A Probabilistic Quality-Relevant Monitoring Method With Gaussian Mixture Model
Process uncertainty, which is usually caused by various factors, is generally subject to unknown complex distribution. However, many existing monitoring methods are established with a single distribution, and thus they may not accurately reflect the uncertainty within process systems. In this study,...
Saved in:
Published in | IEEE transactions on automation science and engineering Vol. 22; pp. 4790 - 4801 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Process uncertainty, which is usually caused by various factors, is generally subject to unknown complex distribution. However, many existing monitoring methods are established with a single distribution, and thus they may not accurately reflect the uncertainty within process systems. In this study, a probabilistic quality- relevant monitoring (PQM-GMM) is proposed with the Gaussian mixture model to address the aforementioned issue. Different from conventional monitoring methods, the proposed method measures the process uncertainty using multiple Gaussian distributions, which can be used to approximate any unknown complex distribution. Then, the optimization problem of the proposed PQM-GMM model is solved using the expectation maximization (EM) algorithm, which includes an augmented Lagrange multiplier in the M-step for model parameter estimation. Using the obtained results, a quality-relevant monitoring model is established with three statistics. It is noted that the proposed model can also be extended to many existing methods since they share a similar structure. Besides, the detailed information such as initial value selection, missing data problem, computation complexity is discussed. The effectiveness and superiority of the proposed method are tested using a numerical simulation example and a real low-pressure heater application. In comparison with some commonly used quality-relevant methods, the proposed model can be robustly established in the presence of corrupted data, and has a better detection sensitivity for the process anomalies in both process and quality variables. Note to Practitioners-A quality-relevant monitoring method is proposed in this study with Gaussian mixture model (GMM) for detecting the abnormal conditions of industrial processes under harsh environment. Since GMM can be used to approximate any unknown complex distribution, the process uncertainty within the collected data can be meticulously measured using the proposed PQM-GMM model. Besides, the quality-independent faults and quality-related faults can also be effectively distinguished using the designed monitoring statistics. |
---|---|
AbstractList | Process uncertainty, which is usually caused by various factors, is generally subject to unknown complex distribution. However, many existing monitoring methods are established with a single distribution, and thus they may not accurately reflect the uncertainty within process systems. In this study, a probabilistic quality- relevant monitoring (PQM-GMM) is proposed with the Gaussian mixture model to address the aforementioned issue. Different from conventional monitoring methods, the proposed method measures the process uncertainty using multiple Gaussian distributions, which can be used to approximate any unknown complex distribution. Then, the optimization problem of the proposed PQM-GMM model is solved using the expectation maximization (EM) algorithm, which includes an augmented Lagrange multiplier in the M-step for model parameter estimation. Using the obtained results, a quality-relevant monitoring model is established with three statistics. It is noted that the proposed model can also be extended to many existing methods since they share a similar structure. Besides, the detailed information such as initial value selection, missing data problem, computation complexity is discussed. The effectiveness and superiority of the proposed method are tested using a numerical simulation example and a real low-pressure heater application. In comparison with some commonly used quality-relevant methods, the proposed model can be robustly established in the presence of corrupted data, and has a better detection sensitivity for the process anomalies in both process and quality variables. Note to Practitioners-A quality-relevant monitoring method is proposed in this study with Gaussian mixture model (GMM) for detecting the abnormal conditions of industrial processes under harsh environment. Since GMM can be used to approximate any unknown complex distribution, the process uncertainty within the collected data can be meticulously measured using the proposed PQM-GMM model. Besides, the quality-independent faults and quality-related faults can also be effectively distinguished using the designed monitoring statistics. |
Author | Huang, Biao Yu, Wanke Zhao, Chunhui Yang, Hui |
Author_xml | – sequence: 1 givenname: Wanke orcidid: 0000-0002-3927-5656 surname: Yu fullname: Yu, Wanke email: wanke2@ualberta.ca organization: School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, China – sequence: 2 givenname: Chunhui orcidid: 0000-0002-0254-5763 surname: Zhao fullname: Zhao, Chunhui email: chhzhao@zju.edu.cn organization: School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, China – sequence: 3 givenname: Biao orcidid: 0000-0001-9082-2216 surname: Huang fullname: Huang, Biao email: bhuang@ualberta.ca organization: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada – sequence: 4 givenname: Hui orcidid: 0000-0003-2560-9528 surname: Yang fullname: Yang, Hui email: yhshuo@263.net organization: School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, China |
BookMark | eNpNkMtOwzAURC1UJNrCByCx8A-k-Bk7y6gqLVLDs4hl5MQ31CgkyHYR_XsatQtWM4szszgTNOr6DhC6pmRGKcluN_nrYsYIEzMuKBWKnqExlVInXGk-GrqQicykvECTED7JgdQZGaOHHD_5vjKVa12IrsbPO9O6uE9eoIUf00Vc9J2LvXfdBy4gbnuL313c4qXZheBMhwv3G3ceDpyF9hKdN6YNcHXKKXq7W2zmq2T9uLyf5-ukZlTHpNa11U0mFa1EzRqmlNFEEcFFwysiaCNTk2muLJNcpKmtWAUWmFRC2cwwy6eIHn9r34fgoSm_vfsyfl9SUg5CykFIOQgpT0IOm5vjxgHAP16mjKWC_wG_FF6G |
CODEN | ITASC7 |
Cites_doi | 10.1109/TCYB.2021.3050398 10.1016/j.conengprac.2015.04.012 10.1080/00224065.2014.11917955 10.1016/j.ces.2003.09.012 10.1016/j.engappai.2019.04.013 10.1088/1361-6501/ab7bbd 10.1109/TIE.2015.2497204 10.1007/978-1-4615-7566-5 10.1016/j.automatica.2022.110468 10.1109/TII.2019.2941868 10.1002/aic.11977 10.1109/TASE.2020.2984334 10.1109/TASE.2021.3080977 10.1109/TASE.2019.2956087 10.1016/j.automatica.2021.109930 10.1016/j.jprocont.2003.09.004 10.1002/aic.14888 10.1109/TII.2018.2810822 10.1109/TIE.2018.2868316 10.1016/j.eng.2019.01.019 10.1109/TII.2022.3185077 10.1002/aic.10325 10.1016/S0959-1524(00)00022-6 10.1016/j.automatica.2021.110148 10.1109/TII.2015.2396853 10.1109/ICCV.2013.169 10.1109/TIM.2021.3109980 10.1016/S0169-7439(00)00058-7 10.1109/TCST.2015.2481318 10.1016/j.neucom.2008.09.003 10.1109/TASE.2022.3144288 10.5705/ss.2014.105 10.1109/TPAMI.2014.2313118 10.1109/TIE.2017.2786253 10.1002/9780470191613 10.1109/TCST.2023.3330443 10.1002/aic.13959 10.1016/j.ces.2014.04.045 10.1016/j.chemolab.2017.09.015 10.1109/TNN.2011.2165853 10.1016/j.compchemeng.2022.107853 10.1016/S0967-0661(02)00096-5 10.1016/j.compchemeng.2018.04.009 10.1016/S0009-2509(01)00366-9 10.1080/01621459.1994.10476452 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TASE.2024.3411471 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-3783 |
EndPage | 4801 |
ExternalDocumentID | 10_1109_TASE_2024_3411471 10562264 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Sciences Engineering Research Council of Canada (NSERC) funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 62103387 funderid: 10.13039/501100001809 – fundername: Young Elite Scientists Sponsorship Program – fundername: CAST grantid: 2023QNRC001 – fundername: National Key Research and Development Program of China grantid: 2022YFB3304703 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c218t-c8cd8f9571b4c2f277a8070434f3b041f56a9837d253466db2bede25747d9a2d3 |
IEDL.DBID | RIE |
ISSN | 1545-5955 |
IngestDate | Tue Jul 01 05:25:34 EDT 2025 Wed Aug 27 01:46:39 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c218t-c8cd8f9571b4c2f277a8070434f3b041f56a9837d253466db2bede25747d9a2d3 |
ORCID | 0000-0002-0254-5763 0000-0003-2560-9528 0000-0001-9082-2216 0000-0002-3927-5656 |
PageCount | 12 |
ParticipantIDs | ieee_primary_10562264 crossref_primary_10_1109_TASE_2024_3411471 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on automation science and engineering |
PublicationTitleAbbrev | TASE |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref18 doi: 10.1109/TCYB.2021.3050398 – ident: ref3 doi: 10.1016/j.conengprac.2015.04.012 – ident: ref9 doi: 10.1080/00224065.2014.11917955 – ident: ref19 doi: 10.1016/j.ces.2003.09.012 – ident: ref22 doi: 10.1016/j.engappai.2019.04.013 – ident: ref29 doi: 10.1088/1361-6501/ab7bbd – ident: ref30 doi: 10.1109/TIE.2015.2497204 – ident: ref41 doi: 10.1007/978-1-4615-7566-5 – ident: ref32 doi: 10.1016/j.automatica.2022.110468 – ident: ref44 doi: 10.1109/TII.2019.2941868 – ident: ref26 doi: 10.1002/aic.11977 – ident: ref7 doi: 10.1109/TASE.2020.2984334 – ident: ref1 doi: 10.1109/TASE.2021.3080977 – ident: ref21 doi: 10.1109/TASE.2019.2956087 – ident: ref5 doi: 10.1016/j.automatica.2021.109930 – ident: ref13 doi: 10.1016/j.jprocont.2003.09.004 – ident: ref16 doi: 10.1002/aic.14888 – ident: ref17 doi: 10.1109/TII.2018.2810822 – ident: ref31 doi: 10.1109/TIE.2018.2868316 – ident: ref8 doi: 10.1016/j.eng.2019.01.019 – ident: ref10 doi: 10.1109/TII.2022.3185077 – ident: ref42 doi: 10.1002/aic.10325 – ident: ref11 doi: 10.1016/S0959-1524(00)00022-6 – ident: ref23 doi: 10.1016/j.automatica.2021.110148 – ident: ref24 doi: 10.1109/TII.2015.2396853 – ident: ref37 doi: 10.1109/ICCV.2013.169 – ident: ref36 doi: 10.1109/TIM.2021.3109980 – ident: ref12 doi: 10.1016/S0169-7439(00)00058-7 – ident: ref25 doi: 10.1109/TCST.2015.2481318 – ident: ref20 doi: 10.1016/j.neucom.2008.09.003 – ident: ref4 doi: 10.1109/TASE.2022.3144288 – ident: ref39 doi: 10.5705/ss.2014.105 – ident: ref38 doi: 10.1109/TPAMI.2014.2313118 – ident: ref33 doi: 10.1109/TIE.2017.2786253 – ident: ref40 doi: 10.1002/9780470191613 – ident: ref6 doi: 10.1109/TCST.2023.3330443 – ident: ref28 doi: 10.1002/aic.13959 – ident: ref34 doi: 10.1016/j.ces.2014.04.045 – ident: ref35 doi: 10.1016/j.chemolab.2017.09.015 – ident: ref27 doi: 10.1109/TNN.2011.2165853 – ident: ref2 doi: 10.1016/j.compchemeng.2022.107853 – ident: ref14 doi: 10.1016/S0967-0661(02)00096-5 – ident: ref43 doi: 10.1016/j.compchemeng.2018.04.009 – ident: ref15 doi: 10.1016/S0009-2509(01)00366-9 – ident: ref45 doi: 10.1080/01621459.1994.10476452 |
SSID | ssj0024890 |
Score | 2.422662 |
Snippet | Process uncertainty, which is usually caused by various factors, is generally subject to unknown complex distribution. However, many existing monitoring... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 4790 |
SubjectTerms | augmented Lagrange multiplier Data models EM algorithm Gaussian distribution Gaussian mixture model Monitoring multi-source noises Noise Probabilistic logic Quality-relevant monitoring Uncertainty |
Title | A Probabilistic Quality-Relevant Monitoring Method With Gaussian Mixture Model |
URI | https://ieeexplore.ieee.org/document/10562264 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJz34c-L8RQ6ehHRrmqTNccjmEDZEN9ytNGmCQ9lktqD-9ealFacgeCslh_CSl_deXr7vQ-jC7RoRxVKTTAIkR9qIJFLkRBkRZoJaG_oO_mgshlN2M-OzGqzusTDGGP_4zATw6Xv5-VKXcFXWAZV4AH42UMNVbhVY65tYL_EXKpASEC45r1uYYVd2Jr37visFKQvcmR2yOPwRhNZUVXxQGeyg8dd0qrckT0FZqEB__GJq_Pd8d9F2nV7iXrUf9tCGWeyjrTXSwQM07uHblfNieBULJM24otF4J3cANXeGxpWfw2g88gLT-GFePOLrrHwFyCUezd-g74BBR-25haaD_uRqSGpVBaJdOC-ITnSeWMnjUDFNLY3jLHF-zyJmI9VloeUik65szSmPmAC5KWVy4zybxbnMaB4douZiuTBHCFNhXf6lcigqWZxZICdkkeKauTTGncBtdPll5vSlIs9IfdHRlSmsSQprktZr0kYtsODawMp4x3_8P0GbFLR4_XXIKWoWq9KcuQShUOd-Y3wC0m-1ZA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D-rB3-L8mYMnod3SJm1zHLI5dR2iG-5WmjTBoWwyW1D_evPSDqcgeCslh_CSl_deXr7vQ-jc7JrAD7l0Ug6QHK59J-JB5ggVkDTwtCa2gx_3g-6Q3ozYqAKrWyyMUso-PlMufNpefjaVBVyVNUAlHoCfy2jFBH5GSrjWN7VeZK9UIClwGGesamKSJm8MWg9tUwx61DWnNqEh-RGGFnRVbFjpbKL-fELla5Jnt8iFKz9_cTX-e8ZbaKNKMHGr3BHbaElNdtD6Au3gLuq38N3M-DG8iwWaZlwSaXw49wA2N6bGpafDaBxbiWn8OM6f8FVavAHoEsfjd-g8YFBSe9lDw057cNl1Kl0FR5qAnjsyklmkOQuJoNLTXhimkfF86lPtiyYlmgUpN4Vr5jGfBiA4JVSmjG_TMOOpl_n7qDaZTtQBwl6gTQYmMigraZhqoCekvmCSmkTGnMF1dDE3c_Ja0mcktuxo8gTWJIE1Sao1qaM9sODCwNJ4h3_8P0Or3UHcS3rX_dsjtOaBMq-9HDlGtXxWqBOTLuTi1G6SL3vauK0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Probabilistic+Quality-Relevant+Monitoring+Method+With+Gaussian+Mixture+Model&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Yu%2C+Wanke&rft.au=Zhao%2C+Chunhui&rft.au=Huang%2C+Biao&rft.au=Yang%2C+Hui&rft.date=2025-01-01&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=22&rft.spage=4790&rft.epage=4801&rft_id=info:doi/10.1109%2FTASE.2024.3411471&rft.externalDocID=10562264 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |