Effects of oxygen group elements on thermodynamic stability, electronic structures and optical properties of the pure and pressed BaTiO3 perovskite
Thermodynamic stability, electronic structures, and optical properties of the pure and pressed BaTiO3 doped with different concentrations of oxygen group elements (Se, Te, and S) are investigated using the Density Functional Theory. It was found that when chalcogens elements in BaTiO3 compound subst...
Saved in:
Published in | Computational Condensed Matter Vol. 32; p. e00728 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thermodynamic stability, electronic structures, and optical properties of the pure and pressed BaTiO3 doped with different concentrations of oxygen group elements (Se, Te, and S) are investigated using the Density Functional Theory. It was found that when chalcogens elements in BaTiO3 compound substitute oxygen atoms, the forbidden gap is significantly decreased from 3.010 eV (for pressed BaTiO3) to 0.000 eV (for Te-doped BaTiO3 and pressed Se/Te-doped BaTiO3) indicating that chalcogens impurities have a crucial role in the reduction of the forbidden band of BaTiO3 compound. Moreover, 2.3% of compressive strain itself with and without the presence of chalcogens impurities transforms the pure BaTiO3 from indirect to direct semiconductor. Furthermore, the calculated formation energy confirms the thermodynamic stability of all studied compounds. Additionally, the doping changed the absorption behavior of BaTiO3 making the compound more useful for optoelectronic applications due to the introduction of addition carries into the system after the inclusion of chalcogens impurities. |
---|---|
AbstractList | Thermodynamic stability, electronic structures, and optical properties of the pure and pressed BaTiO3 doped with different concentrations of oxygen group elements (Se, Te, and S) are investigated using the Density Functional Theory. It was found that when chalcogens elements in BaTiO3 compound substitute oxygen atoms, the forbidden gap is significantly decreased from 3.010 eV (for pressed BaTiO3) to 0.000 eV (for Te-doped BaTiO3 and pressed Se/Te-doped BaTiO3) indicating that chalcogens impurities have a crucial role in the reduction of the forbidden band of BaTiO3 compound. Moreover, 2.3% of compressive strain itself with and without the presence of chalcogens impurities transforms the pure BaTiO3 from indirect to direct semiconductor. Furthermore, the calculated formation energy confirms the thermodynamic stability of all studied compounds. Additionally, the doping changed the absorption behavior of BaTiO3 making the compound more useful for optoelectronic applications due to the introduction of addition carries into the system after the inclusion of chalcogens impurities. |
ArticleNumber | e00728 |
Author | Tahiri, N. Ez-Zahraouy, H. El Bounagui, O. Dahbi, S. |
Author_xml | – sequence: 1 givenname: S. surname: Dahbi fullname: Dahbi, S. – sequence: 2 givenname: N. orcidid: 0000-0001-6204-1359 surname: Tahiri fullname: Tahiri, N. email: tahiri.najim@gmail.com – sequence: 3 givenname: O. surname: El Bounagui fullname: El Bounagui, O. – sequence: 4 givenname: H. surname: Ez-Zahraouy fullname: Ez-Zahraouy, H. |
BookMark | eNqFkMtOQjEQhhujiYg8gZs-gGAv57pwocRbQsIG103pmWLxnPakLUSewxe2gAvjQlczmfm-afpfoFPrLCB0RcmEElrcrCfKKddNGGFsAoSUrDpBA8ZzNmY046c_-nM0CmFNCGFFmYbFAH0-aA0qBuw0dh-7FVi88m7TY2ihA7tfWBzfwHeu2VnZGYVDlEvTmri73kMqemcPU79RceMhYGkb7PpolGxx710PPho4vJAO4T4xB6RPbIAG38uFmXOcMLcN7ybCJTrTsg0w-q5D9Pr4sJg-j2fzp5fp3WysGK3iuGZME9KUuc40ZSpfZlKSZkmrMuda10vGC1LmFW9qJWsoecYKWUpdZRQKSD0fIn68q7wLwYMWvTed9DtBidhHK9biEK3YRyuO0Sar_mUpE2U0zkYvTfuPe3t0IX1ra8CLoAxYBY3xKUnROPOn_wWwa5w3 |
CitedBy_id | crossref_primary_10_1016_j_inoche_2024_113260 crossref_primary_10_1016_j_jpcs_2024_112173 crossref_primary_10_1016_j_micrna_2024_207911 crossref_primary_10_1016_j_comptc_2024_114916 crossref_primary_10_1016_j_matchemphys_2025_130607 crossref_primary_10_1016_j_rinp_2025_108177 crossref_primary_10_1038_s41598_023_31652_2 crossref_primary_10_1142_S0217984923502378 crossref_primary_10_1016_j_micrna_2024_207818 crossref_primary_10_1016_j_mtcomm_2025_111490 crossref_primary_10_1016_j_cocom_2024_e00879 crossref_primary_10_1016_j_optlastec_2024_112023 crossref_primary_10_1021_acs_energyfuels_3c01272 crossref_primary_10_1007_s43207_023_00297_2 crossref_primary_10_1016_j_jpcs_2025_112656 crossref_primary_10_1016_j_commatsci_2024_113335 crossref_primary_10_15251_DJNB_2024_192_679 crossref_primary_10_1016_j_ceramint_2025_02_243 crossref_primary_10_1007_s11082_023_06114_8 crossref_primary_10_1016_j_commatsci_2025_113814 crossref_primary_10_1007_s11082_024_07414_3 crossref_primary_10_1016_j_cocom_2023_e00846 crossref_primary_10_1007_s11082_024_06343_5 crossref_primary_10_1016_j_chemphys_2025_112706 crossref_primary_10_1016_j_jpcs_2024_112229 crossref_primary_10_1016_j_physb_2023_415548 crossref_primary_10_1016_j_solener_2023_05_014 |
Cites_doi | 10.1038/nature12622 10.1103/PhysRevLett.83.2628 10.1016/j.chemphys.2021.111105 10.1021/am405293e 10.1016/j.ceramint.2018.12.113 10.1007/s43207-022-00212-1 10.1016/j.spmi.2021.107058 10.1016/j.optmat.2020.110442 10.1016/S0272-8842(03)00066-X 10.1103/PhysRevB.49.5828 10.1103/PhysRevB.62.8828 10.1063/1.1616631 10.1007/s11664-016-4563-9 10.1016/j.jeurceramsoc.2017.10.014 10.1103/PhysRevLett.51.1888 10.1063/1.5047094 10.1016/j.mssp.2022.106959 10.1103/PhysRevB.72.144101 10.1021/jp202863a 10.1016/j.mssp.2021.106271 10.1103/PhysRevB.73.045112 10.1038/nphoton.2014.255 10.1103/PhysRevLett.102.226401 10.1016/0165-1633(79)90042-X 10.3390/sym13101920 10.1016/j.matchemphys.2008.01.020 10.1007/BF01321179 10.1016/j.apsusc.2018.06.122 10.3390/cryst11040455 10.1016/j.saa.2018.09.048 10.1002/er.7631 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cocom.2022.e00728 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2352-2143 |
ExternalDocumentID | 10_1016_j_cocom_2022_e00728 S235221432200079X |
GroupedDBID | --M 0R~ 0SF 4.4 457 6I. AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABMAC ABNEU ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEXQZ AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AIEXJ AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AXJTR BKOJK EBS EFJIC EFLBG EJD FDB FIRID FYGXN HZ~ IXB KOM KQ8 M41 NCXOZ O9- OK1 ROL SPC SPCBC SSM SSQ SSZ T5K AAQFI AATTM AAXKI AAYWO AAYXX ACVFH ADCNI ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c218t-922f00d75f4f12c5b4aa0db18753ff9b23607583d9ca9e73426a7af841e6e26a3 |
IEDL.DBID | AIKHN |
ISSN | 2352-2143 |
IngestDate | Tue Jul 01 02:47:44 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Fri Feb 23 02:39:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Solar cells Ab initio calculation Absorption coefficient Strain effect Oxygen group elements BaTiO3compound |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c218t-922f00d75f4f12c5b4aa0db18753ff9b23607583d9ca9e73426a7af841e6e26a3 |
ORCID | 0000-0001-6204-1359 |
ParticipantIDs | crossref_primary_10_1016_j_cocom_2022_e00728 crossref_citationtrail_10_1016_j_cocom_2022_e00728 elsevier_sciencedirect_doi_10_1016_j_cocom_2022_e00728 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-00 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationTitle | Computational Condensed Matter |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dahbi, Tahiri, El Bounagui, Ez-Zahraouy (bib11) 2021; 544 Wang, Meng, Ma, Xu, Chen (bib20) 2010; 108 Huang, Yang, Wang (bib23) 2019; 208 Maeda (bib12) 2014; 6 Maldonado, Rivera, Villamagua, Maldonado (bib4) 2018; 456 Teng, Jiang, Chen, Ma, Zhang (bib30) 2018; 8 Blaha, Schwarz, Madsen, Kvasnicka, Luitz (bib13) 2001 Upadhyay, Shrivastava, Solanki, Choudhary, Sharma, Kumar, Singh, Satsangi, Shrivastav, Waghmare (bib9) 2011; 115 Xiao, Jin, Wang (bib3) 2008; 111 Dahbi, Tahiri, El Bounagui, Ez-Zahraouy (bib25) 2021; 160 Tran, Blaha (bib18) 2009; 102 Cai, Yin, Zhang (bib31) 2003; 83 Iqbal (bib19) 2016; 45 Ma, Chen, Pan, Chen, Ma, Lin, Fu, Ma (bib8) 2019; 45 Dahbi, Tahiri, El Bounagui, Ez-Zahraouy (bib21) 2022; 138 Eglitis, Purans, Jia (bib15) 2021; 11 Dahbi, Tahiri, El Bounagui, Ez-Zahraouy (bib22) 2022; 46 Luo, Wang, Tian, Song, Zhao, Cai, Feng, Li (bib10) 2018; 38 Diéguez, Rabe, Vanderbilt (bib2) 2005; 72 King-Smith, Vanderbilt (bib1) 1994; 49 Bauerle, Braun, Saile, Sprussel, Koch (bib29) 1978; 29 Sham, Schlüter (bib14) 1983; 51 Grinberg, West, Torres, Gou, Stein, Wu, Chen (bib5) 2013; 503 Nechache, Harnagea, Li, Cardenas, Huang, Chakrabartty, Rosei (bib7) 2015; 9 Eglitis, Purans, Popov, Jia (bib16) 2021; 13 Dahbi, Tahiri, El Bounagui, Ez-Zahraouy (bib24) 2020; 109 Gajdoš, Hummer, Kresse, Furthmüller, Bechstedt (bib28) 2006; 73 Mouhib, Dahbi, Tahiri, El Bounagui, Ez-Zahraouy (bib26) 2022; 63 Salehi, Hosseini, Shahtahmasebi (bib6) 2004; 30 Kurth, Marques, Lüders, Gross (bib17) 1999; 83 Saha, Sinha, Mookerjee (bib32) 2000; 62 Dahbi, Tahiri, El Bounagui, Ez-Zahraouy (bib33) 2022; 150 Maruska, Ghosh (bib34) 1979; 1 Akenoun, Dahbi, lTahiri, E Bounagui, Ez-Zahraouy, Benyoussef (bib27) 2022 Dahbi (10.1016/j.cocom.2022.e00728_bib11) 2021; 544 Maldonado (10.1016/j.cocom.2022.e00728_bib4) 2018; 456 Maeda (10.1016/j.cocom.2022.e00728_bib12) 2014; 6 Bauerle (10.1016/j.cocom.2022.e00728_bib29) 1978; 29 Huang (10.1016/j.cocom.2022.e00728_bib23) 2019; 208 Saha (10.1016/j.cocom.2022.e00728_bib32) 2000; 62 Gajdoš (10.1016/j.cocom.2022.e00728_bib28) 2006; 73 Eglitis (10.1016/j.cocom.2022.e00728_bib16) 2021; 13 Maruska (10.1016/j.cocom.2022.e00728_bib34) 1979; 1 Dahbi (10.1016/j.cocom.2022.e00728_bib21) 2022; 138 Xiao (10.1016/j.cocom.2022.e00728_bib3) 2008; 111 Luo (10.1016/j.cocom.2022.e00728_bib10) 2018; 38 King-Smith (10.1016/j.cocom.2022.e00728_bib1) 1994; 49 Tran (10.1016/j.cocom.2022.e00728_bib18) 2009; 102 Salehi (10.1016/j.cocom.2022.e00728_bib6) 2004; 30 Grinberg (10.1016/j.cocom.2022.e00728_bib5) 2013; 503 Teng (10.1016/j.cocom.2022.e00728_bib30) 2018; 8 Blaha (10.1016/j.cocom.2022.e00728_bib13) 2001 Dahbi (10.1016/j.cocom.2022.e00728_bib24) 2020; 109 Upadhyay (10.1016/j.cocom.2022.e00728_bib9) 2011; 115 Eglitis (10.1016/j.cocom.2022.e00728_bib15) 2021; 11 Kurth (10.1016/j.cocom.2022.e00728_bib17) 1999; 83 Dahbi (10.1016/j.cocom.2022.e00728_bib22) 2022; 46 Dahbi (10.1016/j.cocom.2022.e00728_bib33) 2022; 150 Cai (10.1016/j.cocom.2022.e00728_bib31) 2003; 83 Diéguez (10.1016/j.cocom.2022.e00728_bib2) 2005; 72 Akenoun (10.1016/j.cocom.2022.e00728_bib27) 2022 Nechache (10.1016/j.cocom.2022.e00728_bib7) 2015; 9 Dahbi (10.1016/j.cocom.2022.e00728_bib25) 2021; 160 Ma (10.1016/j.cocom.2022.e00728_bib8) 2019; 45 Sham (10.1016/j.cocom.2022.e00728_bib14) 1983; 51 Iqbal (10.1016/j.cocom.2022.e00728_bib19) 2016; 45 Wang (10.1016/j.cocom.2022.e00728_bib20) 2010; 108 Mouhib (10.1016/j.cocom.2022.e00728_bib26) 2022; 63 |
References_xml | – volume: 73 year: 2006 ident: bib28 article-title: Linear optical properties in the projector-augmented wave methodology publication-title: Phys. Rev. B – volume: 9 start-page: 61 year: 2015 ident: bib7 article-title: Bandgap tuning of multiferroic oxide solar cells publication-title: Nat. Photonics – volume: 208 start-page: 65 year: 2019 ident: bib23 article-title: Xiao-Guang Ma, Chalcogens doped BaTiO3 for visible light photocatalytic hydrogen production from water splitting, Spectrochim publication-title: Acta A Mol. Biomol. Spectrosc. – volume: 11 start-page: 455 year: 2021 ident: bib15 article-title: Comparative hybrid Hartree-Fock-DFT calculations of WO2-terminated cubic WO3 as well as SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001) surfaces publication-title: Crystals – volume: 62 start-page: 8828 year: 2000 ident: bib32 article-title: Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3 publication-title: Phys. Rev. B – year: 2022 ident: bib27 article-title: The effect of chalcogens-doped with dilation strain on the electronic, optic, and thermoelectric properties of BaSnO3 perovskitecompound publication-title: J. Korean Ceram. Soc. – volume: 13 start-page: 1920 year: 2021 ident: bib16 article-title: Tendencies in ABO3 perovskite and SrF2, BaF2 and CaF2 bulk and surface F-center ab initio computations in high symmetry cubic structure publication-title: Symmetry – volume: 29 start-page: 179 year: 1978 ident: bib29 article-title: Vacuum ultraviolet reflectivity and band structure of SrTiO3 and BaTiO3 publication-title: Z. Phys. B – volume: 503 start-page: 509 year: 2013 ident: bib5 article-title: Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials publication-title: Nature – volume: 45 start-page: 6303 year: 2019 ident: bib8 article-title: Electronic structures and optical properties of Fe/Co–doped cubic BaTiO3 ceramics publication-title: Ceram. Int. – volume: 108 year: 2010 ident: bib20 article-title: Lattice, elastic, polarization, and electrostrictive properties of BaTiO3 from first-principles publication-title: J. Appl. Phys. – volume: 138 year: 2022 ident: bib21 article-title: Chalcogens' impuritiesand a single F-center in SHO: ab initio calculations publication-title: Mater. Sci. Semicond. Process. – volume: 102 year: 2009 ident: bib18 article-title: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential publication-title: Phys. Rev. Lett. – volume: 83 start-page: 2628 year: 1999 ident: bib17 article-title: «Local density approximation for superconductors» hys publication-title: Rev. Let. – volume: 49 start-page: 5828 year: 1994 ident: bib1 article-title: First-principles investigation of ferroelectricity in perovskite compounds publication-title: Phys. Rev. B – volume: 83 start-page: 2805 year: 2003 end-page: 2807 ident: bib31 article-title: First-principles study of optical properties of barium titanate publication-title: Appl. Phys. Lett. – volume: 115 year: 2011 ident: bib9 article-title: Enhanced photoelectrochemical response of BaTiO publication-title: J. Phys. Chem. C – volume: 109 year: 2020 ident: bib24 article-title: The new eco-friendly lead-free zirconate perovskites doped with chalcogens for solar cells: ab initio calculations publication-title: Opt. Mater. – volume: 160 year: 2021 ident: bib25 article-title: Calcium hafnate perovskite from an insulator to a semiconductor for photovoltaic and photocatalytic hydrogen production from water splitting applications publication-title: Superlattice. Microst. – volume: 46 start-page: 8433 year: 2022 ident: bib22 article-title: Importance of spin-orbit coupling on photovoltaic properties of Pb-free vacancy ordered double perovskites halides X2TeY6 (X = Cs, Rb and Y = I, Br, Cl): first-principles calculations publication-title: Int. J. Energy Res. – year: 2001 ident: bib13 publication-title: WIEN2k, an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties – volume: 30 start-page: 81 year: 2004 ident: bib6 article-title: The effects of Ni on structural and electronic properties of BaTiO3 ceramic publication-title: Ceram. Int. – volume: 150 year: 2022 ident: bib33 article-title: Earth-abundant nontoxic ternary calcium nitrides inverse perovskites for single-junction solar cells: ab-initio simulations publication-title: Mater. Sci. Semicond. Process. – volume: 456 start-page: 276 year: 2018 ident: bib4 article-title: DFT modelling of ethanol on BaTiO 3 (0 0 1) surface publication-title: Appl. Surf. Sci. – volume: 45 start-page: 4188 year: 2016 ident: bib19 article-title: Electronic and optical properties of Ca3MN (M = Ge, Sn,Pb, P, as, Sb and Bi) antiperovskite compounds publication-title: J. Electron. Mater. – volume: 72 year: 2005 ident: bib2 article-title: First-principles study of epitaxial strain in perovskites publication-title: Phys. Rev. B – volume: 51 start-page: 1888 year: 1983 ident: bib14 article-title: Density-functional theory of the energy gap publication-title: Phys. Rev. Lett. – volume: 8 year: 2018 ident: bib30 article-title: The electronic structures and optical properties of B, C or N doped BaTiO3 publication-title: AIP Adv. – volume: 38 start-page: 1562 year: 2018 ident: bib10 article-title: Giant permittivity and low dielectric loss of Fe doped BaTiO3 ceramics: experimental and first-principles calculations publication-title: J. Eur. Ceram. Soc. – volume: 63 year: 2022 ident: bib26 article-title: Theoretical investigations of electronic structure and optical properties of S, Se or Te doped perovskite ATiO3 (A=Ca, Ba and Sr) materials for eco-friendly solar cells publication-title: Micro Nanostruct. – volume: 111 start-page: 209 year: 2008 ident: bib3 article-title: Crystal structure of dense nano-crystalline BaTiO3 ceramics publication-title: Mater. Chem. Phys. – volume: 544 year: 2021 ident: bib11 article-title: Electronic, optical, and thermoelectric properties of perovskites BaTiO publication-title: Chem. Phys. – volume: 1 start-page: 237 year: 1979 ident: bib34 article-title: Transition-metal dopants for extending the response of titanate photoelectrolysis anodes publication-title: Sol. Energy Mater. – volume: 6 start-page: 2167 year: 2014 ident: bib12 article-title: Rhodium-doped barium titanate perovskite as a stable p-type semiconductor photocatalyst for hydrogen evolution under visible light publication-title: ACS Appl. Mater. Interfaces – volume: 503 start-page: 509 year: 2013 ident: 10.1016/j.cocom.2022.e00728_bib5 article-title: Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials publication-title: Nature doi: 10.1038/nature12622 – volume: 83 start-page: 2628 year: 1999 ident: 10.1016/j.cocom.2022.e00728_bib17 article-title: «Local density approximation for superconductors» hys publication-title: Rev. Let. doi: 10.1103/PhysRevLett.83.2628 – volume: 544 year: 2021 ident: 10.1016/j.cocom.2022.e00728_bib11 article-title: Electronic, optical, and thermoelectric properties of perovskites BaTiO3 compound under the effect of compressive strain publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2021.111105 – volume: 6 start-page: 2167 year: 2014 ident: 10.1016/j.cocom.2022.e00728_bib12 article-title: Rhodium-doped barium titanate perovskite as a stable p-type semiconductor photocatalyst for hydrogen evolution under visible light publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am405293e – volume: 45 start-page: 6303 year: 2019 ident: 10.1016/j.cocom.2022.e00728_bib8 article-title: Electronic structures and optical properties of Fe/Co–doped cubic BaTiO3 ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.12.113 – year: 2022 ident: 10.1016/j.cocom.2022.e00728_bib27 article-title: The effect of chalcogens-doped with dilation strain on the electronic, optic, and thermoelectric properties of BaSnO3 perovskitecompound publication-title: J. Korean Ceram. Soc. doi: 10.1007/s43207-022-00212-1 – volume: 160 year: 2021 ident: 10.1016/j.cocom.2022.e00728_bib25 article-title: Calcium hafnate perovskite from an insulator to a semiconductor for photovoltaic and photocatalytic hydrogen production from water splitting applications publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2021.107058 – volume: 109 year: 2020 ident: 10.1016/j.cocom.2022.e00728_bib24 article-title: The new eco-friendly lead-free zirconate perovskites doped with chalcogens for solar cells: ab initio calculations publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.110442 – volume: 30 start-page: 81 year: 2004 ident: 10.1016/j.cocom.2022.e00728_bib6 article-title: The effects of Ni on structural and electronic properties of BaTiO3 ceramic publication-title: Ceram. Int. doi: 10.1016/S0272-8842(03)00066-X – volume: 63 year: 2022 ident: 10.1016/j.cocom.2022.e00728_bib26 article-title: Theoretical investigations of electronic structure and optical properties of S, Se or Te doped perovskite ATiO3 (A=Ca, Ba and Sr) materials for eco-friendly solar cells publication-title: Micro Nanostruct. – volume: 49 start-page: 5828 year: 1994 ident: 10.1016/j.cocom.2022.e00728_bib1 article-title: First-principles investigation of ferroelectricity in perovskite compounds publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.5828 – volume: 62 start-page: 8828 year: 2000 ident: 10.1016/j.cocom.2022.e00728_bib32 article-title: Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.8828 – volume: 83 start-page: 2805 year: 2003 ident: 10.1016/j.cocom.2022.e00728_bib31 article-title: First-principles study of optical properties of barium titanate publication-title: Appl. Phys. Lett. doi: 10.1063/1.1616631 – volume: 45 start-page: 4188 year: 2016 ident: 10.1016/j.cocom.2022.e00728_bib19 article-title: Electronic and optical properties of Ca3MN (M = Ge, Sn,Pb, P, as, Sb and Bi) antiperovskite compounds publication-title: J. Electron. Mater. doi: 10.1007/s11664-016-4563-9 – volume: 38 start-page: 1562 year: 2018 ident: 10.1016/j.cocom.2022.e00728_bib10 article-title: Giant permittivity and low dielectric loss of Fe doped BaTiO3 ceramics: experimental and first-principles calculations publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2017.10.014 – volume: 51 start-page: 1888 year: 1983 ident: 10.1016/j.cocom.2022.e00728_bib14 article-title: Density-functional theory of the energy gap publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.51.1888 – volume: 8 year: 2018 ident: 10.1016/j.cocom.2022.e00728_bib30 article-title: The electronic structures and optical properties of B, C or N doped BaTiO3 publication-title: AIP Adv. doi: 10.1063/1.5047094 – volume: 150 year: 2022 ident: 10.1016/j.cocom.2022.e00728_bib33 article-title: Earth-abundant nontoxic ternary calcium nitrides inverse perovskites for single-junction solar cells: ab-initio simulations publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2022.106959 – volume: 72 year: 2005 ident: 10.1016/j.cocom.2022.e00728_bib2 article-title: First-principles study of epitaxial strain in perovskites publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.144101 – volume: 108 year: 2010 ident: 10.1016/j.cocom.2022.e00728_bib20 article-title: Lattice, elastic, polarization, and electrostrictive properties of BaTiO3 from first-principles publication-title: J. Appl. Phys. – volume: 115 year: 2011 ident: 10.1016/j.cocom.2022.e00728_bib9 article-title: Enhanced photoelectrochemical response of BaTiO3 with Fe doping: experiments and first-principles analysis publication-title: J. Phys. Chem. C doi: 10.1021/jp202863a – volume: 138 year: 2022 ident: 10.1016/j.cocom.2022.e00728_bib21 article-title: Chalcogens' impuritiesand a single F-center in SHO: ab initio calculations publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2021.106271 – year: 2001 ident: 10.1016/j.cocom.2022.e00728_bib13 – volume: 73 year: 2006 ident: 10.1016/j.cocom.2022.e00728_bib28 article-title: Linear optical properties in the projector-augmented wave methodology publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.045112 – volume: 9 start-page: 61 year: 2015 ident: 10.1016/j.cocom.2022.e00728_bib7 article-title: Bandgap tuning of multiferroic oxide solar cells publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.255 – volume: 102 year: 2009 ident: 10.1016/j.cocom.2022.e00728_bib18 article-title: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.226401 – volume: 1 start-page: 237 year: 1979 ident: 10.1016/j.cocom.2022.e00728_bib34 article-title: Transition-metal dopants for extending the response of titanate photoelectrolysis anodes publication-title: Sol. Energy Mater. doi: 10.1016/0165-1633(79)90042-X – volume: 13 start-page: 1920 year: 2021 ident: 10.1016/j.cocom.2022.e00728_bib16 article-title: Tendencies in ABO3 perovskite and SrF2, BaF2 and CaF2 bulk and surface F-center ab initio computations in high symmetry cubic structure publication-title: Symmetry doi: 10.3390/sym13101920 – volume: 111 start-page: 209 year: 2008 ident: 10.1016/j.cocom.2022.e00728_bib3 article-title: Crystal structure of dense nano-crystalline BaTiO3 ceramics publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2008.01.020 – volume: 29 start-page: 179 year: 1978 ident: 10.1016/j.cocom.2022.e00728_bib29 article-title: Vacuum ultraviolet reflectivity and band structure of SrTiO3 and BaTiO3 publication-title: Z. Phys. B doi: 10.1007/BF01321179 – volume: 456 start-page: 276 year: 2018 ident: 10.1016/j.cocom.2022.e00728_bib4 article-title: DFT modelling of ethanol on BaTiO 3 (0 0 1) surface publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.06.122 – volume: 11 start-page: 455 year: 2021 ident: 10.1016/j.cocom.2022.e00728_bib15 article-title: Comparative hybrid Hartree-Fock-DFT calculations of WO2-terminated cubic WO3 as well as SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001) surfaces publication-title: Crystals doi: 10.3390/cryst11040455 – volume: 208 start-page: 65 year: 2019 ident: 10.1016/j.cocom.2022.e00728_bib23 article-title: Xiao-Guang Ma, Chalcogens doped BaTiO3 for visible light photocatalytic hydrogen production from water splitting, Spectrochim publication-title: Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2018.09.048 – volume: 46 start-page: 8433 year: 2022 ident: 10.1016/j.cocom.2022.e00728_bib22 article-title: Importance of spin-orbit coupling on photovoltaic properties of Pb-free vacancy ordered double perovskites halides X2TeY6 (X = Cs, Rb and Y = I, Br, Cl): first-principles calculations publication-title: Int. J. Energy Res. doi: 10.1002/er.7631 |
SSID | ssj0002672356 |
Score | 2.4023767 |
Snippet | Thermodynamic stability, electronic structures, and optical properties of the pure and pressed BaTiO3 doped with different concentrations of oxygen group... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | e00728 |
SubjectTerms | Ab initio calculation Absorption coefficient BaTiO3compound Oxygen group elements Solar cells Strain effect |
Title | Effects of oxygen group elements on thermodynamic stability, electronic structures and optical properties of the pure and pressed BaTiO3 perovskite |
URI | https://dx.doi.org/10.1016/j.cocom.2022.e00728 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5si-BFfGJ9sQePxqabZJMcW1GqRQUf2FtI9gEVTYKtYn-Hf9iZ3aQqSA-e8ppJws4w8-0wD0KOukwDzpXCAd3NHF97rpMCrHXAc3MZ61AoF4uTr6754MG_HAWjJXJa18JgWmVl-61NN9a6utOpVrNTjsedO4bYAdw9w2qTMB41SIt5MQfVbvUuhoPreaiF8RBo7Zi5gDnIU_cfMpleYHkKLEpn7ERhJ-3obx_1w--cr5HVCjDSnv2ndbKk8g2ybBI3xWSTfNr2wxNaaFp8zEAdqCnUoMrmhcODnCLIeymkHT5PAQ-ajNjZMf0egkNtI9k32H3TNJe0KE2Qm5YYrH_Frqv4BXgRLYHGkJgUWiVpP70f33gUO46_TzAYvEUezs_uTwdONWjBEeDhp07MmHZdGQba110mgsxPU1dmXdzLaB1nIDdAFpEnY5HGKvTAq6dhqiO_q7iCc2-bNPMiVzuEsjDKACJFTGnpax1kXMeeL2CXKrjmod8mrF7aRFRdyHEYxnNSp5s9JUYeCcojsfJok-M5U2mbcCwm57XMkl-6lICbWMS4-1_GPbKCVzb3bJ80QWLqAMDKNDuslBGPw9vH4SFpXIz6X4-S7Zg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qRfQiPrE-9-CxsenmscnRFqX1ebCF3kKyD6hoEqyK_g7_sDO7iQ-QHryFZCYJO8POt8PMN4Qcd5kGnCuFA76bOb72XCcFWOtA5A5lrLlQLjYnX9-Eg7F_MQkmDdKve2GwrLLa--2ebnbr6k6nWs1OOZ127hhiBwj3DLtNeDxZIIuABjjObxhOel-JFhZykLRD5gLmoEbNPmTqvGDfKbAlnbEThTza0d8R6kfUOV8jqxVcpKf2j9ZJQ-UbZMmUbYrZJvmw5MMzWmhavL2DM1DTpkGVrQqHBzlFiPdYSDt6ngIaNPWw7236PQKHWhrZFzh70zSXtChNipuWmKp_Qs5V_AK8iJYgY0RMAa2StJeOprceRb7x1xmmgrfI-Pxs1B841ZgFR0B8f3ZixrTrSh5oX3eZCDI_TV2ZdfEko3WcgdUAV0SejEUaK-5BTE95qiO_q0IF1942aeZFrnYIZTzKACBFTGnpax1koY49X8AZVYQ65H6LsHppE1FxkOMojIekLja7T4w9ErRHYu3RIu0vpdJScMwXD2ubJb88KYEgMU9x97-KR2R5MLq-Sq6GN5d7ZAWf2Cq0fdIE66kDgC3P2aFxy08px-zA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+oxygen+group+elements+on+thermodynamic+stability%2C+electronic+structures+and+optical+properties+of+the+pure+and+pressed+BaTiO3+perovskite&rft.jtitle=Computational+Condensed+Matter&rft.au=Dahbi%2C+S.&rft.au=Tahiri%2C+N.&rft.au=El+Bounagui%2C+O.&rft.au=Ez-Zahraouy%2C+H.&rft.date=2022-09-01&rft.pub=Elsevier+B.V&rft.issn=2352-2143&rft.eissn=2352-2143&rft.volume=32&rft_id=info:doi/10.1016%2Fj.cocom.2022.e00728&rft.externalDocID=S235221432200079X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-2143&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-2143&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-2143&client=summon |