A Probabilistic Quality-Relevant Monitoring Method With Gaussian Mixture Model

Process uncertainty, which is usually caused by various factors, is generally subject to unknown complex distribution. However, many existing monitoring methods are established with a single distribution, and thus they may not accurately reflect the uncertainty within process systems. In this study,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 22; pp. 4790 - 4801
Main Authors Yu, Wanke, Zhao, Chunhui, Huang, Biao, Yang, Hui
Format Journal Article
LanguageEnglish
Published IEEE 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Process uncertainty, which is usually caused by various factors, is generally subject to unknown complex distribution. However, many existing monitoring methods are established with a single distribution, and thus they may not accurately reflect the uncertainty within process systems. In this study, a probabilistic quality- relevant monitoring (PQM-GMM) is proposed with the Gaussian mixture model to address the aforementioned issue. Different from conventional monitoring methods, the proposed method measures the process uncertainty using multiple Gaussian distributions, which can be used to approximate any unknown complex distribution. Then, the optimization problem of the proposed PQM-GMM model is solved using the expectation maximization (EM) algorithm, which includes an augmented Lagrange multiplier in the M-step for model parameter estimation. Using the obtained results, a quality-relevant monitoring model is established with three statistics. It is noted that the proposed model can also be extended to many existing methods since they share a similar structure. Besides, the detailed information such as initial value selection, missing data problem, computation complexity is discussed. The effectiveness and superiority of the proposed method are tested using a numerical simulation example and a real low-pressure heater application. In comparison with some commonly used quality-relevant methods, the proposed model can be robustly established in the presence of corrupted data, and has a better detection sensitivity for the process anomalies in both process and quality variables. Note to Practitioners-A quality-relevant monitoring method is proposed in this study with Gaussian mixture model (GMM) for detecting the abnormal conditions of industrial processes under harsh environment. Since GMM can be used to approximate any unknown complex distribution, the process uncertainty within the collected data can be meticulously measured using the proposed PQM-GMM model. Besides, the quality-independent faults and quality-related faults can also be effectively distinguished using the designed monitoring statistics.
AbstractList Process uncertainty, which is usually caused by various factors, is generally subject to unknown complex distribution. However, many existing monitoring methods are established with a single distribution, and thus they may not accurately reflect the uncertainty within process systems. In this study, a probabilistic quality- relevant monitoring (PQM-GMM) is proposed with the Gaussian mixture model to address the aforementioned issue. Different from conventional monitoring methods, the proposed method measures the process uncertainty using multiple Gaussian distributions, which can be used to approximate any unknown complex distribution. Then, the optimization problem of the proposed PQM-GMM model is solved using the expectation maximization (EM) algorithm, which includes an augmented Lagrange multiplier in the M-step for model parameter estimation. Using the obtained results, a quality-relevant monitoring model is established with three statistics. It is noted that the proposed model can also be extended to many existing methods since they share a similar structure. Besides, the detailed information such as initial value selection, missing data problem, computation complexity is discussed. The effectiveness and superiority of the proposed method are tested using a numerical simulation example and a real low-pressure heater application. In comparison with some commonly used quality-relevant methods, the proposed model can be robustly established in the presence of corrupted data, and has a better detection sensitivity for the process anomalies in both process and quality variables. Note to Practitioners-A quality-relevant monitoring method is proposed in this study with Gaussian mixture model (GMM) for detecting the abnormal conditions of industrial processes under harsh environment. Since GMM can be used to approximate any unknown complex distribution, the process uncertainty within the collected data can be meticulously measured using the proposed PQM-GMM model. Besides, the quality-independent faults and quality-related faults can also be effectively distinguished using the designed monitoring statistics.
Author Huang, Biao
Yu, Wanke
Zhao, Chunhui
Yang, Hui
Author_xml – sequence: 1
  givenname: Wanke
  orcidid: 0000-0002-3927-5656
  surname: Yu
  fullname: Yu, Wanke
  email: wanke2@ualberta.ca
  organization: School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, China
– sequence: 2
  givenname: Chunhui
  orcidid: 0000-0002-0254-5763
  surname: Zhao
  fullname: Zhao, Chunhui
  email: chhzhao@zju.edu.cn
  organization: School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, China
– sequence: 3
  givenname: Biao
  orcidid: 0000-0001-9082-2216
  surname: Huang
  fullname: Huang, Biao
  email: bhuang@ualberta.ca
  organization: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
– sequence: 4
  givenname: Hui
  orcidid: 0000-0003-2560-9528
  surname: Yang
  fullname: Yang, Hui
  email: yhshuo@263.net
  organization: School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, China
BookMark eNpNkMtOwzAURC1UJNrCByCx8A-k-Bk7y6gqLVLDs4hl5MQ31CgkyHYR_XsatQtWM4szszgTNOr6DhC6pmRGKcluN_nrYsYIEzMuKBWKnqExlVInXGk-GrqQicykvECTED7JgdQZGaOHHD_5vjKVa12IrsbPO9O6uE9eoIUf00Vc9J2LvXfdBy4gbnuL313c4qXZheBMhwv3G3ceDpyF9hKdN6YNcHXKKXq7W2zmq2T9uLyf5-ukZlTHpNa11U0mFa1EzRqmlNFEEcFFwysiaCNTk2muLJNcpKmtWAUWmFRC2cwwy6eIHn9r34fgoSm_vfsyfl9SUg5CykFIOQgpT0IOm5vjxgHAP16mjKWC_wG_FF6G
CODEN ITASC7
Cites_doi 10.1109/TCYB.2021.3050398
10.1016/j.conengprac.2015.04.012
10.1080/00224065.2014.11917955
10.1016/j.ces.2003.09.012
10.1016/j.engappai.2019.04.013
10.1088/1361-6501/ab7bbd
10.1109/TIE.2015.2497204
10.1007/978-1-4615-7566-5
10.1016/j.automatica.2022.110468
10.1109/TII.2019.2941868
10.1002/aic.11977
10.1109/TASE.2020.2984334
10.1109/TASE.2021.3080977
10.1109/TASE.2019.2956087
10.1016/j.automatica.2021.109930
10.1016/j.jprocont.2003.09.004
10.1002/aic.14888
10.1109/TII.2018.2810822
10.1109/TIE.2018.2868316
10.1016/j.eng.2019.01.019
10.1109/TII.2022.3185077
10.1002/aic.10325
10.1016/S0959-1524(00)00022-6
10.1016/j.automatica.2021.110148
10.1109/TII.2015.2396853
10.1109/ICCV.2013.169
10.1109/TIM.2021.3109980
10.1016/S0169-7439(00)00058-7
10.1109/TCST.2015.2481318
10.1016/j.neucom.2008.09.003
10.1109/TASE.2022.3144288
10.5705/ss.2014.105
10.1109/TPAMI.2014.2313118
10.1109/TIE.2017.2786253
10.1002/9780470191613
10.1109/TCST.2023.3330443
10.1002/aic.13959
10.1016/j.ces.2014.04.045
10.1016/j.chemolab.2017.09.015
10.1109/TNN.2011.2165853
10.1016/j.compchemeng.2022.107853
10.1016/S0967-0661(02)00096-5
10.1016/j.compchemeng.2018.04.009
10.1016/S0009-2509(01)00366-9
10.1080/01621459.1994.10476452
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TASE.2024.3411471
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 4801
ExternalDocumentID 10_1109_TASE_2024_3411471
10562264
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences Engineering Research Council of Canada (NSERC)
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 62103387
  funderid: 10.13039/501100001809
– fundername: Young Elite Scientists Sponsorship Program
– fundername: CAST
  grantid: 2023QNRC001
– fundername: National Key Research and Development Program of China
  grantid: 2022YFB3304703
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c218t-c8cd8f9571b4c2f277a8070434f3b041f56a9837d253466db2bede25747d9a2d3
IEDL.DBID RIE
ISSN 1545-5955
IngestDate Tue Jul 01 05:25:34 EDT 2025
Wed Aug 27 01:46:39 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c218t-c8cd8f9571b4c2f277a8070434f3b041f56a9837d253466db2bede25747d9a2d3
ORCID 0000-0002-0254-5763
0000-0003-2560-9528
0000-0001-9082-2216
0000-0002-3927-5656
PageCount 12
ParticipantIDs ieee_primary_10562264
crossref_primary_10_1109_TASE_2024_3411471
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref18
  doi: 10.1109/TCYB.2021.3050398
– ident: ref3
  doi: 10.1016/j.conengprac.2015.04.012
– ident: ref9
  doi: 10.1080/00224065.2014.11917955
– ident: ref19
  doi: 10.1016/j.ces.2003.09.012
– ident: ref22
  doi: 10.1016/j.engappai.2019.04.013
– ident: ref29
  doi: 10.1088/1361-6501/ab7bbd
– ident: ref30
  doi: 10.1109/TIE.2015.2497204
– ident: ref41
  doi: 10.1007/978-1-4615-7566-5
– ident: ref32
  doi: 10.1016/j.automatica.2022.110468
– ident: ref44
  doi: 10.1109/TII.2019.2941868
– ident: ref26
  doi: 10.1002/aic.11977
– ident: ref7
  doi: 10.1109/TASE.2020.2984334
– ident: ref1
  doi: 10.1109/TASE.2021.3080977
– ident: ref21
  doi: 10.1109/TASE.2019.2956087
– ident: ref5
  doi: 10.1016/j.automatica.2021.109930
– ident: ref13
  doi: 10.1016/j.jprocont.2003.09.004
– ident: ref16
  doi: 10.1002/aic.14888
– ident: ref17
  doi: 10.1109/TII.2018.2810822
– ident: ref31
  doi: 10.1109/TIE.2018.2868316
– ident: ref8
  doi: 10.1016/j.eng.2019.01.019
– ident: ref10
  doi: 10.1109/TII.2022.3185077
– ident: ref42
  doi: 10.1002/aic.10325
– ident: ref11
  doi: 10.1016/S0959-1524(00)00022-6
– ident: ref23
  doi: 10.1016/j.automatica.2021.110148
– ident: ref24
  doi: 10.1109/TII.2015.2396853
– ident: ref37
  doi: 10.1109/ICCV.2013.169
– ident: ref36
  doi: 10.1109/TIM.2021.3109980
– ident: ref12
  doi: 10.1016/S0169-7439(00)00058-7
– ident: ref25
  doi: 10.1109/TCST.2015.2481318
– ident: ref20
  doi: 10.1016/j.neucom.2008.09.003
– ident: ref4
  doi: 10.1109/TASE.2022.3144288
– ident: ref39
  doi: 10.5705/ss.2014.105
– ident: ref38
  doi: 10.1109/TPAMI.2014.2313118
– ident: ref33
  doi: 10.1109/TIE.2017.2786253
– ident: ref40
  doi: 10.1002/9780470191613
– ident: ref6
  doi: 10.1109/TCST.2023.3330443
– ident: ref28
  doi: 10.1002/aic.13959
– ident: ref34
  doi: 10.1016/j.ces.2014.04.045
– ident: ref35
  doi: 10.1016/j.chemolab.2017.09.015
– ident: ref27
  doi: 10.1109/TNN.2011.2165853
– ident: ref2
  doi: 10.1016/j.compchemeng.2022.107853
– ident: ref14
  doi: 10.1016/S0967-0661(02)00096-5
– ident: ref43
  doi: 10.1016/j.compchemeng.2018.04.009
– ident: ref15
  doi: 10.1016/S0009-2509(01)00366-9
– ident: ref45
  doi: 10.1080/01621459.1994.10476452
SSID ssj0024890
Score 2.422662
Snippet Process uncertainty, which is usually caused by various factors, is generally subject to unknown complex distribution. However, many existing monitoring...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 4790
SubjectTerms augmented Lagrange multiplier
Data models
EM algorithm
Gaussian distribution
Gaussian mixture model
Monitoring
multi-source noises
Noise
Probabilistic logic
Quality-relevant monitoring
Uncertainty
Title A Probabilistic Quality-Relevant Monitoring Method With Gaussian Mixture Model
URI https://ieeexplore.ieee.org/document/10562264
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJz34c-L8RQ6ehHRrmqTNccjmEDZEN9ytNGmCQ9lktqD-9ealFacgeCslh_CSl_deXr7vQ-jC7RoRxVKTTAIkR9qIJFLkRBkRZoJaG_oO_mgshlN2M-OzGqzusTDGGP_4zATw6Xv5-VKXcFXWAZV4AH42UMNVbhVY65tYL_EXKpASEC45r1uYYVd2Jr37visFKQvcmR2yOPwRhNZUVXxQGeyg8dd0qrckT0FZqEB__GJq_Pd8d9F2nV7iXrUf9tCGWeyjrTXSwQM07uHblfNieBULJM24otF4J3cANXeGxpWfw2g88gLT-GFePOLrrHwFyCUezd-g74BBR-25haaD_uRqSGpVBaJdOC-ITnSeWMnjUDFNLY3jLHF-zyJmI9VloeUik65szSmPmAC5KWVy4zybxbnMaB4douZiuTBHCFNhXf6lcigqWZxZICdkkeKauTTGncBtdPll5vSlIs9IfdHRlSmsSQprktZr0kYtsODawMp4x3_8P0GbFLR4_XXIKWoWq9KcuQShUOd-Y3wC0m-1ZA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D-rB3-L8mYMnod3SJm1zHLI5dR2iG-5WmjTBoWwyW1D_evPSDqcgeCslh_CSl_deXr7vQ-jc7JrAD7l0Ug6QHK59J-JB5ggVkDTwtCa2gx_3g-6Q3ozYqAKrWyyMUso-PlMufNpefjaVBVyVNUAlHoCfy2jFBH5GSrjWN7VeZK9UIClwGGesamKSJm8MWg9tUwx61DWnNqEh-RGGFnRVbFjpbKL-fELla5Jnt8iFKz9_cTX-e8ZbaKNKMHGr3BHbaElNdtD6Au3gLuq38N3M-DG8iwWaZlwSaXw49wA2N6bGpafDaBxbiWn8OM6f8FVavAHoEsfjd-g8YFBSe9lDw057cNl1Kl0FR5qAnjsyklmkOQuJoNLTXhimkfF86lPtiyYlmgUpN4Vr5jGfBiA4JVSmjG_TMOOpl_n7qDaZTtQBwl6gTQYmMigraZhqoCekvmCSmkTGnMF1dDE3c_Ja0mcktuxo8gTWJIE1Sao1qaM9sODCwNJ4h3_8P0Or3UHcS3rX_dsjtOaBMq-9HDlGtXxWqBOTLuTi1G6SL3vauK0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Probabilistic+Quality-Relevant+Monitoring+Method+With+Gaussian+Mixture+Model&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Yu%2C+Wanke&rft.au=Zhao%2C+Chunhui&rft.au=Huang%2C+Biao&rft.au=Yang%2C+Hui&rft.date=2025-01-01&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=22&rft.spage=4790&rft.epage=4801&rft_id=info:doi/10.1109%2FTASE.2024.3411471&rft.externalDocID=10562264
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon