Effects of oxygen group elements on thermodynamic stability, electronic structures and optical properties of the pure and pressed BaTiO3 perovskite

Thermodynamic stability, electronic structures, and optical properties of the pure and pressed BaTiO3 doped with different concentrations of oxygen group elements (Se, Te, and S) are investigated using the Density Functional Theory. It was found that when chalcogens elements in BaTiO3 compound subst...

Full description

Saved in:
Bibliographic Details
Published inComputational Condensed Matter Vol. 32; p. e00728
Main Authors Dahbi, S., Tahiri, N., El Bounagui, O., Ez-Zahraouy, H.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thermodynamic stability, electronic structures, and optical properties of the pure and pressed BaTiO3 doped with different concentrations of oxygen group elements (Se, Te, and S) are investigated using the Density Functional Theory. It was found that when chalcogens elements in BaTiO3 compound substitute oxygen atoms, the forbidden gap is significantly decreased from 3.010 eV (for pressed BaTiO3) to 0.000 eV (for Te-doped BaTiO3 and pressed Se/Te-doped BaTiO3) indicating that chalcogens impurities have a crucial role in the reduction of the forbidden band of BaTiO3 compound. Moreover, 2.3% of compressive strain itself with and without the presence of chalcogens impurities transforms the pure BaTiO3 from indirect to direct semiconductor. Furthermore, the calculated formation energy confirms the thermodynamic stability of all studied compounds. Additionally, the doping changed the absorption behavior of BaTiO3 making the compound more useful for optoelectronic applications due to the introduction of addition carries into the system after the inclusion of chalcogens impurities.
AbstractList Thermodynamic stability, electronic structures, and optical properties of the pure and pressed BaTiO3 doped with different concentrations of oxygen group elements (Se, Te, and S) are investigated using the Density Functional Theory. It was found that when chalcogens elements in BaTiO3 compound substitute oxygen atoms, the forbidden gap is significantly decreased from 3.010 eV (for pressed BaTiO3) to 0.000 eV (for Te-doped BaTiO3 and pressed Se/Te-doped BaTiO3) indicating that chalcogens impurities have a crucial role in the reduction of the forbidden band of BaTiO3 compound. Moreover, 2.3% of compressive strain itself with and without the presence of chalcogens impurities transforms the pure BaTiO3 from indirect to direct semiconductor. Furthermore, the calculated formation energy confirms the thermodynamic stability of all studied compounds. Additionally, the doping changed the absorption behavior of BaTiO3 making the compound more useful for optoelectronic applications due to the introduction of addition carries into the system after the inclusion of chalcogens impurities.
ArticleNumber e00728
Author Tahiri, N.
Ez-Zahraouy, H.
El Bounagui, O.
Dahbi, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Dahbi
  fullname: Dahbi, S.
– sequence: 2
  givenname: N.
  orcidid: 0000-0001-6204-1359
  surname: Tahiri
  fullname: Tahiri, N.
  email: tahiri.najim@gmail.com
– sequence: 3
  givenname: O.
  surname: El Bounagui
  fullname: El Bounagui, O.
– sequence: 4
  givenname: H.
  surname: Ez-Zahraouy
  fullname: Ez-Zahraouy, H.
BookMark eNqFkMtOQjEQhhujiYg8gZs-gGAv57pwocRbQsIG103pmWLxnPakLUSewxe2gAvjQlczmfm-afpfoFPrLCB0RcmEElrcrCfKKddNGGFsAoSUrDpBA8ZzNmY046c_-nM0CmFNCGFFmYbFAH0-aA0qBuw0dh-7FVi88m7TY2ihA7tfWBzfwHeu2VnZGYVDlEvTmri73kMqemcPU79RceMhYGkb7PpolGxx710PPho4vJAO4T4xB6RPbIAG38uFmXOcMLcN7ybCJTrTsg0w-q5D9Pr4sJg-j2fzp5fp3WysGK3iuGZME9KUuc40ZSpfZlKSZkmrMuda10vGC1LmFW9qJWsoecYKWUpdZRQKSD0fIn68q7wLwYMWvTed9DtBidhHK9biEK3YRyuO0Sar_mUpE2U0zkYvTfuPe3t0IX1ra8CLoAxYBY3xKUnROPOn_wWwa5w3
CitedBy_id crossref_primary_10_1016_j_inoche_2024_113260
crossref_primary_10_1016_j_jpcs_2024_112173
crossref_primary_10_1016_j_micrna_2024_207911
crossref_primary_10_1016_j_comptc_2024_114916
crossref_primary_10_1016_j_matchemphys_2025_130607
crossref_primary_10_1016_j_rinp_2025_108177
crossref_primary_10_1038_s41598_023_31652_2
crossref_primary_10_1142_S0217984923502378
crossref_primary_10_1016_j_micrna_2024_207818
crossref_primary_10_1016_j_mtcomm_2025_111490
crossref_primary_10_1016_j_cocom_2024_e00879
crossref_primary_10_1016_j_optlastec_2024_112023
crossref_primary_10_1021_acs_energyfuels_3c01272
crossref_primary_10_1007_s43207_023_00297_2
crossref_primary_10_1016_j_jpcs_2025_112656
crossref_primary_10_1016_j_commatsci_2024_113335
crossref_primary_10_15251_DJNB_2024_192_679
crossref_primary_10_1016_j_ceramint_2025_02_243
crossref_primary_10_1007_s11082_023_06114_8
crossref_primary_10_1016_j_commatsci_2025_113814
crossref_primary_10_1007_s11082_024_07414_3
crossref_primary_10_1016_j_cocom_2023_e00846
crossref_primary_10_1007_s11082_024_06343_5
crossref_primary_10_1016_j_chemphys_2025_112706
crossref_primary_10_1016_j_jpcs_2024_112229
crossref_primary_10_1016_j_physb_2023_415548
crossref_primary_10_1016_j_solener_2023_05_014
Cites_doi 10.1038/nature12622
10.1103/PhysRevLett.83.2628
10.1016/j.chemphys.2021.111105
10.1021/am405293e
10.1016/j.ceramint.2018.12.113
10.1007/s43207-022-00212-1
10.1016/j.spmi.2021.107058
10.1016/j.optmat.2020.110442
10.1016/S0272-8842(03)00066-X
10.1103/PhysRevB.49.5828
10.1103/PhysRevB.62.8828
10.1063/1.1616631
10.1007/s11664-016-4563-9
10.1016/j.jeurceramsoc.2017.10.014
10.1103/PhysRevLett.51.1888
10.1063/1.5047094
10.1016/j.mssp.2022.106959
10.1103/PhysRevB.72.144101
10.1021/jp202863a
10.1016/j.mssp.2021.106271
10.1103/PhysRevB.73.045112
10.1038/nphoton.2014.255
10.1103/PhysRevLett.102.226401
10.1016/0165-1633(79)90042-X
10.3390/sym13101920
10.1016/j.matchemphys.2008.01.020
10.1007/BF01321179
10.1016/j.apsusc.2018.06.122
10.3390/cryst11040455
10.1016/j.saa.2018.09.048
10.1002/er.7631
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cocom.2022.e00728
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2352-2143
ExternalDocumentID 10_1016_j_cocom_2022_e00728
S235221432200079X
GroupedDBID --M
0R~
0SF
4.4
457
6I.
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABNEU
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEXQZ
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AXJTR
BKOJK
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
HZ~
IXB
KOM
KQ8
M41
NCXOZ
O9-
OK1
ROL
SPC
SPCBC
SSM
SSQ
SSZ
T5K
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c218t-922f00d75f4f12c5b4aa0db18753ff9b23607583d9ca9e73426a7af841e6e26a3
IEDL.DBID AIKHN
ISSN 2352-2143
IngestDate Tue Jul 01 02:47:44 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Fri Feb 23 02:39:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Solar cells
Ab initio calculation
Absorption coefficient
Strain effect
Oxygen group elements
BaTiO3compound
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c218t-922f00d75f4f12c5b4aa0db18753ff9b23607583d9ca9e73426a7af841e6e26a3
ORCID 0000-0001-6204-1359
ParticipantIDs crossref_primary_10_1016_j_cocom_2022_e00728
crossref_citationtrail_10_1016_j_cocom_2022_e00728
elsevier_sciencedirect_doi_10_1016_j_cocom_2022_e00728
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Computational Condensed Matter
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dahbi, Tahiri, El Bounagui, Ez-Zahraouy (bib11) 2021; 544
Wang, Meng, Ma, Xu, Chen (bib20) 2010; 108
Huang, Yang, Wang (bib23) 2019; 208
Maeda (bib12) 2014; 6
Maldonado, Rivera, Villamagua, Maldonado (bib4) 2018; 456
Teng, Jiang, Chen, Ma, Zhang (bib30) 2018; 8
Blaha, Schwarz, Madsen, Kvasnicka, Luitz (bib13) 2001
Upadhyay, Shrivastava, Solanki, Choudhary, Sharma, Kumar, Singh, Satsangi, Shrivastav, Waghmare (bib9) 2011; 115
Xiao, Jin, Wang (bib3) 2008; 111
Dahbi, Tahiri, El Bounagui, Ez-Zahraouy (bib25) 2021; 160
Tran, Blaha (bib18) 2009; 102
Cai, Yin, Zhang (bib31) 2003; 83
Iqbal (bib19) 2016; 45
Ma, Chen, Pan, Chen, Ma, Lin, Fu, Ma (bib8) 2019; 45
Dahbi, Tahiri, El Bounagui, Ez-Zahraouy (bib21) 2022; 138
Eglitis, Purans, Jia (bib15) 2021; 11
Dahbi, Tahiri, El Bounagui, Ez-Zahraouy (bib22) 2022; 46
Luo, Wang, Tian, Song, Zhao, Cai, Feng, Li (bib10) 2018; 38
Diéguez, Rabe, Vanderbilt (bib2) 2005; 72
King-Smith, Vanderbilt (bib1) 1994; 49
Bauerle, Braun, Saile, Sprussel, Koch (bib29) 1978; 29
Sham, Schlüter (bib14) 1983; 51
Grinberg, West, Torres, Gou, Stein, Wu, Chen (bib5) 2013; 503
Nechache, Harnagea, Li, Cardenas, Huang, Chakrabartty, Rosei (bib7) 2015; 9
Eglitis, Purans, Popov, Jia (bib16) 2021; 13
Dahbi, Tahiri, El Bounagui, Ez-Zahraouy (bib24) 2020; 109
Gajdoš, Hummer, Kresse, Furthmüller, Bechstedt (bib28) 2006; 73
Mouhib, Dahbi, Tahiri, El Bounagui, Ez-Zahraouy (bib26) 2022; 63
Salehi, Hosseini, Shahtahmasebi (bib6) 2004; 30
Kurth, Marques, Lüders, Gross (bib17) 1999; 83
Saha, Sinha, Mookerjee (bib32) 2000; 62
Dahbi, Tahiri, El Bounagui, Ez-Zahraouy (bib33) 2022; 150
Maruska, Ghosh (bib34) 1979; 1
Akenoun, Dahbi, lTahiri, E Bounagui, Ez-Zahraouy, Benyoussef (bib27) 2022
Dahbi (10.1016/j.cocom.2022.e00728_bib11) 2021; 544
Maldonado (10.1016/j.cocom.2022.e00728_bib4) 2018; 456
Maeda (10.1016/j.cocom.2022.e00728_bib12) 2014; 6
Bauerle (10.1016/j.cocom.2022.e00728_bib29) 1978; 29
Huang (10.1016/j.cocom.2022.e00728_bib23) 2019; 208
Saha (10.1016/j.cocom.2022.e00728_bib32) 2000; 62
Gajdoš (10.1016/j.cocom.2022.e00728_bib28) 2006; 73
Eglitis (10.1016/j.cocom.2022.e00728_bib16) 2021; 13
Maruska (10.1016/j.cocom.2022.e00728_bib34) 1979; 1
Dahbi (10.1016/j.cocom.2022.e00728_bib21) 2022; 138
Xiao (10.1016/j.cocom.2022.e00728_bib3) 2008; 111
Luo (10.1016/j.cocom.2022.e00728_bib10) 2018; 38
King-Smith (10.1016/j.cocom.2022.e00728_bib1) 1994; 49
Tran (10.1016/j.cocom.2022.e00728_bib18) 2009; 102
Salehi (10.1016/j.cocom.2022.e00728_bib6) 2004; 30
Grinberg (10.1016/j.cocom.2022.e00728_bib5) 2013; 503
Teng (10.1016/j.cocom.2022.e00728_bib30) 2018; 8
Blaha (10.1016/j.cocom.2022.e00728_bib13) 2001
Dahbi (10.1016/j.cocom.2022.e00728_bib24) 2020; 109
Upadhyay (10.1016/j.cocom.2022.e00728_bib9) 2011; 115
Eglitis (10.1016/j.cocom.2022.e00728_bib15) 2021; 11
Kurth (10.1016/j.cocom.2022.e00728_bib17) 1999; 83
Dahbi (10.1016/j.cocom.2022.e00728_bib22) 2022; 46
Dahbi (10.1016/j.cocom.2022.e00728_bib33) 2022; 150
Cai (10.1016/j.cocom.2022.e00728_bib31) 2003; 83
Diéguez (10.1016/j.cocom.2022.e00728_bib2) 2005; 72
Akenoun (10.1016/j.cocom.2022.e00728_bib27) 2022
Nechache (10.1016/j.cocom.2022.e00728_bib7) 2015; 9
Dahbi (10.1016/j.cocom.2022.e00728_bib25) 2021; 160
Ma (10.1016/j.cocom.2022.e00728_bib8) 2019; 45
Sham (10.1016/j.cocom.2022.e00728_bib14) 1983; 51
Iqbal (10.1016/j.cocom.2022.e00728_bib19) 2016; 45
Wang (10.1016/j.cocom.2022.e00728_bib20) 2010; 108
Mouhib (10.1016/j.cocom.2022.e00728_bib26) 2022; 63
References_xml – volume: 73
  year: 2006
  ident: bib28
  article-title: Linear optical properties in the projector-augmented wave methodology
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 61
  year: 2015
  ident: bib7
  article-title: Bandgap tuning of multiferroic oxide solar cells
  publication-title: Nat. Photonics
– volume: 208
  start-page: 65
  year: 2019
  ident: bib23
  article-title: Xiao-Guang Ma, Chalcogens doped BaTiO3 for visible light photocatalytic hydrogen production from water splitting, Spectrochim
  publication-title: Acta A Mol. Biomol. Spectrosc.
– volume: 11
  start-page: 455
  year: 2021
  ident: bib15
  article-title: Comparative hybrid Hartree-Fock-DFT calculations of WO2-terminated cubic WO3 as well as SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001) surfaces
  publication-title: Crystals
– volume: 62
  start-page: 8828
  year: 2000
  ident: bib32
  article-title: Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3
  publication-title: Phys. Rev. B
– year: 2022
  ident: bib27
  article-title: The effect of chalcogens-doped with dilation strain on the electronic, optic, and thermoelectric properties of BaSnO3 perovskitecompound
  publication-title: J. Korean Ceram. Soc.
– volume: 13
  start-page: 1920
  year: 2021
  ident: bib16
  article-title: Tendencies in ABO3 perovskite and SrF2, BaF2 and CaF2 bulk and surface F-center ab initio computations in high symmetry cubic structure
  publication-title: Symmetry
– volume: 29
  start-page: 179
  year: 1978
  ident: bib29
  article-title: Vacuum ultraviolet reflectivity and band structure of SrTiO3 and BaTiO3
  publication-title: Z. Phys. B
– volume: 503
  start-page: 509
  year: 2013
  ident: bib5
  article-title: Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials
  publication-title: Nature
– volume: 45
  start-page: 6303
  year: 2019
  ident: bib8
  article-title: Electronic structures and optical properties of Fe/Co–doped cubic BaTiO3 ceramics
  publication-title: Ceram. Int.
– volume: 108
  year: 2010
  ident: bib20
  article-title: Lattice, elastic, polarization, and electrostrictive properties of BaTiO3 from first-principles
  publication-title: J. Appl. Phys.
– volume: 138
  year: 2022
  ident: bib21
  article-title: Chalcogens' impuritiesand a single F-center in SHO: ab initio calculations
  publication-title: Mater. Sci. Semicond. Process.
– volume: 102
  year: 2009
  ident: bib18
  article-title: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential
  publication-title: Phys. Rev. Lett.
– volume: 83
  start-page: 2628
  year: 1999
  ident: bib17
  article-title: «Local density approximation for superconductors» hys
  publication-title: Rev. Let.
– volume: 49
  start-page: 5828
  year: 1994
  ident: bib1
  article-title: First-principles investigation of ferroelectricity in perovskite compounds
  publication-title: Phys. Rev. B
– volume: 83
  start-page: 2805
  year: 2003
  end-page: 2807
  ident: bib31
  article-title: First-principles study of optical properties of barium titanate
  publication-title: Appl. Phys. Lett.
– volume: 115
  year: 2011
  ident: bib9
  article-title: Enhanced photoelectrochemical response of BaTiO
  publication-title: J. Phys. Chem. C
– volume: 109
  year: 2020
  ident: bib24
  article-title: The new eco-friendly lead-free zirconate perovskites doped with chalcogens for solar cells: ab initio calculations
  publication-title: Opt. Mater.
– volume: 160
  year: 2021
  ident: bib25
  article-title: Calcium hafnate perovskite from an insulator to a semiconductor for photovoltaic and photocatalytic hydrogen production from water splitting applications
  publication-title: Superlattice. Microst.
– volume: 46
  start-page: 8433
  year: 2022
  ident: bib22
  article-title: Importance of spin-orbit coupling on photovoltaic properties of Pb-free vacancy ordered double perovskites halides X2TeY6 (X = Cs, Rb and Y = I, Br, Cl): first-principles calculations
  publication-title: Int. J. Energy Res.
– year: 2001
  ident: bib13
  publication-title: WIEN2k, an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties
– volume: 30
  start-page: 81
  year: 2004
  ident: bib6
  article-title: The effects of Ni on structural and electronic properties of BaTiO3 ceramic
  publication-title: Ceram. Int.
– volume: 150
  year: 2022
  ident: bib33
  article-title: Earth-abundant nontoxic ternary calcium nitrides inverse perovskites for single-junction solar cells: ab-initio simulations
  publication-title: Mater. Sci. Semicond. Process.
– volume: 456
  start-page: 276
  year: 2018
  ident: bib4
  article-title: DFT modelling of ethanol on BaTiO 3 (0 0 1) surface
  publication-title: Appl. Surf. Sci.
– volume: 45
  start-page: 4188
  year: 2016
  ident: bib19
  article-title: Electronic and optical properties of Ca3MN (M = Ge, Sn,Pb, P, as, Sb and Bi) antiperovskite compounds
  publication-title: J. Electron. Mater.
– volume: 72
  year: 2005
  ident: bib2
  article-title: First-principles study of epitaxial strain in perovskites
  publication-title: Phys. Rev. B
– volume: 51
  start-page: 1888
  year: 1983
  ident: bib14
  article-title: Density-functional theory of the energy gap
  publication-title: Phys. Rev. Lett.
– volume: 8
  year: 2018
  ident: bib30
  article-title: The electronic structures and optical properties of B, C or N doped BaTiO3
  publication-title: AIP Adv.
– volume: 38
  start-page: 1562
  year: 2018
  ident: bib10
  article-title: Giant permittivity and low dielectric loss of Fe doped BaTiO3 ceramics: experimental and first-principles calculations
  publication-title: J. Eur. Ceram. Soc.
– volume: 63
  year: 2022
  ident: bib26
  article-title: Theoretical investigations of electronic structure and optical properties of S, Se or Te doped perovskite ATiO3 (A=Ca, Ba and Sr) materials for eco-friendly solar cells
  publication-title: Micro Nanostruct.
– volume: 111
  start-page: 209
  year: 2008
  ident: bib3
  article-title: Crystal structure of dense nano-crystalline BaTiO3 ceramics
  publication-title: Mater. Chem. Phys.
– volume: 544
  year: 2021
  ident: bib11
  article-title: Electronic, optical, and thermoelectric properties of perovskites BaTiO
  publication-title: Chem. Phys.
– volume: 1
  start-page: 237
  year: 1979
  ident: bib34
  article-title: Transition-metal dopants for extending the response of titanate photoelectrolysis anodes
  publication-title: Sol. Energy Mater.
– volume: 6
  start-page: 2167
  year: 2014
  ident: bib12
  article-title: Rhodium-doped barium titanate perovskite as a stable p-type semiconductor photocatalyst for hydrogen evolution under visible light
  publication-title: ACS Appl. Mater. Interfaces
– volume: 503
  start-page: 509
  year: 2013
  ident: 10.1016/j.cocom.2022.e00728_bib5
  article-title: Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials
  publication-title: Nature
  doi: 10.1038/nature12622
– volume: 83
  start-page: 2628
  year: 1999
  ident: 10.1016/j.cocom.2022.e00728_bib17
  article-title: «Local density approximation for superconductors» hys
  publication-title: Rev. Let.
  doi: 10.1103/PhysRevLett.83.2628
– volume: 544
  year: 2021
  ident: 10.1016/j.cocom.2022.e00728_bib11
  article-title: Electronic, optical, and thermoelectric properties of perovskites BaTiO3 compound under the effect of compressive strain
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2021.111105
– volume: 6
  start-page: 2167
  year: 2014
  ident: 10.1016/j.cocom.2022.e00728_bib12
  article-title: Rhodium-doped barium titanate perovskite as a stable p-type semiconductor photocatalyst for hydrogen evolution under visible light
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am405293e
– volume: 45
  start-page: 6303
  year: 2019
  ident: 10.1016/j.cocom.2022.e00728_bib8
  article-title: Electronic structures and optical properties of Fe/Co–doped cubic BaTiO3 ceramics
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.12.113
– year: 2022
  ident: 10.1016/j.cocom.2022.e00728_bib27
  article-title: The effect of chalcogens-doped with dilation strain on the electronic, optic, and thermoelectric properties of BaSnO3 perovskitecompound
  publication-title: J. Korean Ceram. Soc.
  doi: 10.1007/s43207-022-00212-1
– volume: 160
  year: 2021
  ident: 10.1016/j.cocom.2022.e00728_bib25
  article-title: Calcium hafnate perovskite from an insulator to a semiconductor for photovoltaic and photocatalytic hydrogen production from water splitting applications
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2021.107058
– volume: 109
  year: 2020
  ident: 10.1016/j.cocom.2022.e00728_bib24
  article-title: The new eco-friendly lead-free zirconate perovskites doped with chalcogens for solar cells: ab initio calculations
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.110442
– volume: 30
  start-page: 81
  year: 2004
  ident: 10.1016/j.cocom.2022.e00728_bib6
  article-title: The effects of Ni on structural and electronic properties of BaTiO3 ceramic
  publication-title: Ceram. Int.
  doi: 10.1016/S0272-8842(03)00066-X
– volume: 63
  year: 2022
  ident: 10.1016/j.cocom.2022.e00728_bib26
  article-title: Theoretical investigations of electronic structure and optical properties of S, Se or Te doped perovskite ATiO3 (A=Ca, Ba and Sr) materials for eco-friendly solar cells
  publication-title: Micro Nanostruct.
– volume: 49
  start-page: 5828
  year: 1994
  ident: 10.1016/j.cocom.2022.e00728_bib1
  article-title: First-principles investigation of ferroelectricity in perovskite compounds
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.5828
– volume: 62
  start-page: 8828
  year: 2000
  ident: 10.1016/j.cocom.2022.e00728_bib32
  article-title: Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.8828
– volume: 83
  start-page: 2805
  year: 2003
  ident: 10.1016/j.cocom.2022.e00728_bib31
  article-title: First-principles study of optical properties of barium titanate
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1616631
– volume: 45
  start-page: 4188
  year: 2016
  ident: 10.1016/j.cocom.2022.e00728_bib19
  article-title: Electronic and optical properties of Ca3MN (M = Ge, Sn,Pb, P, as, Sb and Bi) antiperovskite compounds
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-016-4563-9
– volume: 38
  start-page: 1562
  year: 2018
  ident: 10.1016/j.cocom.2022.e00728_bib10
  article-title: Giant permittivity and low dielectric loss of Fe doped BaTiO3 ceramics: experimental and first-principles calculations
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2017.10.014
– volume: 51
  start-page: 1888
  year: 1983
  ident: 10.1016/j.cocom.2022.e00728_bib14
  article-title: Density-functional theory of the energy gap
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.51.1888
– volume: 8
  year: 2018
  ident: 10.1016/j.cocom.2022.e00728_bib30
  article-title: The electronic structures and optical properties of B, C or N doped BaTiO3
  publication-title: AIP Adv.
  doi: 10.1063/1.5047094
– volume: 150
  year: 2022
  ident: 10.1016/j.cocom.2022.e00728_bib33
  article-title: Earth-abundant nontoxic ternary calcium nitrides inverse perovskites for single-junction solar cells: ab-initio simulations
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2022.106959
– volume: 72
  year: 2005
  ident: 10.1016/j.cocom.2022.e00728_bib2
  article-title: First-principles study of epitaxial strain in perovskites
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.144101
– volume: 108
  year: 2010
  ident: 10.1016/j.cocom.2022.e00728_bib20
  article-title: Lattice, elastic, polarization, and electrostrictive properties of BaTiO3 from first-principles
  publication-title: J. Appl. Phys.
– volume: 115
  year: 2011
  ident: 10.1016/j.cocom.2022.e00728_bib9
  article-title: Enhanced photoelectrochemical response of BaTiO3 with Fe doping: experiments and first-principles analysis
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp202863a
– volume: 138
  year: 2022
  ident: 10.1016/j.cocom.2022.e00728_bib21
  article-title: Chalcogens' impuritiesand a single F-center in SHO: ab initio calculations
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2021.106271
– year: 2001
  ident: 10.1016/j.cocom.2022.e00728_bib13
– volume: 73
  year: 2006
  ident: 10.1016/j.cocom.2022.e00728_bib28
  article-title: Linear optical properties in the projector-augmented wave methodology
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.045112
– volume: 9
  start-page: 61
  year: 2015
  ident: 10.1016/j.cocom.2022.e00728_bib7
  article-title: Bandgap tuning of multiferroic oxide solar cells
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.255
– volume: 102
  year: 2009
  ident: 10.1016/j.cocom.2022.e00728_bib18
  article-title: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.226401
– volume: 1
  start-page: 237
  year: 1979
  ident: 10.1016/j.cocom.2022.e00728_bib34
  article-title: Transition-metal dopants for extending the response of titanate photoelectrolysis anodes
  publication-title: Sol. Energy Mater.
  doi: 10.1016/0165-1633(79)90042-X
– volume: 13
  start-page: 1920
  year: 2021
  ident: 10.1016/j.cocom.2022.e00728_bib16
  article-title: Tendencies in ABO3 perovskite and SrF2, BaF2 and CaF2 bulk and surface F-center ab initio computations in high symmetry cubic structure
  publication-title: Symmetry
  doi: 10.3390/sym13101920
– volume: 111
  start-page: 209
  year: 2008
  ident: 10.1016/j.cocom.2022.e00728_bib3
  article-title: Crystal structure of dense nano-crystalline BaTiO3 ceramics
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2008.01.020
– volume: 29
  start-page: 179
  year: 1978
  ident: 10.1016/j.cocom.2022.e00728_bib29
  article-title: Vacuum ultraviolet reflectivity and band structure of SrTiO3 and BaTiO3
  publication-title: Z. Phys. B
  doi: 10.1007/BF01321179
– volume: 456
  start-page: 276
  year: 2018
  ident: 10.1016/j.cocom.2022.e00728_bib4
  article-title: DFT modelling of ethanol on BaTiO 3 (0 0 1) surface
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.06.122
– volume: 11
  start-page: 455
  year: 2021
  ident: 10.1016/j.cocom.2022.e00728_bib15
  article-title: Comparative hybrid Hartree-Fock-DFT calculations of WO2-terminated cubic WO3 as well as SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001) surfaces
  publication-title: Crystals
  doi: 10.3390/cryst11040455
– volume: 208
  start-page: 65
  year: 2019
  ident: 10.1016/j.cocom.2022.e00728_bib23
  article-title: Xiao-Guang Ma, Chalcogens doped BaTiO3 for visible light photocatalytic hydrogen production from water splitting, Spectrochim
  publication-title: Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2018.09.048
– volume: 46
  start-page: 8433
  year: 2022
  ident: 10.1016/j.cocom.2022.e00728_bib22
  article-title: Importance of spin-orbit coupling on photovoltaic properties of Pb-free vacancy ordered double perovskites halides X2TeY6 (X = Cs, Rb and Y = I, Br, Cl): first-principles calculations
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.7631
SSID ssj0002672356
Score 2.4023767
Snippet Thermodynamic stability, electronic structures, and optical properties of the pure and pressed BaTiO3 doped with different concentrations of oxygen group...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage e00728
SubjectTerms Ab initio calculation
Absorption coefficient
BaTiO3compound
Oxygen group elements
Solar cells
Strain effect
Title Effects of oxygen group elements on thermodynamic stability, electronic structures and optical properties of the pure and pressed BaTiO3 perovskite
URI https://dx.doi.org/10.1016/j.cocom.2022.e00728
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5si-BFfGJ9sQePxqabZJMcW1GqRQUf2FtI9gEVTYKtYn-Hf9iZ3aQqSA-e8ppJws4w8-0wD0KOukwDzpXCAd3NHF97rpMCrHXAc3MZ61AoF4uTr6754MG_HAWjJXJa18JgWmVl-61NN9a6utOpVrNTjsedO4bYAdw9w2qTMB41SIt5MQfVbvUuhoPreaiF8RBo7Zi5gDnIU_cfMpleYHkKLEpn7ERhJ-3obx_1w--cr5HVCjDSnv2ndbKk8g2ybBI3xWSTfNr2wxNaaFp8zEAdqCnUoMrmhcODnCLIeymkHT5PAQ-ajNjZMf0egkNtI9k32H3TNJe0KE2Qm5YYrH_Frqv4BXgRLYHGkJgUWiVpP70f33gUO46_TzAYvEUezs_uTwdONWjBEeDhp07MmHZdGQba110mgsxPU1dmXdzLaB1nIDdAFpEnY5HGKvTAq6dhqiO_q7iCc2-bNPMiVzuEsjDKACJFTGnpax1kXMeeL2CXKrjmod8mrF7aRFRdyHEYxnNSp5s9JUYeCcojsfJok-M5U2mbcCwm57XMkl-6lICbWMS4-1_GPbKCVzb3bJ80QWLqAMDKNDuslBGPw9vH4SFpXIz6X4-S7Zg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qRfQiPrE-9-CxsenmscnRFqX1ebCF3kKyD6hoEqyK_g7_sDO7iQ-QHryFZCYJO8POt8PMN4Qcd5kGnCuFA76bOb72XCcFWOtA5A5lrLlQLjYnX9-Eg7F_MQkmDdKve2GwrLLa--2ebnbr6k6nWs1OOZ127hhiBwj3DLtNeDxZIIuABjjObxhOel-JFhZykLRD5gLmoEbNPmTqvGDfKbAlnbEThTza0d8R6kfUOV8jqxVcpKf2j9ZJQ-UbZMmUbYrZJvmw5MMzWmhavL2DM1DTpkGVrQqHBzlFiPdYSDt6ngIaNPWw7236PQKHWhrZFzh70zSXtChNipuWmKp_Qs5V_AK8iJYgY0RMAa2StJeOprceRb7x1xmmgrfI-Pxs1B841ZgFR0B8f3ZixrTrSh5oX3eZCDI_TV2ZdfEko3WcgdUAV0SejEUaK-5BTE95qiO_q0IF1942aeZFrnYIZTzKACBFTGnpax1koY49X8AZVYQ65H6LsHppE1FxkOMojIekLja7T4w9ErRHYu3RIu0vpdJScMwXD2ubJb88KYEgMU9x97-KR2R5MLq-Sq6GN5d7ZAWf2Cq0fdIE66kDgC3P2aFxy08px-zA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+oxygen+group+elements+on+thermodynamic+stability%2C+electronic+structures+and+optical+properties+of+the+pure+and+pressed+BaTiO3+perovskite&rft.jtitle=Computational+Condensed+Matter&rft.au=Dahbi%2C+S.&rft.au=Tahiri%2C+N.&rft.au=El+Bounagui%2C+O.&rft.au=Ez-Zahraouy%2C+H.&rft.date=2022-09-01&rft.pub=Elsevier+B.V&rft.issn=2352-2143&rft.eissn=2352-2143&rft.volume=32&rft_id=info:doi/10.1016%2Fj.cocom.2022.e00728&rft.externalDocID=S235221432200079X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-2143&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-2143&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-2143&client=summon