Landslide early warning based on retaining wall damage monitoring by real-time video
The frequency and severity of landslides is increasing, resulting in significant damage to people and infrastructure. Landslide early warning systems (LEWS) are becoming a key in damage mitigation of landslides. This study proposed a framework for building an early warning system of cut-slope areas...
Saved in:
Published in | KSCE journal of civil engineering p. 5 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
대한토목학회
01.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1226-7988 1976-3808 |
DOI | 10.1016/j.kscej.2024.100129 |
Cover
Abstract | The frequency and severity of landslides is increasing, resulting in significant damage to people and infrastructure. Landslide early warning systems (LEWS) are becoming a key in damage mitigation of landslides. This study proposed a framework for building an early warning system of cut-slope areas based on monitoring damage of retaining wall using real-time video. Assessment of slope stability relies on observation of damage conditions such as cracks or displacements in the retaining wall. The identification of displacements and cracks in the retaining wall will be detected by a digital camera system integrated with deep learning and image processing techniques within calculation procedures. The performance of the proposed system is assessed using the lab experiments. The accuracies of displacement measurement ranged from 84.0 % to 99.4 %. While deep learning model achieved mean Average Precision values ranging from 0.86 to 0.90, and F1 score values, as the harmonic mean of precision and recall of the deep learning models, belong to the range of 0.83 and 0.85 in identifying cracks, and the dimensions of cracks were determined with the accuracies between 85.0 and 98.8 %. The correlation between retaining wall damage and slope stability is further investigated using numerical simulations. Subsequently, establishing threshold values for both the displacement and the width of cracks in the retaining wall, which enables an early prediction of the occurrence of landslides. KCI Citation Count: 0 |
---|---|
AbstractList | The frequency and severity of landslides is increasing, resulting in significant damage to people and infrastructure. Landslide early warning systems (LEWS) are becoming a key in damage mitigation of landslides. This study proposed a framework for building an early warning system of cut-slope areas based on monitoring damage of retaining wall using real-time video. Assessment of slope stability relies on observation of damage conditions such as cracks or displacements in the retaining wall. The identification of displacements and cracks in the retaining wall will be detected by a digital camera system integrated with deep learning and image processing techniques within calculation procedures. The performance of the proposed system is assessed using the lab experiments. The accuracies of displacement measurement ranged from 84.0 % to 99.4 %. While deep learning model achieved mean Average Precision values ranging from 0.86 to 0.90, and F1 score values, as the harmonic mean of precision and recall of the deep learning models, belong to the range of 0.83 and 0.85 in identifying cracks, and the dimensions of cracks were determined with the accuracies between 85.0 and 98.8 %. The correlation between retaining wall damage and slope stability is further investigated using numerical simulations. Subsequently, establishing threshold values for both the displacement and the width of cracks in the retaining wall, which enables an early prediction of the occurrence of landslides. KCI Citation Count: 0 |
Author | 송창호 Ba-Quang-Vinh Nguyen 김윤태 |
Author_xml | – sequence: 1 fullname: Ba-Quang-Vinh Nguyen organization: (International University) – sequence: 2 fullname: 김윤태 organization: (부경대학교) – sequence: 3 fullname: 송창호 organization: (부경대학교) |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003209243$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNotjElrwzAYREVJoWmaX9CLzgWnWqLFxxC6BAyF4rv5tNjIiwS2aci_r3E7lxmGx3tEm5iiR-iZkgMlVL62h26yvj0wwo7LQyjL79CW5kpmXBO9WTZjMlO51g9oP00tWcKZ0lxsUVlAdFMfnMcexv6GrzDGEBtsYPIOp4hHP0NYryv0PXYwQOPxkGKY07iSt4WBPpvD4PHPYkpP6L6GfvL7_96h8v2tPH9mxdfH5XwqMsuonjPjjRXCEgfgQchcAOS6Nk5SOBLlvJTOGCKJMNpSSRW3imki6loCt0zxHXr508axrjobqgRh7SZV3VidvstLRYmiOeea_wI_81l4 |
ContentType | Journal Article |
DBID | ACYCR |
DOI | 10.1016/j.kscej.2024.100129 |
DatabaseName | Korean Citation Index |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1976-3808 |
EndPage | 5 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10719338 |
GroupedDBID | -Y2 .86 .VR 06D 0R~ 0VY 1N0 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYWO AAYZH ABDZT ABECU ABFSG ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMFV ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACVFH ACYCR ACZOJ ADCNI ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADVLN ADYFF ADYOE ADZKW AEBTG AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPX AEUYN AEVLU AEXYK AEZWR AFBBN AFGCZ AFHIU AFKRA AFLOW AFOHR AFPUW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGII AIIXL AILAN AITGF AIXLP AJBLW AJRNO AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG APXCP ARMRJ ATHPR AXYYD AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR CAG CCPQU COF CS3 CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FDB FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GW5 H13 HCIFZ HF~ HG6 HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KVFHK L6V LK5 LLZTM M41 M4Y M7R M7S MA- MZR NPVJJ NQJWS NU0 O9- O9J P2P P9P PCBAR PF0 PHGZM PHGZT PT4 PT5 PTHSS QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TDB TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ZY4 ZZE ~A9 |
ID | FETCH-LOGICAL-c218t-bebc55c0daaea5695aa98fbd61a407de66dbb0605b8c16173c72805ff6a3c273 |
ISSN | 1226-7988 |
IngestDate | Fri Jun 20 03:20:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c218t-bebc55c0daaea5695aa98fbd61a407de66dbb0605b8c16173c72805ff6a3c273 |
Notes | https://doi.org/10.1016/j.kscej.2024.100129 |
OpenAccessLink | https://dx.doi.org/10.1016/j.kscej.2024.100129 |
PageCount | 1 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10719338 |
PublicationCentury | 2000 |
PublicationDate | 2025-05 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05 |
PublicationDecade | 2020 |
PublicationTitle | KSCE journal of civil engineering |
PublicationYear | 2025 |
Publisher | 대한토목학회 |
Publisher_xml | – name: 대한토목학회 |
SSID | ssj0000327835 |
Score | 2.339019 |
Snippet | The frequency and severity of landslides is increasing, resulting in significant damage to people and infrastructure. Landslide early warning systems (LEWS)... |
SourceID | nrf |
SourceType | Open Website |
StartPage | 5 |
SubjectTerms | 토목공학 |
Title | Landslide early warning based on retaining wall damage monitoring by real-time video |
URI | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003209243 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | KSCE Journal of Civil Engineering, 2025, 29(5), , pp.5-5 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELa2yaU9VH2qb1lqfVo5YgGDOQIhSl8rVd1Wua1sY7ZkN6y03W2V_rH-vc4AAdJGVdoLsmzLAs-H_c14ZkzIq8gXvoFFkBvXtdxXocuj0Abc09rK0FOuUXii-34aHH_y35yIk9Ho58BrabfVB-bHlXEl_yNVqAO5YpTsP0i2GxQqoAzyhSdIGJ7XkvE7jNNdlbkd2zpP8ffWzIFbU47HAOhMWDb2VjyCztUZuuic1f9x7XgH5BNY44rjFfNjDMlbD9nq249pNswtYcpv5Wps-xSGvR2Uf9ipasE_l9WX8XSxO-8jzFgWsyRCj4osZVHKYp9lh0x6UO67pEwGLJ5gIXFYcohdIskSObRKuKL3AaxxxLKEybQeGroLHB2HhpEcbIpjFkcXTU0hhv6DdRhYIcdUas021dQBc-KedORgvRWDjVtcuSM0xonTg-VXY08P4FX9Ou1Ua2a5lH_7t33xUgbupSnni_V8uZmDnvF6DkozMF9P3iD7bhiif8B-fJQk086853h4hQk60HafcpHzqvYu_ON1gNtUm2LAbWZ3yO1WKaFxg7C7ZGSre-TWIFXlfTLrsEZrrNEWa7TGGl1XtMMaRazRBmu0xxrV57TDGq2x9oDMjrJZeszbGzngV57ILddWGyGMkytllQgioVQkC50HE-U7YW6DINfaAQ1ZS4OKs2fw9jNRFIHyDBDlh2SvWlf2EaFaTwpXAYOaRLnvFjoCHpsXFmfHFqBDPCYvYTrqaf_L9D-5Vq-n5GYP0Wdkb7vZ2edAJbf6RSu2X0rjalE |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landslide+early+warning+based+on+retaining+wall+damage+monitoring+by+real-time+video&rft.jtitle=KSCE+journal+of+civil+engineering&rft.au=Ba-Quang-Vinh+Nguyen&rft.au=%EA%B9%80%EC%9C%A4%ED%83%9C&rft.au=%EC%86%A1%EC%B0%BD%ED%98%B8&rft.date=2025-05-01&rft.pub=%EB%8C%80%ED%95%9C%ED%86%A0%EB%AA%A9%ED%95%99%ED%9A%8C&rft.issn=1226-7988&rft.eissn=1976-3808&rft.spage=5&rft.epage=5&rft_id=info:doi/10.1016%2Fj.kscej.2024.100129&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10719338 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7988&client=summon |