MMDA: A Multimodal and Multisource Domain Adaptation Method for Cross-Subject Emotion Recognition From EEG and Eye Movement Signals

Multimodal emotion recognition from electroencephalogram (EEG) and eye movement signals has shown to be a promising approach to provide more discriminative information about human emotional states. However, most current works rely on a subject-dependent approach, limiting their applicability to new...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on computational social systems pp. 1 - 14
Main Authors Jimenez-Guarneros, Magdiel, Fuentes-Pineda, Gibran, Grande-Barreto, Jonas
Format Journal Article
LanguageEnglish
Published IEEE 2024
Subjects
Online AccessGet full text
ISSN2329-924X
2373-7476
DOI10.1109/TCSS.2024.3519300

Cover

Loading…
Abstract Multimodal emotion recognition from electroencephalogram (EEG) and eye movement signals has shown to be a promising approach to provide more discriminative information about human emotional states. However, most current works rely on a subject-dependent approach, limiting their applicability to new users. Recently, some studies have explored multimodal domain adaptation to address the mentioned issue by transferring information from known subjects to new ones. Unfortunately, existing methods are still exposed to negative transfer as a suboptimal distribution alignment is performed between subjects, while irrelevant information is not discarded. In this article, we present a multimodal and multisource domain adaptation (MMDA) method, which adopts the following three strategies: 1) marginal and conditional distribution alignments must be performed between each known subject and a new one; 2) relevant distribution alignments must be prioritized to avoid a negative transfer; and 3) modality fusion results should be improved by extracting more discriminative features from EEG signals and selecting relevant features across modalities. Our proposed method was evaluated with leave-one-subject-out cross validation on four public datasets: SEED, SEED-GER, SEED-IV, and SEED-V. Experimental results show that our proposal outperforms state-of-the-art results for each dataset when subject data from different sessions are combined into a single dataset. Moreover, MMDA exceeds the state of the art in 8 out of 11 different sessions when each session is evaluated.
AbstractList Multimodal emotion recognition from electroencephalogram (EEG) and eye movement signals has shown to be a promising approach to provide more discriminative information about human emotional states. However, most current works rely on a subject-dependent approach, limiting their applicability to new users. Recently, some studies have explored multimodal domain adaptation to address the mentioned issue by transferring information from known subjects to new ones. Unfortunately, existing methods are still exposed to negative transfer as a suboptimal distribution alignment is performed between subjects, while irrelevant information is not discarded. In this article, we present a multimodal and multisource domain adaptation (MMDA) method, which adopts the following three strategies: 1) marginal and conditional distribution alignments must be performed between each known subject and a new one; 2) relevant distribution alignments must be prioritized to avoid a negative transfer; and 3) modality fusion results should be improved by extracting more discriminative features from EEG signals and selecting relevant features across modalities. Our proposed method was evaluated with leave-one-subject-out cross validation on four public datasets: SEED, SEED-GER, SEED-IV, and SEED-V. Experimental results show that our proposal outperforms state-of-the-art results for each dataset when subject data from different sessions are combined into a single dataset. Moreover, MMDA exceeds the state of the art in 8 out of 11 different sessions when each session is evaluated.
Author Jimenez-Guarneros, Magdiel
Fuentes-Pineda, Gibran
Grande-Barreto, Jonas
Author_xml – sequence: 1
  givenname: Magdiel
  orcidid: 0000-0001-9675-7494
  surname: Jimenez-Guarneros
  fullname: Jimenez-Guarneros, Magdiel
  email: mjmnzg@gmail.com
  organization: Department of Computer Science, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México, Mexico
– sequence: 2
  givenname: Gibran
  orcidid: 0000-0002-1964-8208
  surname: Fuentes-Pineda
  fullname: Fuentes-Pineda, Gibran
  email: gibranfp@unam.mx
  organization: Department of Computer Science, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México, Mexico
– sequence: 3
  givenname: Jonas
  orcidid: 0000-0003-3789-1479
  surname: Grande-Barreto
  fullname: Grande-Barreto, Jonas
  email: jonas.barreto385@uppuebla.edu.mx
  organization: Information Technology Engineering, Universidad Politécnica de Puebla, Cuanalá, Puebla, Mexico
BookMark eNpNkM1qwkAUhYdiodb6AIUu5gVi59dJugsabcFQaCx0FyYzNzZiZiSJBdd98Rp10dU5F845XL57NHDeAUKPlEwoJdHzepZlE0aYmHBJI07IDRoyrnighJoOes-iIGLi6w6N23ZLCKFMSsXIEP2m6Tx-wTFOD7uuqr3VO6ydvZytPzQG8NzXunI4tnrf6a7yDqfQfXuLS9_gWePbNsgOxRZMh5PanwMfYPzGVWe_aHyNk2R53k2OgFP_AzW4DmfVxuld-4Buy5PA-Koj9LlI1rPXYPW-fJvFq8AwGnaBBV2QMBJccFmaqeZFwRSXAFIWghhQwkaSMQAtrVGlYkpzTikVdApFKSwfIXrZNf3PDZT5vqlq3RxzSvIeZN6DzHuQ-RXkqfN06VQA8C8f0oiFkv8B1SJx_w
CODEN ITCSGL
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TCSS.2024.3519300
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Social Sciences (General)
EISSN 2373-7476
EndPage 14
ExternalDocumentID 10_1109_TCSS_2024_3519300
10819285
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
4.4
AAYXX
AGSQL
CITATION
EJD
RIG
ID FETCH-LOGICAL-c218t-deab08943435fc6a3bb2735ee55b40ce74d9522eea5dc7f727a33111416ebf4d3
IEDL.DBID RIE
ISSN 2329-924X
IngestDate Tue Jul 01 00:23:40 EDT 2025
Wed Aug 27 01:57:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c218t-deab08943435fc6a3bb2735ee55b40ce74d9522eea5dc7f727a33111416ebf4d3
ORCID 0000-0002-1964-8208
0000-0001-9675-7494
0000-0003-3789-1479
PageCount 14
ParticipantIDs crossref_primary_10_1109_TCSS_2024_3519300
ieee_primary_10819285
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on computational social systems
PublicationTitleAbbrev TCSS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001255720
Score 2.254924
Snippet Multimodal emotion recognition from electroencephalogram (EEG) and eye movement signals has shown to be a promising approach to provide more discriminative...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Adaptation models
Brain modeling
Correlation
Data models
Deep learning
electroencephalogram (EEG)
Electroencephalography
Emotion recognition
eye movement (EM)
Feature extraction
multimodal emotion recognition (MER)
multimodal unsupervised domain adaptation (UDA)
multisource domain adaptation (MDA)
Neural networks
Physiology
Training
Title MMDA: A Multimodal and Multisource Domain Adaptation Method for Cross-Subject Emotion Recognition From EEG and Eye Movement Signals
URI https://ieeexplore.ieee.org/document/10819285
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4IJy8-MeIre_CgJsVCW0q9ESgSk3IQSLg1292pIYaWYDno1T_uzG5JGhMTb9tm22w7-_jm9Q1jt6nqgAq6bUsoItVWNhmafLB8OwlQG8MDJaXk5GjSHc_dl4W3KJPVdS4MAOjgM2hRU_vyVS63ZCrDFU70XT2vxmqouZlkrYpBxfP8zs5z2baDx9lgOkUNsOO2qAqdQ0lslbOnUkxFnyWjQzbZjcKEkLy3tkXSkl-_CBr_PcwjdlCiSt430-CY7UF2wpom9ZaXy_eD35Uc0_en7DuKhv0n3uc6AXeVK-wnMmUujUGfD_OVWGa8r8Ta-Ot5pMtNc8S5fEBfaOG2Q3YcHppiQPx1F46E7dEmX_EwfNbvDT-BR7nmJi_4dPlGrM0NNh-Fs8HYKusxWBKBQGEpEIlNfO0IsVLZFU6SIPjxADwvcW0JvqsChHMAwlPSTxEZCcfBvRQxH1A8oHPG6lmewTnjPUkOOUcq1QaEREJIVwi33bOFj3hVdZvsYSepeG1oN2KtrthBTGKNSaxxKdYma5AQKh3N_7_44_4l26fHjSHlitWLzRauEVoUyY2eUj-43cyh
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZ4DLDwRpSnBwZASkmauGnYqpJSHulAi8QWOfYVVagJgnSAlT_OnZ1KFRISmxNZlpOzfZ_v8R1jpyPdAB01PUdqItXWLhmaQnBCN4vwNoYKZUTJyUm_2XsK7p7Fc5WsbnJhAMAEn0GdmsaXrws1JVMZ7nCi72qJRbaMil94Nl1rzqQiRNiY-S49N7ocdgYDvAM2gjrVofMpjW1O-8yVUzHapLvO-rN52CCS1_q0zOrq6xdF478nusHWKlzJ23YhbLIFyLdYzSbf8moDf_CzimX6fJt9J8l1-4q3uUnBnRQa-8lc20dr0ufXxUSOc97W8s167HliCk5zRLq8Q1_o4MFDlhwe23JA_HEWkITt7nsx4XF8Y8aNP4EnhWEnL_lg_EK8zTvsqRsPOz2nqsjgKIQCpaNBZi4xtiPIGqmm9LMM4Y8AECILXAVhoCMEdABSaBWOEBtJ38fTFFEfUESgv8uW8iKHPcZbilxyvtLaAwRFUqpAysBruTJExKqbNXYxk1T6Zok3UnNhcaOUxJqSWNNKrDW2Q0KY62j___4f70_YSm-YPKQPt_37A7ZKQ1mzyiFbKt-ncIRAo8yOzfL6AY-Tz-o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MMDA%3A+A+Multimodal+and+Multisource+Domain+Adaptation+Method+for+Cross-Subject+Emotion+Recognition+From+EEG+and+Eye+Movement+Signals&rft.jtitle=IEEE+transactions+on+computational+social+systems&rft.au=Jim%C3%A9nez-Guarneros%2C+Magdiel&rft.au=Fuentes-Pineda%2C+Gibran&rft.au=Grande-Barreto%2C+Jonas&rft.date=2024&rft.issn=2329-924X&rft.eissn=2373-7476&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTCSS.2024.3519300&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSS_2024_3519300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-924X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-924X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-924X&client=summon