The carbon credit conundrum: Which analytical method should be used for determining soil organic carbon content in South Africa?
Accurate quantification of soil organic carbon (SOC) content is essential for the assessment of carbon credits. In South Africa, the standard methodologies for carbon credit assessment does not specify which analytical method should be used for determining SOC content. The study aimed to determine w...
Saved in:
Published in | Geoderma Regional Vol. 41; p. e00947 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate quantification of soil organic carbon (SOC) content is essential for the assessment of carbon credits. In South Africa, the standard methodologies for carbon credit assessment does not specify which analytical method should be used for determining SOC content. The study aimed to determine which analytical method should be used for determining SOC content for the assessment of carbon credits. Secondly, it determined whether pedotransfer functions could be used for transferring SOC content values between methods. Two-hundred-and-twenty topsoil (0–30 cm) samples were collected and analysed for SOC content with the three analytical methods: Walkley-Black wet-oxidation (WB), total dry combustion (TDC) and loss-on-ignition (LOI). The study found that the TDC method should still be considered the preferred method for determining SOC content for the assessment of carbon credits in South Africa. The WB method should be avoided if a soil is expected to have a high SOC content, while the LOI method could still be used for determining SOM, however, this method should be avoided when determining SOC content. The study also reached the second aim by successfully creating pedotransfer functions between all three methods. However, only the WB and TDC methods had a very strong relationship (R2 = 0.91) and showed that accuracy start to decrease significantly after 2.5 % SOC content. Therefore, the pedotransfer function (SOCWB = −0.157 + 0.895 x SOCTDC – 0.0149 x SOCTDC2–0.000606 x SOCTDC3) could be used for transferring SOC content values with SOC content up to 2.5 %. |
---|---|
AbstractList | Accurate quantification of soil organic carbon (SOC) content is essential for the assessment of carbon credits. In South Africa, the standard methodologies for carbon credit assessment does not specify which analytical method should be used for determining SOC content. The study aimed to determine which analytical method should be used for determining SOC content for the assessment of carbon credits. Secondly, it determined whether pedotransfer functions could be used for transferring SOC content values between methods. Two-hundred-and-twenty topsoil (0–30 cm) samples were collected and analysed for SOC content with the three analytical methods: Walkley-Black wet-oxidation (WB), total dry combustion (TDC) and loss-on-ignition (LOI). The study found that the TDC method should still be considered the preferred method for determining SOC content for the assessment of carbon credits in South Africa. The WB method should be avoided if a soil is expected to have a high SOC content, while the LOI method could still be used for determining SOM, however, this method should be avoided when determining SOC content. The study also reached the second aim by successfully creating pedotransfer functions between all three methods. However, only the WB and TDC methods had a very strong relationship (R² = 0.91) and showed that accuracy start to decrease significantly after 2.5 % SOC content. Therefore, the pedotransfer function (SOCWB = −0.157 + 0.895 x SOCTDC – 0.0149 x SOCTDC²–0.000606 x SOCTDC³) could be used for transferring SOC content values with SOC content up to 2.5 %. Accurate quantification of soil organic carbon (SOC) content is essential for the assessment of carbon credits. In South Africa, the standard methodologies for carbon credit assessment does not specify which analytical method should be used for determining SOC content. The study aimed to determine which analytical method should be used for determining SOC content for the assessment of carbon credits. Secondly, it determined whether pedotransfer functions could be used for transferring SOC content values between methods. Two-hundred-and-twenty topsoil (0–30 cm) samples were collected and analysed for SOC content with the three analytical methods: Walkley-Black wet-oxidation (WB), total dry combustion (TDC) and loss-on-ignition (LOI). The study found that the TDC method should still be considered the preferred method for determining SOC content for the assessment of carbon credits in South Africa. The WB method should be avoided if a soil is expected to have a high SOC content, while the LOI method could still be used for determining SOM, however, this method should be avoided when determining SOC content. The study also reached the second aim by successfully creating pedotransfer functions between all three methods. However, only the WB and TDC methods had a very strong relationship (R2 = 0.91) and showed that accuracy start to decrease significantly after 2.5 % SOC content. Therefore, the pedotransfer function (SOCWB = −0.157 + 0.895 x SOCTDC – 0.0149 x SOCTDC2–0.000606 x SOCTDC3) could be used for transferring SOC content values with SOC content up to 2.5 %. |
ArticleNumber | e00947 |
Author | du Preez, Gerhard Cloete, Willie Herman Van Zijl, George Munnik |
Author_xml | – sequence: 1 givenname: Willie Herman orcidid: 0000-0002-7295-7181 surname: Cloete fullname: Cloete, Willie Herman email: williecloete080@gmail.com – sequence: 2 givenname: Gerhard orcidid: 0000-0001-6216-1641 surname: du Preez fullname: du Preez, Gerhard – sequence: 3 givenname: George Munnik orcidid: 0000-0001-5003-1081 surname: Van Zijl fullname: Van Zijl, George Munnik |
BookMark | eNp9kE1LAzEQhoNU8PMfeMjRS2uS_eiuB6UUv0DwoOIxpJNJN2U3qUlW8OZPd8uKePI0M_C-D8xzRCbOOyTkjLMZZ7y82MzW6HWIM8FEMUPG6ny-Rw5FVojp7pj82Q_IaYwbxpioi2xeikPy9dIgBRVW3lEIqG2i4F3vdOi7S_rWWGiocqr9TBZUSztMjdc0Nr5vNV0h7SNqanygGhOGzjrr1jR621If1spZ-IV7l9Alah199n1q6MKEAXl9QvaNaiOe_sxj8np787K8nz4-3T0sF49TELxKU2WyHHjFK8UUYGYqKLnJV1zXRpscCo5Ml1CIgvFVVtecgTLzvOJFPTdlpiE7Jucjdxv8e48xyc5GwLZVDn0fZSYGKyUXpRii-RiF4GMMaOQ22E6FT8mZ3DmXGzk6lzvncnQ-1K7GGg5vfFgMMoJFB4PUgJCk9vZ_wDcFX5BF |
Cites_doi | 10.1016/j.catena.2014.10.004 10.1007/s10457-011-9434-z 10.1111/j.1365-2389.2009.01157.x 10.1016/j.geoderma.2020.114287 10.12912/27197050/163121 10.2136/sssaj2002.1878 10.1111/j.1365-2389.2008.01114.x 10.2136/sssaj2018.03.0105 10.1590/0103-9016-2013-0306 10.1080/00103629909370242 10.1080/01621459.1952.10483441 10.2136/sssaj2013.10.0447 10.1080/00103620500306080 10.1016/j.geoderma.2010.02.003 10.7717/peerj.7880 10.1097/SS.0000000000000201 10.1097/00010694-194704000-00001 10.1016/bs.agron.2022.11.005 10.1111/j.1475-2743.2009.00242.x 10.5194/bg-18-3147-2021 10.1081/CSS-120004304 10.1111/j.1475-2743.2007.00084.x 10.1111/ejss.12224 10.3184/003685017X14876775256165 10.1080/00103624.2018.1510948 10.3923/ijar.2007.965.970 10.1016/j.cageo.2005.12.009 10.1111/ejss.70014 10.1016/j.jaridenv.2018.01.008 10.1080/00103620701548639 10.1590/S0103-84782006000600045 10.1081/CSS-120023220 10.1134/S1995421222010038 10.2136/sssaj2006.0136 10.1590/0034-737X201562050011 10.1080/00103620600563499 10.1111/ejss.12558 10.1080/00103624.2013.874023 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geodrs.2025.e00947 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-0094 |
ExternalDocumentID | 10_1016_j_geodrs_2025_e00947 S235200942500032X |
GeographicLocations | South Africa |
GeographicLocations_xml | – name: South Africa |
GroupedDBID | --M 0R~ 4.4 457 4G. 6I. 7-5 AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AATTM AAXKI AAXUO AAYWO ABGRD ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AHEUO AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ATOGT AXJTR BKOJK BLECG BLXMC BNPGV EBS EFJIC EFKBS EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSA SSE SSH SSJ SSZ T5K ~G- AAYXX CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c218t-af34c1818a0ace3f8c61f4b1d9fdf4c51e0d6c52501b39910caf7481597f63dc3 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Wed Jul 02 04:42:45 EDT 2025 Sun Aug 03 02:31:22 EDT 2025 Sat Jul 19 17:10:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Loss-on-ignition Elemental analyser Greenhouse gas emissions Walkley-Black wet-oxidation Carbon sequestration |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c218t-af34c1818a0ace3f8c61f4b1d9fdf4c51e0d6c52501b39910caf7481597f63dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6216-1641 0000-0001-5003-1081 0000-0002-7295-7181 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S235200942500032X |
PQID | 3200261262 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3200261262 crossref_primary_10_1016_j_geodrs_2025_e00947 elsevier_sciencedirect_doi_10_1016_j_geodrs_2025_e00947 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Matus, Hermosilla, Maire, Ortega. (bib301) 1997; 57 Enang, Yerima, Kome, van Ranst (bb0065) 2018; 49 Fernandes, de Carvalho Junior, Ribeiro Junior, de Sá Mendonça. (bb0075) 2015; 62 Gessesse, Khamzina (bb0090) 2018; 153 Parwada, van Tol (bb0200) 2016; 66 De Vos, Vandecasteele, Deckers, Muys (bb0045) 2005; 36 Hoogsteen, Lantinga, Bakker, Groot, Tittonell (bb0100) 2015; 66 Yerokun, Chikuta, Mambwe (bb0290) 2007; 2 Kumar, Ghotekar, Dadhwal (bb0145) 2019; 128 Nair (bb0180) 2012; 86 Jensen, Christensen, Schjønning, Watts, Munkholm (bb0115) 2018; 69 Abella, Zimmer (bb0005) 2007; 71 Jaskauskas, Jankauskiene, Slepetiene, Fullen, Booth (bb0110) 2005; 37 El Mouridi, Ziri, Douaik, Bennani, Lembaid, Bouharou, Brhadda, Moussadek (bb0060) 2023; 24 Orizon Agriculture (bb0195) 2024 Bowman, Reeder, Wienhold (bb0030) 2002; 33 Meersmans, van Wesemael, Van Molle (bb0165) 2009; 25 GeoTerra Image (bb0085) 2020 McCarty, Reeves, Yost, Doraiswamy, Doumbia (bb0160) 2010; 5 Olson, Al-Kaisi (bb0190) 2014; 125 Slepetiene, Slepetys, Liaudanskiene (bb0250) 2008; 6 Schulze (bb0230) 2007 Mikhailova, Noble, Post (bb0170) 2003; 34 Zhou, Han, Liu, Li (bb0300) 2019; 7 Brunetto, Melo, Kaminski, Furlanetto, Fialho (bb0035) 2006; 36 Rhodes (bb0215) 2017; 100 Sato, de Figueiredo, Marchão, Madari, Benedito, Busato, de Souza (bb0225) 2011; 71 Bahadori, Tofighi (bb0015) 2017; 182 Konen, Jacobs, Burras, Talaga, Mason (bb0135) 2002; 66 Minasny, McBratney (bb0175) 2006; 32 Batool, Cihacek, Alghamdi (bb0020) 2024; 8(1) TREES Consulting (bb0265) 2020 Kamara, Rhodes, Sawyerr (bb0125) 2007; 38 Kock, Ramphisa-Nghondzweni, van Zijl (bb0130) 2024; 75 Lal (bb0150) 2009; 60 Visconti, Jiménez, de Paz (bb0275) 2022; 406 De Vos, Lettens, Muys, Deckers (bib302) 2007; 23 Nelson, Sommers (bb0185) 1996 Jha, Biswas, Lakaria, Saha, Singh, Rao (bb0120) 2014; 45 Roper, Robarge, Osmond, Heitman (bb0220) 2019; 83 R Core Team (bb0210) 2020 Summerton, Schulze (bb0260) 2009 Baurov (bb0025) 2021; 14 Fey (bb0080) 2010 Van Zijl, van Tol, Smit, Sehlapelo, Kock, Cloete, Faul, Le Roux, Riddell, Jacobs, Verwey, Cooke, de Clercq, Manyevere, Lorentz (bb0270) 2024 Land Type Survey Staff (bb0155) 1972-2006 FAO (Food and Agriculture Organization for the United Nations) (bb0070) 2019 Wuest (bb0285) 2014; 78 Du Plessis, van Zijl, van Tol, Manyevere (bb0055) 2020; 368 Pribyl (bb0205) 2010; 156 Council for Geoscience (bb0040) 2019 Zhang, Lavallee, Robertson, Even, Ogle, Paustian, Cotrufo (bb0295) 2021; 18 Díaz-Zorita (bb0050) 1999; 30 Sharma, Kaushal, Kaushik, Ramakrishna (bb0240) 2021; 13 Aynekulu, Vagen, Shephard, Winowiecki (bb0010) 2011 Shoch, Swails (bb0245) 2020 Walkley, Black (bb0280) 1934; 63 Walkley (bib303) 1947; 63 Goidts, van Wesemael, Crucifix (bb0095) 2009; 60 Ighodaro, Lategan, Yusuf (bb0105) 2013; 5 Kruskal, Wallis (bb0140) 1952; 47 Sharififar, Minasny, Arrouays, Boulonne, Chevallier, van Deventer, Field, Gomez, Jang, Jeon, Koch, McBratney, Malone, Marchant, Martin, Monger, Munera-Echeverri, Padarian, Pfeiffer, Richer-de-Forges, Saby, Singh, Song, Zamanian, Zhang, van Zijl (bb0235) 2023; 178 Bahadori (10.1016/j.geodrs.2025.e00947_bb0015) 2017; 182 Brunetto (10.1016/j.geodrs.2025.e00947_bb0035) 2006; 36 Sharma (10.1016/j.geodrs.2025.e00947_bb0240) 2021; 13 Enang (10.1016/j.geodrs.2025.e00947_bb0065) 2018; 49 Kruskal (10.1016/j.geodrs.2025.e00947_bb0140) 1952; 47 Jaskauskas (10.1016/j.geodrs.2025.e00947_bb0110) 2005; 37 Jha (10.1016/j.geodrs.2025.e00947_bb0120) 2014; 45 Summerton (10.1016/j.geodrs.2025.e00947_bb0260) 2009 Bowman (10.1016/j.geodrs.2025.e00947_bb0030) 2002; 33 Van Zijl (10.1016/j.geodrs.2025.e00947_bb0270) 2024 Fey (10.1016/j.geodrs.2025.e00947_bb0080) 2010 Baurov (10.1016/j.geodrs.2025.e00947_bb0025) 2021; 14 Du Plessis (10.1016/j.geodrs.2025.e00947_bb0055) 2020; 368 Yerokun (10.1016/j.geodrs.2025.e00947_bb0290) 2007; 2 Orizon Agriculture (10.1016/j.geodrs.2025.e00947_bb0195) Zhou (10.1016/j.geodrs.2025.e00947_bb0300) 2019; 7 El Mouridi (10.1016/j.geodrs.2025.e00947_bb0060) 2023; 24 Minasny (10.1016/j.geodrs.2025.e00947_bb0175) 2006; 32 Roper (10.1016/j.geodrs.2025.e00947_bb0220) 2019; 83 Goidts (10.1016/j.geodrs.2025.e00947_bb0095) 2009; 60 Meersmans (10.1016/j.geodrs.2025.e00947_bb0165) 2009; 25 Nair (10.1016/j.geodrs.2025.e00947_bb0180) 2012; 86 McCarty (10.1016/j.geodrs.2025.e00947_bb0160) 2010; 5 Walkley (10.1016/j.geodrs.2025.e00947_bib303) 1947; 63 Díaz-Zorita (10.1016/j.geodrs.2025.e00947_bb0050) 1999; 30 Schulze (10.1016/j.geodrs.2025.e00947_bb0230) 2007 Fernandes (10.1016/j.geodrs.2025.e00947_bb0075) 2015; 62 GeoTerra Image (10.1016/j.geodrs.2025.e00947_bb0085) Kumar (10.1016/j.geodrs.2025.e00947_bb0145) 2019; 128 Zhang (10.1016/j.geodrs.2025.e00947_bb0295) 2021; 18 Parwada (10.1016/j.geodrs.2025.e00947_bb0200) 2016; 66 Pribyl (10.1016/j.geodrs.2025.e00947_bb0205) 2010; 156 Walkley (10.1016/j.geodrs.2025.e00947_bb0280) 1934; 63 Matus (10.1016/j.geodrs.2025.e00947_bib301) 1997; 57 Jensen (10.1016/j.geodrs.2025.e00947_bb0115) 2018; 69 Sharififar (10.1016/j.geodrs.2025.e00947_bb0235) 2023; 178 Council for Geoscience (10.1016/j.geodrs.2025.e00947_bb0040) 2019 Batool (10.1016/j.geodrs.2025.e00947_bb0020) 2024; 8(1) Nelson (10.1016/j.geodrs.2025.e00947_bb0185) 1996 Mikhailova (10.1016/j.geodrs.2025.e00947_bb0170) 2003; 34 Kamara (10.1016/j.geodrs.2025.e00947_bb0125) 2007; 38 R Core Team (10.1016/j.geodrs.2025.e00947_bb0210) 2020 Abella (10.1016/j.geodrs.2025.e00947_bb0005) 2007; 71 Aynekulu (10.1016/j.geodrs.2025.e00947_bb0010) 2011 Konen (10.1016/j.geodrs.2025.e00947_bb0135) 2002; 66 TREES Consulting (10.1016/j.geodrs.2025.e00947_bb0265) 2020 FAO (Food and Agriculture Organization for the United Nations) (10.1016/j.geodrs.2025.e00947_bb0070) 2019 De Vos (10.1016/j.geodrs.2025.e00947_bib302) 2007; 23 Gessesse (10.1016/j.geodrs.2025.e00947_bb0090) 2018; 153 Kock (10.1016/j.geodrs.2025.e00947_bb0130) 2024; 75 Olson (10.1016/j.geodrs.2025.e00947_bb0190) 2014; 125 Slepetiene (10.1016/j.geodrs.2025.e00947_bb0250) 2008; 6 De Vos (10.1016/j.geodrs.2025.e00947_bb0045) 2005; 36 Shoch (10.1016/j.geodrs.2025.e00947_bb0245) 2020 Lal (10.1016/j.geodrs.2025.e00947_bb0150) 2009; 60 Visconti (10.1016/j.geodrs.2025.e00947_bb0275) 2022; 406 Land Type Survey Staff (10.1016/j.geodrs.2025.e00947_bb0155) 1972 Rhodes (10.1016/j.geodrs.2025.e00947_bb0215) 2017; 100 Hoogsteen (10.1016/j.geodrs.2025.e00947_bb0100) 2015; 66 Sato (10.1016/j.geodrs.2025.e00947_bb0225) 2011; 71 Wuest (10.1016/j.geodrs.2025.e00947_bb0285) 2014; 78 Ighodaro (10.1016/j.geodrs.2025.e00947_bb0105) 2013; 5 |
References_xml | – volume: 8(1) year: 2024 ident: bb0020 article-title: Soil inorganic carbon formation and the sequestration of secondary carbonates in global carbon pools: A review publication-title: Soil Systems – year: 2019 ident: bb0040 article-title: Geological Data 1: 1 000 000 – volume: 34 start-page: 1853 year: 2003 end-page: 1860 ident: bb0170 article-title: Comparison of soil organic carbon recovery by Walkley-Black and dry combustion methods in the Russian Chernozem publication-title: Commun. Soil Sci. Plant Anal. – volume: 25 start-page: 346 year: 2009 end-page: 353 ident: bb0165 article-title: Determining soil organic carbon for agricultural soils: a comparison between the Walkley & Black and the dry combustion methods (North Belgium) publication-title: Soil Use Manag. – volume: 182 start-page: 101 year: 2017 end-page: 106 ident: bb0015 article-title: Investigation of soil organic carbon recovery by the Walkley-Black method under diverse vegetation systems publication-title: Soil Sci. – volume: 78 start-page: 1442 year: 2014 end-page: 1447 ident: bb0285 article-title: Seasonal variation in soil organic carbon publication-title: Soil Sci. Soc. Am. J. – volume: 69 start-page: 604 year: 2018 end-page: 612 ident: bb0115 article-title: Converting loss-on-ignition to organic carbon content in arable topsoil: pitfalls and proposed procedure publication-title: Eur. J. Soil Sci. – volume: 368 year: 2020 ident: bb0055 article-title: Machine learning digital soil mapping to inform gully erosion mitigation measures in the Eastern Cape, South Africa publication-title: Geoderma – volume: 24 start-page: 253 year: 2023 end-page: 259 ident: bb0060 article-title: Comparison between Walkley-Black and loss on ignition methods for organic matter estimation in different Moroccan soils publication-title: Ecol. Eng. Environ. Technol. – volume: 63 start-page: 251 year: 1934 end-page: 263 ident: bb0280 article-title: An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents publication-title: Soil Sci. – year: 2010 ident: bb0080 article-title: Soils of South Africa – year: 2007 ident: bb0230 article-title: South African Atlas of Climatology and Agrohydrology – volume: 2 start-page: 965 year: 2007 end-page: 970 ident: bb0290 article-title: An evaluation of spectroscopic and loss on ignition methods for estimating soil organic carbon in Zambian soils publication-title: Int. J. Agric. Res. – volume: 66 start-page: 544 year: 2016 end-page: 552 ident: bb0200 article-title: The nature of soil erosion and possible conservation strategies in Ntabelanga area, Eastern Cape Province, South Africa publication-title: Acta Agric. Scand. Sect. B Soil Plant Sci. – year: 2020 ident: bb0245 article-title: Verified Carbon Standard Methodology (VM0042): Methodology for Improved Agriculture Land Management – start-page: 327 year: 2009 ident: bb0260 article-title: Hydrological consequences of a changing climate: the Umgeni Water Utility case study publication-title: Proceedings of a Symposium Held on the Island of Capri – start-page: 961 year: 1996 end-page: 1010 ident: bb0185 article-title: Total carbon, organic carbon, and organic matter publication-title: Methods of Soil Analysis. Part 3 Chemical Methods – volume: 30 start-page: 739 year: 1999 end-page: 745 ident: bb0050 article-title: Soil organic carbon recovery by the Walkley-Black method in a typic hapludoll publication-title: Commun. Soil Sci. Plant Anal. – volume: 156 start-page: 75 year: 2010 end-page: 83 ident: bb0205 article-title: A critical review of the conventional SOC to SOM conversion factor publication-title: Geoderma – volume: 153 start-page: 98 year: 2018 end-page: 101 ident: bb0090 article-title: How reliable is the Walkley-Black method for analyzing carbon-poor, semi-arid soils in Ethiopia? publication-title: J. Arid Environ. – volume: 38 start-page: 2005 year: 2007 end-page: 2012 ident: bb0125 article-title: Dry combustion carbon, Walkley–Black carbon, and loss on ignition for aggregate size fractions on a toposequence publication-title: Commun. Soil Sci. Plant Anal. – volume: 60 start-page: 158 year: 2009 end-page: 169 ident: bb0150 article-title: Challenges and opportunities in soil organic research publication-title: Eur. J. Soil Sci. – volume: 178 start-page: 165 year: 2023 end-page: 231 ident: bb0235 article-title: Soil inorganic carbon, the other and equally important soil carbon pool: distribution, controlling factors, and the impact of climate change publication-title: Adv. Agron. – volume: 125 start-page: 33 year: 2014 end-page: 37 ident: bb0190 article-title: The importance of soil sampling depth for accurate account of soil organic carbon sequestration, storage, retention and loss publication-title: Catena – volume: 32 start-page: 1378 year: 2006 end-page: 1388 ident: bb0175 article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information publication-title: Comput. Geosci. – volume: 62 start-page: 496 year: 2015 end-page: 501 ident: bb0075 article-title: Comparison of different methods for the determination of total organic carbon and humic substances in Brazilian soils publication-title: Rev. Ceres – volume: 71 start-page: 302 year: 2011 end-page: 308 ident: bb0225 article-title: Methods of soil organic carbon determination in Brazilian savannah soils publication-title: Sci. Agric. – year: 2020 ident: bb0210 article-title: R: A Language and Environment for Statistical Computing. Vienna, Austria – volume: 5 start-page: 2169 year: 2010 end-page: 2177 ident: bb0160 article-title: Evaluation of methods for measuring soil organic carbon in West African soils publication-title: Afr. J. Agric. Res. – volume: 83 start-page: 466 year: 2019 end-page: 474 ident: bb0220 article-title: Comparing four methods of measuring soil organic matter in North Carolina soils publication-title: Soil Sci. Soc. Am. J. – volume: 128 start-page: 1 year: 2019 end-page: 10 ident: bb0145 article-title: C-equivalent correction factor for soil organic carbon inventory by wet oxidation, dry combustion and loss on ignition methods in Himalayan region publication-title: J. Earth Sci. Environ. – year: 1972-2006 ident: bb0155 article-title: Land Types of South Africa: Digital Map (1: 250 000 Scale) and Soil Inventory Datasets – volume: 23 start-page: 221 year: 2007 end-page: 229 ident: bib302 article-title: Walkley-Black analysis of forest soil organic carbon: recovery, limitations and uncertainty publication-title: Soil Use and Management – volume: 75 year: 2024 ident: bb0130 article-title: Development of soil spectroscopy models for the Western Highveld region, South Africa: why do we need local data? publication-title: Eur. J. Soil Sci. – volume: 63 start-page: 251 year: 1947 end-page: 264 ident: bib303 article-title: A Critical Examination of a Rapid Method for Determining Organic Carbon in Soils: Effect of Variations in Digestion Conditions and of Inorganic Soil Constituents publication-title: Soil Science – year: 2011 ident: bb0010 article-title: A protocol for modeling, measurement and monitoring soil carbon stocks in agricultural landscapes. Version 1.1 – volume: 36 start-page: 1936 year: 2006 end-page: 1939 ident: bb0035 article-title: Evaluation of the loss-on-ignition method in the organic matter analysis in soils of the Serra Gaucha of the Rio Grande do Sul publication-title: Ciência Rural Santa Maria – volume: 45 start-page: 713 year: 2014 end-page: 725 ident: bb0120 article-title: Predicting total organic carbon content of soils from Walkley and Black analysis publication-title: Commun. Soil Sci. Plant Anal. – volume: 7 year: 2019 ident: bb0300 article-title: Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand publication-title: PeerJ – year: 2024 ident: bb0195 article-title: What are Carbon Credits? – volume: 36 start-page: 2899 year: 2005 end-page: 2921 ident: bb0045 article-title: Capability of loss-on-ignition as a predictor of total organic carbon in non-calcareous forest soils publication-title: Commun. Soil Sci. Plant Anal. – volume: 86 start-page: 243 year: 2012 end-page: 253 ident: bb0180 article-title: Carbon sequestration studies in agroforestry systems: a reality-check publication-title: Agrofor. Syst. – volume: 6 start-page: 543 year: 2008 end-page: 554 ident: bb0250 article-title: Standard and modified methods for soil organic carbon determination in agricultural soils publication-title: Agron. Res. – volume: 37 start-page: 707 year: 2005 end-page: 720 ident: bb0110 article-title: International comparison of analytical methods of determining the soil organic matter content of Lithuanian Eutric Albeluvisols publication-title: Commun. Soil Sci. Plant Anal. – volume: 406 year: 2022 ident: bb0275 article-title: How do the chemical characteristics of organic matter explain differences among its determinations in calcareous soils? publication-title: Geoderma – volume: 100 start-page: 80 year: 2017 end-page: 129 ident: bb0215 article-title: The imperative of regenerative agriculture publication-title: Sci. Prog. – volume: 71 start-page: 545 year: 2007 end-page: 550 ident: bb0005 article-title: Estimating organic carbon from loss-on-ignition in northern Arizona forest soils publication-title: Soil Sci. Soc. Am. J. – volume: 18 start-page: 3147 year: 2021 end-page: 3171 ident: bb0295 article-title: Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model publication-title: Biogeosciences – year: 2020 ident: bb0085 – year: 2020 ident: bb0265 article-title: Gold Standard for the Global Goals: Soil Organic Carbon Framework Methodology – volume: 33 start-page: 1629 year: 2002 end-page: 1642 ident: bb0030 article-title: Quantifying laboratory and field variability to assess potential for carbon sequestration publication-title: Commun. Soil Sci. Plant Anal. – year: 2024 ident: bb0270 article-title: Towards a Hydrological soil map of South Africa (HYDROSOIL) – Developing a protocol and showcasing its uses publication-title: Water Research Commission Report (Project No. C2020/2021-00455) – volume: 14 start-page: 603 year: 2021 end-page: 605 ident: bb0025 article-title: Methods of carbon sequestration (review) publication-title: Polym. Sci. Ser. D – volume: 5 year: 2013 ident: bb0105 article-title: The impact of soil erosion on agricultural potential and performance of Sheshegu community farmers in the eastern cape of South Africa publication-title: J. Agric. Sci. – volume: 49 start-page: 1279 year: 2018 end-page: 2386 ident: bb0065 article-title: Assessing the effectiveness of the Walkley-Black method for soil organic carbon determination in tephra soils of Cameroon publication-title: Commun. Soil Sci. Plant Anal. – volume: 47 start-page: 583 year: 1952 end-page: 621 ident: bb0140 article-title: Use of ranks in one-criterion variance analysis publication-title: J. Am. Stat. Assoc. – volume: 66 start-page: 1878 year: 2002 ident: bb0135 article-title: Equations for predicting soil organic carbon using loss-on-ignition for north central US soils publication-title: Soil Sci. Soc. Am. J. – year: 2019 ident: bb0070 article-title: Measuring and Modelling Soil Carbon Stocks and Stock Changes in Livestock Production Systems: Guidelines for Assessment – volume: 66 start-page: 320 year: 2015 end-page: 328 ident: bb0100 article-title: Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water loss publication-title: Eur. J. Soil Sci. – volume: 60 start-page: 723 year: 2009 end-page: 739 ident: bb0095 article-title: Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales publication-title: Eur. J. Soil Sci. – volume: 13 start-page: 1 year: 2021 end-page: 15 ident: bb0240 article-title: Carbon farming: prospects and challenges publication-title: Sustainability – volume: 57 start-page: 195 year: 1997 end-page: 199 ident: bib301 article-title: Comparison in the determination of soil organic matter by partial and complete oxidation in various soils of the VII region publication-title: Agricu. Tecnic. – volume: 125 start-page: 33 year: 2014 ident: 10.1016/j.geodrs.2025.e00947_bb0190 article-title: The importance of soil sampling depth for accurate account of soil organic carbon sequestration, storage, retention and loss publication-title: Catena doi: 10.1016/j.catena.2014.10.004 – volume: 57 start-page: 195 year: 1997 ident: 10.1016/j.geodrs.2025.e00947_bib301 article-title: Comparison in the determination of soil organic matter by partial and complete oxidation in various soils of the VII region publication-title: Agricu. Tecnic. – ident: 10.1016/j.geodrs.2025.e00947_bb0195 – year: 2019 ident: 10.1016/j.geodrs.2025.e00947_bb0040 – year: 2020 ident: 10.1016/j.geodrs.2025.e00947_bb0245 – volume: 86 start-page: 243 year: 2012 ident: 10.1016/j.geodrs.2025.e00947_bb0180 article-title: Carbon sequestration studies in agroforestry systems: a reality-check publication-title: Agrofor. Syst. doi: 10.1007/s10457-011-9434-z – volume: 60 start-page: 723 year: 2009 ident: 10.1016/j.geodrs.2025.e00947_bb0095 article-title: Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2009.01157.x – volume: 368 year: 2020 ident: 10.1016/j.geodrs.2025.e00947_bb0055 article-title: Machine learning digital soil mapping to inform gully erosion mitigation measures in the Eastern Cape, South Africa publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114287 – volume: 5 issue: 5 year: 2013 ident: 10.1016/j.geodrs.2025.e00947_bb0105 article-title: The impact of soil erosion on agricultural potential and performance of Sheshegu community farmers in the eastern cape of South Africa publication-title: J. Agric. Sci. – volume: 24 start-page: 253 issue: 4 year: 2023 ident: 10.1016/j.geodrs.2025.e00947_bb0060 article-title: Comparison between Walkley-Black and loss on ignition methods for organic matter estimation in different Moroccan soils publication-title: Ecol. Eng. Environ. Technol. doi: 10.12912/27197050/163121 – volume: 66 start-page: 1878 year: 2002 ident: 10.1016/j.geodrs.2025.e00947_bb0135 article-title: Equations for predicting soil organic carbon using loss-on-ignition for north central US soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.1878 – volume: 60 start-page: 158 issue: 1 year: 2009 ident: 10.1016/j.geodrs.2025.e00947_bb0150 article-title: Challenges and opportunities in soil organic research publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2008.01114.x – volume: 83 start-page: 466 year: 2019 ident: 10.1016/j.geodrs.2025.e00947_bb0220 article-title: Comparing four methods of measuring soil organic matter in North Carolina soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2018.03.0105 – volume: 71 start-page: 302 issue: 4 year: 2011 ident: 10.1016/j.geodrs.2025.e00947_bb0225 article-title: Methods of soil organic carbon determination in Brazilian savannah soils publication-title: Sci. Agric. doi: 10.1590/0103-9016-2013-0306 – volume: 406 issue: 115454 year: 2022 ident: 10.1016/j.geodrs.2025.e00947_bb0275 article-title: How do the chemical characteristics of organic matter explain differences among its determinations in calcareous soils? publication-title: Geoderma – start-page: 961 year: 1996 ident: 10.1016/j.geodrs.2025.e00947_bb0185 article-title: Total carbon, organic carbon, and organic matter – volume: 30 start-page: 739 issue: 5–6 year: 1999 ident: 10.1016/j.geodrs.2025.e00947_bb0050 article-title: Soil organic carbon recovery by the Walkley-Black method in a typic hapludoll publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103629909370242 – volume: 47 start-page: 583 year: 1952 ident: 10.1016/j.geodrs.2025.e00947_bb0140 article-title: Use of ranks in one-criterion variance analysis publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1952.10483441 – year: 2020 ident: 10.1016/j.geodrs.2025.e00947_bb0265 – year: 2019 ident: 10.1016/j.geodrs.2025.e00947_bb0070 – volume: 78 start-page: 1442 year: 2014 ident: 10.1016/j.geodrs.2025.e00947_bb0285 article-title: Seasonal variation in soil organic carbon publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2013.10.0447 – start-page: 327 year: 2009 ident: 10.1016/j.geodrs.2025.e00947_bb0260 article-title: Hydrological consequences of a changing climate: the Umgeni Water Utility case study – volume: 36 start-page: 2899 issue: 19–20 year: 2005 ident: 10.1016/j.geodrs.2025.e00947_bb0045 article-title: Capability of loss-on-ignition as a predictor of total organic carbon in non-calcareous forest soils publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103620500306080 – volume: 156 start-page: 75 year: 2010 ident: 10.1016/j.geodrs.2025.e00947_bb0205 article-title: A critical review of the conventional SOC to SOM conversion factor publication-title: Geoderma doi: 10.1016/j.geoderma.2010.02.003 – volume: 7 year: 2019 ident: 10.1016/j.geodrs.2025.e00947_bb0300 article-title: Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand publication-title: PeerJ doi: 10.7717/peerj.7880 – volume: 6 start-page: 543 issue: 2 year: 2008 ident: 10.1016/j.geodrs.2025.e00947_bb0250 article-title: Standard and modified methods for soil organic carbon determination in agricultural soils publication-title: Agron. Res. – year: 2024 ident: 10.1016/j.geodrs.2025.e00947_bb0270 article-title: Towards a Hydrological soil map of South Africa (HYDROSOIL) – Developing a protocol and showcasing its uses – volume: 182 start-page: 101 issue: 3 year: 2017 ident: 10.1016/j.geodrs.2025.e00947_bb0015 article-title: Investigation of soil organic carbon recovery by the Walkley-Black method under diverse vegetation systems publication-title: Soil Sci. doi: 10.1097/SS.0000000000000201 – year: 2007 ident: 10.1016/j.geodrs.2025.e00947_bb0230 – volume: 63 start-page: 251 year: 1947 ident: 10.1016/j.geodrs.2025.e00947_bib303 article-title: A Critical Examination of a Rapid Method for Determining Organic Carbon in Soils: Effect of Variations in Digestion Conditions and of Inorganic Soil Constituents publication-title: Soil Science doi: 10.1097/00010694-194704000-00001 – year: 2020 ident: 10.1016/j.geodrs.2025.e00947_bb0210 – year: 2011 ident: 10.1016/j.geodrs.2025.e00947_bb0010 – volume: 178 start-page: 165 year: 2023 ident: 10.1016/j.geodrs.2025.e00947_bb0235 article-title: Soil inorganic carbon, the other and equally important soil carbon pool: distribution, controlling factors, and the impact of climate change publication-title: Adv. Agron. doi: 10.1016/bs.agron.2022.11.005 – volume: 25 start-page: 346 year: 2009 ident: 10.1016/j.geodrs.2025.e00947_bb0165 article-title: Determining soil organic carbon for agricultural soils: a comparison between the Walkley & Black and the dry combustion methods (North Belgium) publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2009.00242.x – volume: 18 start-page: 3147 year: 2021 ident: 10.1016/j.geodrs.2025.e00947_bb0295 article-title: Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model publication-title: Biogeosciences doi: 10.5194/bg-18-3147-2021 – volume: 33 start-page: 1629 issue: 9 & 10 year: 2002 ident: 10.1016/j.geodrs.2025.e00947_bb0030 article-title: Quantifying laboratory and field variability to assess potential for carbon sequestration publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1081/CSS-120004304 – volume: 23 start-page: 221 issue: 3 year: 2007 ident: 10.1016/j.geodrs.2025.e00947_bib302 article-title: Walkley-Black analysis of forest soil organic carbon: recovery, limitations and uncertainty publication-title: Soil Use and Management doi: 10.1111/j.1475-2743.2007.00084.x – volume: 8(1) year: 2024 ident: 10.1016/j.geodrs.2025.e00947_bb0020 article-title: Soil inorganic carbon formation and the sequestration of secondary carbonates in global carbon pools: A review – volume: 66 start-page: 320 year: 2015 ident: 10.1016/j.geodrs.2025.e00947_bb0100 article-title: Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water loss publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12224 – volume: 66 start-page: 544 issue: 6 year: 2016 ident: 10.1016/j.geodrs.2025.e00947_bb0200 article-title: The nature of soil erosion and possible conservation strategies in Ntabelanga area, Eastern Cape Province, South Africa publication-title: Acta Agric. Scand. Sect. B Soil Plant Sci. – year: 2010 ident: 10.1016/j.geodrs.2025.e00947_bb0080 – volume: 100 start-page: 80 issue: 1 year: 2017 ident: 10.1016/j.geodrs.2025.e00947_bb0215 article-title: The imperative of regenerative agriculture publication-title: Sci. Prog. doi: 10.3184/003685017X14876775256165 – volume: 49 start-page: 1279 issue: 19 year: 2018 ident: 10.1016/j.geodrs.2025.e00947_bb0065 article-title: Assessing the effectiveness of the Walkley-Black method for soil organic carbon determination in tephra soils of Cameroon publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103624.2018.1510948 – volume: 2 start-page: 965 issue: 11 year: 2007 ident: 10.1016/j.geodrs.2025.e00947_bb0290 article-title: An evaluation of spectroscopic and loss on ignition methods for estimating soil organic carbon in Zambian soils publication-title: Int. J. Agric. Res. doi: 10.3923/ijar.2007.965.970 – volume: 32 start-page: 1378 issue: 9 year: 2006 ident: 10.1016/j.geodrs.2025.e00947_bb0175 article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2005.12.009 – volume: 75 issue: 6 year: 2024 ident: 10.1016/j.geodrs.2025.e00947_bb0130 article-title: Development of soil spectroscopy models for the Western Highveld region, South Africa: why do we need local data? publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.70014 – volume: 153 start-page: 98 year: 2018 ident: 10.1016/j.geodrs.2025.e00947_bb0090 article-title: How reliable is the Walkley-Black method for analyzing carbon-poor, semi-arid soils in Ethiopia? publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2018.01.008 – volume: 13 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.geodrs.2025.e00947_bb0240 article-title: Carbon farming: prospects and challenges publication-title: Sustainability – volume: 38 start-page: 2005 issue: 15–16 year: 2007 ident: 10.1016/j.geodrs.2025.e00947_bb0125 article-title: Dry combustion carbon, Walkley–Black carbon, and loss on ignition for aggregate size fractions on a toposequence publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103620701548639 – volume: 128 start-page: 1 issue: 62 year: 2019 ident: 10.1016/j.geodrs.2025.e00947_bb0145 article-title: C-equivalent correction factor for soil organic carbon inventory by wet oxidation, dry combustion and loss on ignition methods in Himalayan region publication-title: J. Earth Sci. Environ. – volume: 36 start-page: 1936 issue: 6 year: 2006 ident: 10.1016/j.geodrs.2025.e00947_bb0035 article-title: Evaluation of the loss-on-ignition method in the organic matter analysis in soils of the Serra Gaucha of the Rio Grande do Sul publication-title: Ciência Rural Santa Maria doi: 10.1590/S0103-84782006000600045 – year: 1972 ident: 10.1016/j.geodrs.2025.e00947_bb0155 – volume: 34 start-page: 1853 issue: 13–14 year: 2003 ident: 10.1016/j.geodrs.2025.e00947_bb0170 article-title: Comparison of soil organic carbon recovery by Walkley-Black and dry combustion methods in the Russian Chernozem publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1081/CSS-120023220 – volume: 14 start-page: 603 year: 2021 ident: 10.1016/j.geodrs.2025.e00947_bb0025 article-title: Methods of carbon sequestration (review) publication-title: Polym. Sci. Ser. D doi: 10.1134/S1995421222010038 – volume: 71 start-page: 545 year: 2007 ident: 10.1016/j.geodrs.2025.e00947_bb0005 article-title: Estimating organic carbon from loss-on-ignition in northern Arizona forest soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2006.0136 – volume: 5 start-page: 2169 issue: 16 year: 2010 ident: 10.1016/j.geodrs.2025.e00947_bb0160 article-title: Evaluation of methods for measuring soil organic carbon in West African soils publication-title: Afr. J. Agric. Res. – volume: 63 start-page: 251 year: 1934 ident: 10.1016/j.geodrs.2025.e00947_bb0280 article-title: An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents publication-title: Soil Sci. doi: 10.1097/00010694-194704000-00001 – volume: 62 start-page: 496 issue: 5 year: 2015 ident: 10.1016/j.geodrs.2025.e00947_bb0075 article-title: Comparison of different methods for the determination of total organic carbon and humic substances in Brazilian soils publication-title: Rev. Ceres doi: 10.1590/0034-737X201562050011 – ident: 10.1016/j.geodrs.2025.e00947_bb0085 – volume: 37 start-page: 707 year: 2005 ident: 10.1016/j.geodrs.2025.e00947_bb0110 article-title: International comparison of analytical methods of determining the soil organic matter content of Lithuanian Eutric Albeluvisols publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103620600563499 – volume: 69 start-page: 604 year: 2018 ident: 10.1016/j.geodrs.2025.e00947_bb0115 article-title: Converting loss-on-ignition to organic carbon content in arable topsoil: pitfalls and proposed procedure publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12558 – volume: 45 start-page: 713 issue: 6 year: 2014 ident: 10.1016/j.geodrs.2025.e00947_bb0120 article-title: Predicting total organic carbon content of soils from Walkley and Black analysis publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103624.2013.874023 |
SSID | ssj0002953762 |
Score | 2.3114092 |
Snippet | Accurate quantification of soil organic carbon (SOC) content is essential for the assessment of carbon credits. In South Africa, the standard methodologies for... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e00947 |
SubjectTerms | analytical methods carbon markets Carbon sequestration combustion Elemental analyser Greenhouse gas emissions Loss-on-ignition pedotransfer functions soil organic carbon South Africa topsoil Walkley-Black wet-oxidation |
Title | The carbon credit conundrum: Which analytical method should be used for determining soil organic carbon content in South Africa? |
URI | https://dx.doi.org/10.1016/j.geodrs.2025.e00947 https://www.proquest.com/docview/3200261262 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEF_s3YsvYrGitpYR-rpespuPO1_kkMrZoz6oh_e27KcX0UTukvf-6d3JJkIFEfoUkrBLmJnMzO7O_H6E_HCGqTRlE5pnxtAkkYoqo2KqZO7yKDbStB1yv6-z2SL5tUyXW-Si74XBssrO9wef3nrr7smok-bopShGt4y3kEHe6DCxZ8tPZMh8dI0GZDi9ms-uX7da2AQxS1hLM5cyimP6Jrq20uvBVmaN0N0sPbX4Nn8vSL1x120MutwlO13yCNPwfZ_Jli33yB-vadByraoSEP6zqMGvcZvSrJvnM7hfFXoFEqFH2l1rCJTRsFkhtzUoC83GGvCpK5iuMsYHM9hUxRMExif9OjkCWZU1FCW0xHsQOIbOv5DF5c-7ixnteBWo9gG9ptLxRPvIPpaR1Ja7sc5il6jYTJxxiU5jG5lM43lnrHz-EkdauhxBXSa5y7jRfJ8Myqq0BwSSxCnntcwc58hVJ1Xq10_O5wwpd0qZQ0J7QYqXAJ8h-rqyRxEEL1DwIgj-kOS9tMU_ZiC8h_9g5EmvHOH_EDz2kKWtmo3gLAClZezov2f_SrbxLtSIfSODet3YY5-N1Op7Z214nd_cz_8CVevi8A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1di9QwFA3r7oO-iKLi-nkFfYwzTfqxI4gs6jLj7M6LuzhvMZ9ORdtl2iK--Z_8g97btAsKIgj72tBQTm9ybpKbcxh7GpwwWSZmvMid42mqDTfOJNzoIhTTxGnX35A7WeXzs_TdOlvvsJ_jXRgqqxzm_jin97P18GQyoDk5L8vJeyF7ySAMOkrsxXqorFz6799w3da8XLzBn_xMiKO3p6_nfLAW4BY5reU6yNQiuR3oqbZehgObJyE1iZsFF1KbJX7qcktHfolBCk-mVoeCdE1mRcilsxL7vcL2SA0Lh9Xe4WI5X11s7YgZaaSI3tYuE5y-cby011eWffK125JUuMiee2ot_kaKf9BDz3lHN9j1IVmFw4jHTbbjq1vsB0YWWL01dQUkN1q2gGvqrnLb7usL-LAp7QY0SZ30u-QQLaqh2ZCXNhgPXeMdYKoMbqjEQfKEpi6_QHSYshedk3BW1UJZQW_0B9HT6NVtdnYpYN9hu1Vd-bsM0jSYgFElgpTkjadNhuu1gDlKJoMxbp_xEUh1HuU61FjH9llF4BUBryLw-6wY0Va_hZ1CRvnHm0_Gn6NwRNIxi6583TVKiijMlot7_937Y3Z1fnpyrI4Xq-V9do1aYn3aA7bbbjv_EDOh1jwaIg_Yx8sO9l-WhB7V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+carbon+credit+conundrum%3A+Which+analytical+method+should+be+used+for+determining+soil+organic+carbon+content+in+South+Africa%3F&rft.jtitle=Geoderma+Regional&rft.au=Cloete%2C+Willie+Herman&rft.au=du+Preez%2C+Gerhard&rft.au=Van+Zijl%2C+George+Munnik&rft.date=2025-06-01&rft.pub=Elsevier+B.V&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=41&rft_id=info:doi/10.1016%2Fj.geodrs.2025.e00947&rft.externalDocID=S235200942500032X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |