Landslide early warning based on retaining wall damage monitoring by real-time video

The frequency and severity of landslides is increasing, resulting in significant damage to people and infrastructure. Landslide early warning systems (LEWS) are becoming a key in damage mitigation of landslides. This study proposed a framework for building an early warning system of cut-slope areas...

Full description

Saved in:
Bibliographic Details
Published inKSCE journal of civil engineering p. 5
Main Authors Ba-Quang-Vinh Nguyen, 김윤태, 송창호
Format Journal Article
LanguageEnglish
Published 대한토목학회 01.05.2025
Subjects
Online AccessGet full text
ISSN1226-7988
1976-3808
DOI10.1016/j.kscej.2024.100129

Cover

Abstract The frequency and severity of landslides is increasing, resulting in significant damage to people and infrastructure. Landslide early warning systems (LEWS) are becoming a key in damage mitigation of landslides. This study proposed a framework for building an early warning system of cut-slope areas based on monitoring damage of retaining wall using real-time video. Assessment of slope stability relies on observation of damage conditions such as cracks or displacements in the retaining wall. The identification of displacements and cracks in the retaining wall will be detected by a digital camera system integrated with deep learning and image processing techniques within calculation procedures. The performance of the proposed system is assessed using the lab experiments. The accuracies of displacement measurement ranged from 84.0 % to 99.4 %. While deep learning model achieved mean Average Precision values ranging from 0.86 to 0.90, and F1 score values, as the harmonic mean of precision and recall of the deep learning models, belong to the range of 0.83 and 0.85 in identifying cracks, and the dimensions of cracks were determined with the accuracies between 85.0 and 98.8 %. The correlation between retaining wall damage and slope stability is further investigated using numerical simulations. Subsequently, establishing threshold values ​​for both the displacement and the width of cracks in the retaining wall, which enables an early prediction of the occurrence of landslides. KCI Citation Count: 0
AbstractList The frequency and severity of landslides is increasing, resulting in significant damage to people and infrastructure. Landslide early warning systems (LEWS) are becoming a key in damage mitigation of landslides. This study proposed a framework for building an early warning system of cut-slope areas based on monitoring damage of retaining wall using real-time video. Assessment of slope stability relies on observation of damage conditions such as cracks or displacements in the retaining wall. The identification of displacements and cracks in the retaining wall will be detected by a digital camera system integrated with deep learning and image processing techniques within calculation procedures. The performance of the proposed system is assessed using the lab experiments. The accuracies of displacement measurement ranged from 84.0 % to 99.4 %. While deep learning model achieved mean Average Precision values ranging from 0.86 to 0.90, and F1 score values, as the harmonic mean of precision and recall of the deep learning models, belong to the range of 0.83 and 0.85 in identifying cracks, and the dimensions of cracks were determined with the accuracies between 85.0 and 98.8 %. The correlation between retaining wall damage and slope stability is further investigated using numerical simulations. Subsequently, establishing threshold values ​​for both the displacement and the width of cracks in the retaining wall, which enables an early prediction of the occurrence of landslides. KCI Citation Count: 0
Author 송창호
Ba-Quang-Vinh Nguyen
김윤태
Author_xml – sequence: 1
  fullname: Ba-Quang-Vinh Nguyen
  organization: (International University)
– sequence: 2
  fullname: 김윤태
  organization: (부경대학교)
– sequence: 3
  fullname: 송창호
  organization: (부경대학교)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003209243$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotjElrwzAYREVJoWmaX9CLzgWnWqLFxxC6BAyF4rv5tNjIiwS2aci_r3E7lxmGx3tEm5iiR-iZkgMlVL62h26yvj0wwo7LQyjL79CW5kpmXBO9WTZjMlO51g9oP00tWcKZ0lxsUVlAdFMfnMcexv6GrzDGEBtsYPIOp4hHP0NYryv0PXYwQOPxkGKY07iSt4WBPpvD4PHPYkpP6L6GfvL7_96h8v2tPH9mxdfH5XwqMsuonjPjjRXCEgfgQchcAOS6Nk5SOBLlvJTOGCKJMNpSSRW3imki6loCt0zxHXr508axrjobqgRh7SZV3VidvstLRYmiOeea_wI_81l4
ContentType Journal Article
DBID ACYCR
DOI 10.1016/j.kscej.2024.100129
DatabaseName Korean Citation Index
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3808
EndPage 5
ExternalDocumentID oai_kci_go_kr_ARTI_10719338
GroupedDBID -Y2
.86
.VR
06D
0R~
0VY
1N0
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYWO
AAYZH
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMFV
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACVFH
ACYCR
ACZOJ
ADCNI
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADVLN
ADYFF
ADYOE
ADZKW
AEBTG
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPX
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFPUW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGII
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
APXCP
ARMRJ
ATHPR
AXYYD
AYJHY
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CAG
CCPQU
COF
CS3
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GW5
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KVFHK
L6V
LK5
LLZTM
M41
M4Y
M7R
M7S
MA-
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PCBAR
PF0
PHGZM
PHGZT
PT4
PT5
PTHSS
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TDB
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
ZY4
ZZE
~A9
ID FETCH-LOGICAL-c218t-bebc55c0daaea5695aa98fbd61a407de66dbb0605b8c16173c72805ff6a3c273
ISSN 1226-7988
IngestDate Fri Jun 20 03:20:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c218t-bebc55c0daaea5695aa98fbd61a407de66dbb0605b8c16173c72805ff6a3c273
Notes https://doi.org/10.1016/j.kscej.2024.100129
OpenAccessLink https://dx.doi.org/10.1016/j.kscej.2024.100129
PageCount 1
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10719338
PublicationCentury 2000
PublicationDate 2025-05
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05
PublicationDecade 2020
PublicationTitle KSCE journal of civil engineering
PublicationYear 2025
Publisher 대한토목학회
Publisher_xml – name: 대한토목학회
SSID ssj0000327835
Score 2.339019
Snippet The frequency and severity of landslides is increasing, resulting in significant damage to people and infrastructure. Landslide early warning systems (LEWS)...
SourceID nrf
SourceType Open Website
StartPage 5
SubjectTerms 토목공학
Title Landslide early warning based on retaining wall damage monitoring by real-time video
URI https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003209243
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX KSCE Journal of Civil Engineering, 2025, 29(5), , pp.5-5
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELa2yaU9VH2qb1lqfVo5YgGDOQIhSl8rVd1Wua1sY7ZkN6y03W2V_rH-vc4AAdJGVdoLsmzLAs-H_c14ZkzIq8gXvoFFkBvXtdxXocuj0Abc09rK0FOuUXii-34aHH_y35yIk9Ho58BrabfVB-bHlXEl_yNVqAO5YpTsP0i2GxQqoAzyhSdIGJ7XkvE7jNNdlbkd2zpP8ffWzIFbU47HAOhMWDb2VjyCztUZuuic1f9x7XgH5BNY44rjFfNjDMlbD9nq249pNswtYcpv5Wps-xSGvR2Uf9ipasE_l9WX8XSxO-8jzFgWsyRCj4osZVHKYp9lh0x6UO67pEwGLJ5gIXFYcohdIskSObRKuKL3AaxxxLKEybQeGroLHB2HhpEcbIpjFkcXTU0hhv6DdRhYIcdUas021dQBc-KedORgvRWDjVtcuSM0xonTg-VXY08P4FX9Ou1Ua2a5lH_7t33xUgbupSnni_V8uZmDnvF6DkozMF9P3iD7bhiif8B-fJQk086853h4hQk60HafcpHzqvYu_ON1gNtUm2LAbWZ3yO1WKaFxg7C7ZGSre-TWIFXlfTLrsEZrrNEWa7TGGl1XtMMaRazRBmu0xxrV57TDGq2x9oDMjrJZeszbGzngV57ILddWGyGMkytllQgioVQkC50HE-U7YW6DINfaAQ1ZS4OKs2fw9jNRFIHyDBDlh2SvWlf2EaFaTwpXAYOaRLnvFjoCHpsXFmfHFqBDPCYvYTrqaf_L9D-5Vq-n5GYP0Wdkb7vZ2edAJbf6RSu2X0rjalE
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landslide+early+warning+based+on+retaining+wall+damage+monitoring+by+real-time+video&rft.jtitle=KSCE+journal+of+civil+engineering&rft.au=Ba-Quang-Vinh+Nguyen&rft.au=%EA%B9%80%EC%9C%A4%ED%83%9C&rft.au=%EC%86%A1%EC%B0%BD%ED%98%B8&rft.date=2025-05-01&rft.pub=%EB%8C%80%ED%95%9C%ED%86%A0%EB%AA%A9%ED%95%99%ED%9A%8C&rft.issn=1226-7988&rft.eissn=1976-3808&rft.spage=5&rft.epage=5&rft_id=info:doi/10.1016%2Fj.kscej.2024.100129&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10719338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7988&client=summon