. The proposed model is evaluated through both qualitative and quantitative methods. Based on the model fitting analysis on the sEMG signals from EMAHA-DB2, it is found that the proposed CG model fits more closely to the empirical pdf of sEMG signals than the existing models. In addition, statistical analyses are carried out among the models and estimated parameters under different scenarios. The estimate of the exponential model's rate parameter exhibits a clear relationship with training weights, potentially correlating with underlying motor unit activity. Finally, the average signal power estimates of the channels show distinctive dependency on the training weights, the subject's training experience, and the type of activity. |
---|---|
AbstractList | Recent literature suggests that the surface electromyography (sEMG) signals have nonstationary statistical characteristics, specifically due to the random nature of the covariance. Thus, the suitability of a statistical model for sEMG signals is determined by the choice of an appropriate model for describing the covariance. The purpose of this study is to propose a compound-Gaussian (CG) model for multivariate sEMG signals in which the latent variable of covariance is modeled as a random variable that follows an exponential model. The parameters of the model are estimated using the iterative expectation maximization (EM) algorithm. Further, a new dataset, electromyography analysis of human activities database 2 (EMAHA-DB2), is developed. The proposed model is evaluated through both qualitative and quantitative methods. Based on the model fitting analysis on the sEMG signals from EMAHA-DB2, it is found that the proposed CG model fits more closely to the empirical pdf of sEMG signals than the existing models. In addition, statistical analyses are carried out among the models and estimated parameters under different scenarios. The estimate of the exponential model's rate parameter exhibits a clear relationship with training weights, potentially correlating with underlying motor unit activity. Finally, the average signal power estimates of the channels show distinctive dependency on the training weights, the subject's training experience, and the type of activity. |
Author | Kusuru, Durgesh Turlapaty, Anish C. Thakur, Mainak |
Author_xml | – sequence: 1 givenname: Durgesh orcidid: 0000-0002-9719-6956 surname: Kusuru fullname: Kusuru, Durgesh email: durgesh.k@iiits.in organization: Bio-Signal Analysis Group, Indian Institute of Information Technology Sri City, Chittoor, Andhra Pradesh, India – sequence: 2 givenname: Anish C. orcidid: 0000-0003-0078-3845 surname: Turlapaty fullname: Turlapaty, Anish C. email: anish.turlapaty@iiits.in organization: Bio-Signal Analysis Group, Indian Institute of Information Technology Sri City, Chittoor, Andhra Pradesh, India – sequence: 3 givenname: Mainak orcidid: 0000-0002-4072-9942 surname: Thakur fullname: Thakur, Mainak email: mainak.thakur@iiits.in organization: Bio-Signal Analysis Group, Indian Institute of Information Technology Sri City, Chittoor, Andhra Pradesh, India |
BookMark | eNpNkN1qAjEQhUNpodb6AIVe5AXW5nc3e2nFqqAUuvZ6SbITm6KJZFehb98VLXRuZmDOORy-B3QbYgCEnigZU0rKl81iXY0ZYWLMhcqFJDdowGiuMsaJvP27WUnv0ahtv0k_ikkp1QCZScDL_SHFEzR4GveHeAwNnutj23od8Do2sMMuJvzqTzp53QGujslpC3i2nuPKb4PetfgDdv2rwV3EVZcgbLsvvEnaBx-2j-jO9RoYXfcQfb7NNtNFtnqfL6eTVWYZVV3mmAGijDBOaqFzq5lpSsNLwqkqtBXMEmC5EkVfPBd5YYQiTHHpBChXWsKHiF5ybYptm8DVh-T3Ov3UlNRnTvWZU33mVF859Z7ni8cDwD99IYVSBf8F8VBlwA |
CODEN | ITHSA6 |
Cites_doi | 10.1016/j.jelekin.2011.04.009 10.1097/00005053-195707000-00032 10.1016/S1050-6411(05)80003-3 10.1109/BRC.2011.5740669 10.2139/ssrn.4639451 10.1111/j.1468-0394.2008.00483.x 10.1109/SSP.2018.8450847 10.1109/TGRS.2009.2033193 10.1016/j.jelekin.2023.102774 10.1519/SSC.0000000000000627 10.1109/EMBC46164.2021.9630143 10.1007/978-88-470-2463-2 10.1109/10.764949 10.1093/ptj/64.12.1813 10.1007/978-1-4612-4380-9_16 10.1113/jphysiol.1975.sp010904 10.1007/978-1-4615-7566-5 10.1109/7.892695 10.1145/1186415.1186544 10.1007/s11517-010-0642-x 10.1113/jphysiol.2007.139477 10.1371/journal.pone.0180112 10.1016/j.jelekin.2016.12.006 10.3389/fphys.2017.00985 10.1249/00005768-199506000-00011 10.1016/S1050-6411(96)00024-7 10.1016/S0195-5616(03)00079-2 10.1109/TBME.2019.2895683 10.1007/BF02442838 10.1016/j.jelekin.2010.09.004 10.1137/1.9780898718898 10.1109/TBME.1980.326652 10.1002/9781119082934 10.3758/s13428-016-0814-1 10.1016/j.ptsp.2010.10.004 10.1109/IEMBS.2004.1403093 10.1016/j.brainresbull.2012.09.012 10.1109/LSP.2006.870353 10.1016/j.compbiomed.2005.04.002 10.1016/j.eswa.2021.115644 10.1016/B978-141603197-0.10033-3 10.1017/9781316882825 10.1007/s11427-012-4400-1 10.1201/9780429428357 10.1080/10671188.1966.10614754 10.1109/TSP.2006.880209 10.1152/jn.1993.70.6.2470 10.1515/BMT.2006.063 10.1038/sdata.2014.53 10.1123/jab.13.2.135 10.2307/4615733 10.2307/2984875 10.1016/0165-1765(80)90024-5 10.1115/1.3138251 10.1093/oso/9780198507659.001.0001 10.1109/PROC.1977.10545 10.1109/TBME.2005.856295 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/THMS.2024.3486450 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-2305 |
EndPage | 70 |
ExternalDocumentID | 10_1109_THMS_2024_3486450 10754887 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c218t-f2be08b4bf5a4a6ca2bd9b3903187ac42c0e268475556467b4802835f4e8f9c03 |
IEDL.DBID | RIE |
ISSN | 2168-2291 |
IngestDate | Thu Jul 03 08:25:27 EDT 2025 Wed Aug 27 01:47:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c218t-f2be08b4bf5a4a6ca2bd9b3903187ac42c0e268475556467b4802835f4e8f9c03 |
ORCID | 0000-0002-9719-6956 0000-0002-4072-9942 0000-0003-0078-3845 |
PageCount | 13 |
ParticipantIDs | ieee_primary_10754887 crossref_primary_10_1109_THMS_2024_3486450 |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on human-machine systems |
PublicationTitleAbbrev | THMS |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref10 ref54 Mardia (ref46) 1974; 36 ref17 ref16 ref19 ref18 Kusuru (ref38) 2023 ref51 ref50 ref45 ref47 ref41 ref44 ref43 ref8 ref7 ref9 ref4 Kullback (ref48) 1997 ref3 ref6 ref5 ref40 Kelley (ref42) 2003 ref35 ref34 ref37 Criswell (ref55) 2010 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Cohen (ref49) 1983; 2 ref29 ref60 ref61 |
References_xml | – ident: ref24 doi: 10.1016/j.jelekin.2011.04.009 – ident: ref51 doi: 10.1097/00005053-195707000-00032 – ident: ref8 doi: 10.1016/S1050-6411(05)80003-3 – ident: ref20 doi: 10.1109/BRC.2011.5740669 – year: 2023 ident: ref38 article-title: An automatic approach for classification of resistance training status based on sEMG signals doi: 10.2139/ssrn.4639451 – ident: ref11 doi: 10.1111/j.1468-0394.2008.00483.x – ident: ref41 doi: 10.1109/SSP.2018.8450847 – ident: ref59 doi: 10.1109/TGRS.2009.2033193 – ident: ref31 doi: 10.1016/j.jelekin.2023.102774 – ident: ref53 doi: 10.1519/SSC.0000000000000627 – ident: ref45 doi: 10.1109/EMBC46164.2021.9630143 – ident: ref54 doi: 10.1007/978-88-470-2463-2 – ident: ref3 doi: 10.1109/10.764949 – ident: ref6 doi: 10.1093/ptj/64.12.1813 – ident: ref52 doi: 10.1007/978-1-4612-4380-9_16 – ident: ref13 doi: 10.1113/jphysiol.1975.sp010904 – ident: ref40 doi: 10.1007/978-1-4615-7566-5 – ident: ref43 doi: 10.1109/7.892695 – ident: ref2 doi: 10.1145/1186415.1186544 – ident: ref30 doi: 10.1007/s11517-010-0642-x – ident: ref21 doi: 10.1113/jphysiol.2007.139477 – ident: ref23 doi: 10.1371/journal.pone.0180112 – ident: ref15 doi: 10.1016/j.jelekin.2016.12.006 – ident: ref4 doi: 10.3389/fphys.2017.00985 – ident: ref56 doi: 10.1249/00005768-199506000-00011 – ident: ref19 doi: 10.1016/S1050-6411(96)00024-7 – ident: ref1 doi: 10.1016/S0195-5616(03)00079-2 – ident: ref10 doi: 10.1109/TBME.2019.2895683 – ident: ref18 doi: 10.1007/BF02442838 – ident: ref22 doi: 10.1016/j.jelekin.2010.09.004 – volume-title: Solving Nonlinear Equations With Newton’s Method year: 2003 ident: ref42 doi: 10.1137/1.9780898718898 – ident: ref17 doi: 10.1109/TBME.1980.326652 – ident: ref32 doi: 10.1002/9781119082934 – volume: 2 volume-title: Correlation Analysis for the Behavioral Sciences year: 1983 ident: ref49 article-title: Applied multiple regression – ident: ref47 doi: 10.3758/s13428-016-0814-1 – ident: ref25 doi: 10.1016/j.ptsp.2010.10.004 – ident: ref36 doi: 10.1109/IEMBS.2004.1403093 – ident: ref16 doi: 10.1016/j.brainresbull.2012.09.012 – ident: ref35 doi: 10.1109/LSP.2006.870353 – volume-title: Cram’s Introduction to Surface Electromyography year: 2010 ident: ref55 – ident: ref7 doi: 10.1016/j.compbiomed.2005.04.002 – ident: ref26 doi: 10.1016/j.eswa.2021.115644 – ident: ref61 doi: 10.1016/B978-141603197-0.10033-3 – ident: ref44 doi: 10.1017/9781316882825 – volume-title: Information Theory and Statistics year: 1997 ident: ref48 – ident: ref14 doi: 10.1007/s11427-012-4400-1 – ident: ref33 doi: 10.1201/9780429428357 – ident: ref57 doi: 10.1080/10671188.1966.10614754 – ident: ref28 doi: 10.1109/TSP.2006.880209 – ident: ref29 doi: 10.1152/jn.1993.70.6.2470 – ident: ref9 doi: 10.1515/BMT.2006.063 – ident: ref27 doi: 10.1038/sdata.2014.53 – ident: ref5 doi: 10.1123/jab.13.2.135 – ident: ref60 doi: 10.2307/4615733 – ident: ref39 doi: 10.2307/2984875 – ident: ref58 doi: 10.1016/0165-1765(80)90024-5 – ident: ref34 doi: 10.1115/1.3138251 – ident: ref50 doi: 10.1093/oso/9780198507659.001.0001 – volume: 36 start-page: 115 year: 1974 ident: ref46 article-title: Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies publication-title: Sankhy: Indian J. Statist., Ser. B – ident: ref12 doi: 10.1109/PROC.1977.10545 – ident: ref37 doi: 10.1109/TBME.2005.856295 |
SSID | ssj0000825558 |
Score | 2.4296842 |
Snippet | Recent literature suggests that the surface electromyography (sEMG) signals have nonstationary statistical characteristics, specifically due to the random... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 58 |
SubjectTerms | Adaptation models Compound Gaussian (CG) models Electromyography expectation maximization (EM) algorithm Expectation-maximization algorithms exponential random variable Force Gaussian processes Muscles Random variables surface electromyography (sEMG) Training |
Title | An Improved Compound Gaussian Model for Bivariate Surface EMG Signals Related to Strength Training |
URI | https://ieeexplore.ieee.org/document/10754887 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJz34OXF-kYMnobVL048cp-wDYbtsg91KkqZzKJ3M1oN_ve-lnRRB8FJKCSW8l-T9Xt7Hj5C71DMBLAvhpML4DvfBTxFSKkf6KeOKe1lgsyon03C84M_LYFkXq9taGGOMTT4zLr7aWH660SVelcEOjwBgx1GLtMBzq4q1fi5U0NcJLB8n64WgfSZ6dRSz54mH-XgyA2-QcdfnccixzL5hhxrEKtauDI_IdDejKp3k1S0L5eqvX80a_z3lY3JYI0zar5bECdkz-Sk5aPQdPCOqn9PqNsGkFE8E5FaiI1l-YEklRX60Nwpolj6uP8GXBjhKZ-U2k9rQwWREZ-sVdl2mNpEO_lBsKAa381XxQuc15USHLIaD-dPYqckWHA1WvnAypowXK66yQHIZaslUKpQvcNNHUnOmPYOdYSIQcginq-IxQpMg4ybOhPb8c9LON7m5IBRMHMA6ISNfhtxEMpaZz7QOFDw56KBL7neiT96rnhqJ9UU8kaCeEtRTUuupSzoo1cbASqCXf3y_IvsMKXptYvU1aRfb0twAbijUrV0v35QvvZ4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66HtSDzxXf5uBJ6Nqm6SNHFdf62L3sLuytJGmqonRFWw_-emfSrhRB8FJKCSXMJJlvMo-PkNPMNQEsC-FkwvgO98FPEVIqR_oZ44q7eWCzKgfDMJnwu2kwbYrVbS2MMcYmn5kevtpYfjbTFV6VwQ6PAGDH0SJZAsMfeHW51s-VCno7gWXkZF4I-mfCa-KYnivOx8lgBP4g4z2fxyHHQvuWJWpRq1jL0l8nw_mc6oSSl15Vqp7--tWu8d-T3iBrDcakF_Wi2CQLptgiq63Og9tEXRS0vk8wGcUzAdmV6I2sPrCokiJD2isFPEsvnz_BmwZASkfVey61odeDGzp6fsS-y9Sm0sEfyhnF8HbxWD7RcUM60SWT_vX4KnEaugVHg50vnZwp48aKqzyQXIZaMpUJ5Qvc9pHUnGnXYG-YCIQcwvmqeIzgJMi5iXOhXX-HdIpZYXYJBSMHwE7IyJchN5GMZe4zrQMFTw462CNnc9Gnb3VXjdR6I65IUU8p6ilt9LRHuijV1sBaoPt_fD8hy8l48JA-3A7vD8gKQ8Jem2Z9SDrle2WOAEWU6tiunW-pmcDn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Compound+Gaussian+Model+for+Bivariate+Surface+EMG+Signals+Related+to+Strength+Training&rft.jtitle=IEEE+transactions+on+human-machine+systems&rft.au=Kusuru%2C+Durgesh&rft.au=Turlapaty%2C+Anish+C.&rft.au=Thakur%2C+Mainak&rft.date=2025-02-01&rft.issn=2168-2291&rft.eissn=2168-2305&rft.volume=55&rft.issue=1&rft.spage=58&rft.epage=70&rft_id=info:doi/10.1109%2FTHMS.2024.3486450&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_THMS_2024_3486450 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2291&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2291&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2291&client=summon |