Exploring the potential of natural materials as eco-friendly sound absorbers

In recent years, the use of natural materials in acoustic applications has drawn a lot of interest as a viable and eco-friendly substitute for synthetic materials. This study examines the potential for sound absorption by natural materials and assesses how well they perform acoustically. The followi...

Full description

Saved in:
Bibliographic Details
Published inMaterials today : proceedings
Main Authors Salunkhe, Smita, Patil, Chetan, Thakar, Chetan M.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, the use of natural materials in acoustic applications has drawn a lot of interest as a viable and eco-friendly substitute for synthetic materials. This study examines the potential for sound absorption by natural materials and assesses how well they perform acoustically. The following factors are taken into account when assessing a material's acoustic performance: fibre size, thickness, density, porosity, pore tortuosity, and flow resistance. In-depth discussion is also given on the physics of sound wave interaction and the methods used to calculate the sound absorption coefficient. Kenaf, coconut fibre, jute felt, rice straw, tea leaf fibre, sugarcane bagasse, date palm fibre, and wool are among the sustainable resources that are the subject of the study. For kenaf, in particular, the effect of bulk density and thickness on sound absorption is examined. The study's findings demonstrate the potential of natural materials to offer reliable sound absorption options while fostering sustainability. Because they are renewable, biodegradable, and have a smaller environmental impact than synthetic materials, natural materials can be used in acoustic applications. Natural materials also have special acoustic characteristics that can be enhanced with the right preparation and handling. This study shows the potential of natural materials in offering sustainable acoustic solutions and offers useful insights for architects, engineers, and researchers working in the field of acoustic design. The results of this study can aid in the creation of new and enhanced acoustic materials, hence fostering sustainability and minimising the negative environmental effects of the built environment.
AbstractList In recent years, the use of natural materials in acoustic applications has drawn a lot of interest as a viable and eco-friendly substitute for synthetic materials. This study examines the potential for sound absorption by natural materials and assesses how well they perform acoustically. The following factors are taken into account when assessing a material's acoustic performance: fibre size, thickness, density, porosity, pore tortuosity, and flow resistance. In-depth discussion is also given on the physics of sound wave interaction and the methods used to calculate the sound absorption coefficient. Kenaf, coconut fibre, jute felt, rice straw, tea leaf fibre, sugarcane bagasse, date palm fibre, and wool are among the sustainable resources that are the subject of the study. For kenaf, in particular, the effect of bulk density and thickness on sound absorption is examined. The study's findings demonstrate the potential of natural materials to offer reliable sound absorption options while fostering sustainability. Because they are renewable, biodegradable, and have a smaller environmental impact than synthetic materials, natural materials can be used in acoustic applications. Natural materials also have special acoustic characteristics that can be enhanced with the right preparation and handling. This study shows the potential of natural materials in offering sustainable acoustic solutions and offers useful insights for architects, engineers, and researchers working in the field of acoustic design. The results of this study can aid in the creation of new and enhanced acoustic materials, hence fostering sustainability and minimising the negative environmental effects of the built environment.
Author Patil, Chetan
Salunkhe, Smita
Thakar, Chetan M.
Author_xml – sequence: 1
  givenname: Smita
  surname: Salunkhe
  fullname: Salunkhe, Smita
  email: smitasalunkhe7199@gmail.com
  organization: MIT World Peace University, Pune, India
– sequence: 2
  givenname: Chetan
  surname: Patil
  fullname: Patil, Chetan
  email: chetan.patil@mitwpu.edu.in
  organization: MIT World Peace University, Pune, India
– sequence: 3
  givenname: Chetan M.
  orcidid: 0000-0002-3720-1143
  surname: Thakar
  fullname: Thakar, Chetan M.
  email: cthakar12@gmail.com
  organization: Savitribai Phule University, Pune, India
BookMark eNqFkM1KAzEUhYNUsNY-gZu8wIz5aTozCxdS6g8U3Og6ZJIbTZkmQxLFvr2pdSEuFA7cw-V-B-45RxMfPCB0SUlNCV1ebeudymOsGWG8JkVde4KmjNFF1bSCT374MzRPaUsIoWJJWrqcos36YxxCdP4F51fAY8jgs1MDDhZ7ld9isSUeYtklrBIGHSobHXgz7HEKb95g1acQe4jpAp3acgbz7zlDz7frp9V9tXm8e1jdbCrNaJur1jLRaa2BNsICMG16a3ijaG-AECGMWKgWRM-4IUJbShrOtbCio7TvKGd8hvgxV8eQUgQrx-h2Ku4lJfLQidzKr07koRNJirq2UN0vSrussgs-R-WGf9jrIwvlrXcHUSZdOtBgXASdpQnuT_4TXPmCLQ
CitedBy_id crossref_primary_10_1080_17480272_2025_2453013
crossref_primary_10_3390_ma17225421
crossref_primary_10_1007_s12221_024_00582_9
crossref_primary_10_1007_s00107_024_02135_6
crossref_primary_10_1007_s12008_024_01864_5
crossref_primary_10_1007_s13762_023_05413_7
Cites_doi 10.1016/j.apacoust.2007.12.005
10.1515/aut-2017-0020
10.2478/rput-2019-0031
10.1088/1757-899X/612/5/052062
10.15376/biores.11.2.4159-4167
10.1016/j.buildenv.2020.107087
10.1088/1742-6596/908/1/012023
10.1260/1351-010X.19.4.283
10.1177/1528083718805714
10.1007/978-3-319-48281-1_137-1
10.1088/1757-899X/226/1/012014
10.3844/ajassp.2013.1307.1314
10.1590/1516-1439.010515
10.15376/biores.10.2.3378-3392
10.1121/2.0000336
10.1115/IMECE2022-96880
10.3844/ajassp.2010.260.264
10.1016/S0960-8524(02)00163-3
10.11113/jt.v78.8280
10.1155/2016/5836107
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.matpr.2023.03.098
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2214-7853
ExternalDocumentID 10_1016_j_matpr_2023_03_098
S2214785323011410
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
HZ~
KOM
M41
NCXOZ
O9-
OAUVE
P-8
P-9
PC.
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c218t-8f259ccce175fee2cdbfd37a1bde0055d54a8e5b23d05cf10733c5f5911b91323
IEDL.DBID .~1
ISSN 2214-7853
IngestDate Tue Jul 01 02:10:52 EDT 2025
Thu Apr 24 23:09:16 EDT 2025
Fri Feb 23 02:36:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sound absorption coefficient
Natural fibres
Natural materials
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c218t-8f259ccce175fee2cdbfd37a1bde0055d54a8e5b23d05cf10733c5f5911b91323
ORCID 0000-0002-3720-1143
ParticipantIDs crossref_primary_10_1016_j_matpr_2023_03_098
crossref_citationtrail_10_1016_j_matpr_2023_03_098
elsevier_sciencedirect_doi_10_1016_j_matpr_2023_03_098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-3-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-3-00
PublicationDecade 2020
PublicationTitle Materials today : proceedings
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References E.M. Samsudina, L.H. Ismail, A. Abdul Kadir, S.S. Sayed Mokdar, Comparison on acoustic performance between dust and coir form empty fruit bunches (EFB) as sound absorption material, 2016.
M.R. Ghotbi Ravandi, N. Khanjani, M. Mohammadian, A review on the acoustical properties of natural and synthetic noise absorbents, 2, 7-8, 2015.
Alshiri, et al., Airflow resistance of acoustical fibrous materials: Measurements, calculations, and applications, 2021.
X. Tang, X. Yan, Airflow resistance of acoustical fibrous materials: Measurements, calculations, and applications, 2018.
E. Labašová, R. Ďuriš, Measurement of the acoustic absorption coefficient by impedance tube, 2019.
R. Kulifli, Noise control using coconut coir fibre sound absorber with porous layer backing and perforated panel. 262-263, 2010.
J.P. Arenas, F. Asdrubali, Eco-Materials with noise reduction properties, 2017.
Ersoy, Kucuk (b0110) 2009; 70
F. Asdrubali, S. Schiavoni, K.V. Horoshenkov, A review of sustainable materials for acoustic applications, 2012.
Mohanty, A. R., & Fatima, S. (n.d.). Noise Control Using Green Materials, 14-15.
Berardi, Iannace, Di Gabriele (b0160) 2016; 28
N.H. Zunaidi et al., Effect of physical properties of natural fibre on the sound absorption coefficient, 2017.
S.T.M. Carvalho, L.M. Mendesa, A.A.S. Cesar, J.B. Flórez, F.A. Mori, Acoustic Characterization of Sugarcane Bagasse Particleboard Panels (Saccharum officinarum L), 2015.
M.J. Saad, I. Kamal, Kenaf core particleboard and its sound absorbing properties, n.d..
E. Taban, P. Soltani, U. Berardi, A. Putra, S.M. Mousavi, M. Faridan, S.E. Samaei, A. Khavanin, Measurement, modeling, and optimization of sound absorption performance of Kenaf fibres for building applications, 2020.
Y. Tao, L. Kai, P. Li, Effect of fibre content on sound absorption, thermal conductivity, and compression strength of straw fibre-filled rigid polyurethane foams, 2016.
Patil, C, Ghorpade, R, Askhedkar, R. Effect of Air Gap, Thickness of Polyurethane (PU) Foam, and Perforated Panel on Sound Absorption Coefficient for Acoustic Structures. Proceedings of the ASME 2022 International Mechanical Engineering Congress and Exposition. Volume 1 : Acoustics, Vibration, and Phononics. Columbus, Ohio, USA. October 30–November 3, 2022. V001T01A031. ASME.
D. Cabrera, Sound absorption coefficient measurement: Re-examining the relationship between impedance tube and reverberant room methods, 2012.
S. Singh, A.R. Mohanty, S.N. Namasivayam, HVAC noise control using natural materials to improve vehicle interior sound quality, 101-109, 2016.
M.A. Mahadzir, H. Bakar, A review on sound absorption properties using natural fibres, 2021.
H. Mamtaz, M.H. Fouladi, M. Al-Atabi, S.N. Namasivayam, Acoustic absorption of natural fibre composites, 1-2, 2016.
R. Urš, E. Labašová, The design of an impedance tube and testing of the sound absorption coefficient of selected materials, 2021.
Kuczmarski, Johnston (b0070) 2011
W. Chan & et al., Review on research process of Sound Reduction Materials, 2019.
H. Qui, Y. Enhui, Effect of thickness, density and cavity depth on the sound absorption properties of wool boards, 206-207, 2018.
P. Shravage, S.K. Jain, N.V. Karanth, S. Raju, Characterization of sound absorbing materials for noise control, 2010.
S.S. Bhattacharya, D.V. Bihola, Design and construction of impedance tube for sound absorption coefficients measurements.
Asdrubali, Schiavoni, Horoshenkov (b0075) 2012; 19
H.-S. Yang, D.-J. Kim, H.-J. Kim, Rice straw–wood particle composite for sound absorbing wooden construction materials, 2002.
Azimi (b0130) 2017
A.E. Tiuc, O. Vasile, A. Didona Uscă, T. Gabor, H. Vermeùan, The analysis of factors that influence the sound absorption coefficient of porous materials, 2014.
M.N. Yahya, D.D.V.S. Chin, A review on the potential of natural fibre for sound absorption application, 2017.
E. Jayamani, S. Hamdan, M.R. Rahman, M.K. Bakri, Study of sound absorption coefficients and characterization of rice straw stem fibres reinforced polypropylene composites, 2015.
Al Rahman (b0015) 2013; 10
S.R. Rozli, N.A. Azmir, The study on acoustic properties of sugarcane bagasse as sound absorber, 2020.
Asdrubali (10.1016/j.matpr.2023.03.098_b0075) 2012; 19
Kuczmarski (10.1016/j.matpr.2023.03.098_b0070) 2011
Ersoy (10.1016/j.matpr.2023.03.098_b0110) 2009; 70
10.1016/j.matpr.2023.03.098_b0090
10.1016/j.matpr.2023.03.098_b0030
10.1016/j.matpr.2023.03.098_b0095
10.1016/j.matpr.2023.03.098_b0150
10.1016/j.matpr.2023.03.098_b0050
10.1016/j.matpr.2023.03.098_b0170
10.1016/j.matpr.2023.03.098_b0155
10.1016/j.matpr.2023.03.098_b0055
10.1016/j.matpr.2023.03.098_b0010
10.1016/j.matpr.2023.03.098_b0175
10.1016/j.matpr.2023.03.098_b0115
10.1016/j.matpr.2023.03.098_b0135
10.1016/j.matpr.2023.03.098_b0035
10.1016/j.matpr.2023.03.098_b0105
Azimi (10.1016/j.matpr.2023.03.098_b0130) 2017
Berardi (10.1016/j.matpr.2023.03.098_b0160) 2016; 28
10.1016/j.matpr.2023.03.098_b0080
10.1016/j.matpr.2023.03.098_b0085
10.1016/j.matpr.2023.03.098_b0140
10.1016/j.matpr.2023.03.098_b0040
Al Rahman (10.1016/j.matpr.2023.03.098_b0015) 2013; 10
10.1016/j.matpr.2023.03.098_b0060
10.1016/j.matpr.2023.03.098_b0045
10.1016/j.matpr.2023.03.098_b0100
10.1016/j.matpr.2023.03.098_b0165
10.1016/j.matpr.2023.03.098_b0065
10.1016/j.matpr.2023.03.098_b0120
10.1016/j.matpr.2023.03.098_b0020
10.1016/j.matpr.2023.03.098_b0005
10.1016/j.matpr.2023.03.098_b0125
10.1016/j.matpr.2023.03.098_b0025
10.1016/j.matpr.2023.03.098_b0145
References_xml – reference: A.E. Tiuc, O. Vasile, A. Didona Uscă, T. Gabor, H. Vermeùan, The analysis of factors that influence the sound absorption coefficient of porous materials, 2014.
– reference: M.R. Ghotbi Ravandi, N. Khanjani, M. Mohammadian, A review on the acoustical properties of natural and synthetic noise absorbents, 2, 7-8, 2015.
– volume: 10
  start-page: 1307
  year: 2013
  end-page: 1314
  ident: b0015
  article-title: Experimental study on natural fibres for green acoustic absorption materials
  publication-title: Am. J. Appl. Sci.
– reference: F. Asdrubali, S. Schiavoni, K.V. Horoshenkov, A review of sustainable materials for acoustic applications, 2012.
– reference: N.H. Zunaidi et al., Effect of physical properties of natural fibre on the sound absorption coefficient, 2017.
– reference: Mohanty, A. R., & Fatima, S. (n.d.). Noise Control Using Green Materials, 14-15.
– reference: E. Taban, P. Soltani, U. Berardi, A. Putra, S.M. Mousavi, M. Faridan, S.E. Samaei, A. Khavanin, Measurement, modeling, and optimization of sound absorption performance of Kenaf fibres for building applications, 2020.
– reference: P. Shravage, S.K. Jain, N.V. Karanth, S. Raju, Characterization of sound absorbing materials for noise control, 2010.
– volume: 70
  start-page: 215
  year: 2009
  end-page: 220
  ident: b0110
  article-title: Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties
  publication-title: Appl. Acoustics
– reference: W. Chan & et al., Review on research process of Sound Reduction Materials, 2019.
– reference: H. Qui, Y. Enhui, Effect of thickness, density and cavity depth on the sound absorption properties of wool boards, 206-207, 2018.
– reference: M.J. Saad, I. Kamal, Kenaf core particleboard and its sound absorbing properties, n.d..
– reference: D. Cabrera, Sound absorption coefficient measurement: Re-examining the relationship between impedance tube and reverberant room methods, 2012.
– reference: J.P. Arenas, F. Asdrubali, Eco-Materials with noise reduction properties, 2017.
– reference: Patil, C, Ghorpade, R, Askhedkar, R. Effect of Air Gap, Thickness of Polyurethane (PU) Foam, and Perforated Panel on Sound Absorption Coefficient for Acoustic Structures. Proceedings of the ASME 2022 International Mechanical Engineering Congress and Exposition. Volume 1 : Acoustics, Vibration, and Phononics. Columbus, Ohio, USA. October 30–November 3, 2022. V001T01A031. ASME.
– year: 2011
  ident: b0070
  article-title: Acoustic Absorption in Porous Materials
– reference: E. Labašová, R. Ďuriš, Measurement of the acoustic absorption coefficient by impedance tube, 2019.
– reference: X. Tang, X. Yan, Airflow resistance of acoustical fibrous materials: Measurements, calculations, and applications, 2018.
– reference: S.R. Rozli, N.A. Azmir, The study on acoustic properties of sugarcane bagasse as sound absorber, 2020.
– reference: M.N. Yahya, D.D.V.S. Chin, A review on the potential of natural fibre for sound absorption application, 2017.
– reference: S.S. Bhattacharya, D.V. Bihola, Design and construction of impedance tube for sound absorption coefficients measurements.
– reference: H. Mamtaz, M.H. Fouladi, M. Al-Atabi, S.N. Namasivayam, Acoustic absorption of natural fibre composites, 1-2, 2016.
– volume: 28
  year: 2016
  ident: b0160
  article-title: Characterization of sheep wool panels for room acoustic applications
  publication-title: Proc. Meetings Acoustics
– reference: R. Urš, E. Labašová, The design of an impedance tube and testing of the sound absorption coefficient of selected materials, 2021.
– reference: M.A. Mahadzir, H. Bakar, A review on sound absorption properties using natural fibres, 2021.
– reference: H.-S. Yang, D.-J. Kim, H.-J. Kim, Rice straw–wood particle composite for sound absorbing wooden construction materials, 2002.
– reference: Y. Tao, L. Kai, P. Li, Effect of fibre content on sound absorption, thermal conductivity, and compression strength of straw fibre-filled rigid polyurethane foams, 2016.
– reference: E.M. Samsudina, L.H. Ismail, A. Abdul Kadir, S.S. Sayed Mokdar, Comparison on acoustic performance between dust and coir form empty fruit bunches (EFB) as sound absorption material, 2016.
– reference: Alshiri, et al., Airflow resistance of acoustical fibrous materials: Measurements, calculations, and applications, 2021.
– reference: S.T.M. Carvalho, L.M. Mendesa, A.A.S. Cesar, J.B. Flórez, F.A. Mori, Acoustic Characterization of Sugarcane Bagasse Particleboard Panels (Saccharum officinarum L), 2015.
– reference: R. Kulifli, Noise control using coconut coir fibre sound absorber with porous layer backing and perforated panel. 262-263, 2010.
– year: 2017
  ident: b0130
  article-title: Noise Reduction in Buildings Using Sound Absorbing Materials
– reference: S. Singh, A.R. Mohanty, S.N. Namasivayam, HVAC noise control using natural materials to improve vehicle interior sound quality, 101-109, 2016.
– volume: 19
  year: 2012
  ident: b0075
  publication-title: J. Build. Acoustics
– reference: E. Jayamani, S. Hamdan, M.R. Rahman, M.K. Bakri, Study of sound absorption coefficients and characterization of rice straw stem fibres reinforced polypropylene composites, 2015.
– volume: 70
  start-page: 215
  issue: 1
  year: 2009
  ident: 10.1016/j.matpr.2023.03.098_b0110
  article-title: Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties
  publication-title: Appl. Acoustics
  doi: 10.1016/j.apacoust.2007.12.005
– ident: 10.1016/j.matpr.2023.03.098_b0045
  doi: 10.1515/aut-2017-0020
– ident: 10.1016/j.matpr.2023.03.098_b0080
– ident: 10.1016/j.matpr.2023.03.098_b0120
  doi: 10.2478/rput-2019-0031
– year: 2011
  ident: 10.1016/j.matpr.2023.03.098_b0070
– ident: 10.1016/j.matpr.2023.03.098_b0095
– ident: 10.1016/j.matpr.2023.03.098_b0150
– ident: 10.1016/j.matpr.2023.03.098_b0135
– ident: 10.1016/j.matpr.2023.03.098_b0040
  doi: 10.1088/1757-899X/612/5/052062
– ident: 10.1016/j.matpr.2023.03.098_b0065
– ident: 10.1016/j.matpr.2023.03.098_b0100
  doi: 10.15376/biores.11.2.4159-4167
– ident: 10.1016/j.matpr.2023.03.098_b0115
  doi: 10.1016/j.buildenv.2020.107087
– ident: 10.1016/j.matpr.2023.03.098_b0170
  doi: 10.1088/1742-6596/908/1/012023
– ident: 10.1016/j.matpr.2023.03.098_b0035
  doi: 10.1260/1351-010X.19.4.283
– ident: 10.1016/j.matpr.2023.03.098_b0105
– ident: 10.1016/j.matpr.2023.03.098_b0085
  doi: 10.1177/1528083718805714
– year: 2017
  ident: 10.1016/j.matpr.2023.03.098_b0130
– ident: 10.1016/j.matpr.2023.03.098_b0005
  doi: 10.1007/978-3-319-48281-1_137-1
– ident: 10.1016/j.matpr.2023.03.098_b0165
  doi: 10.1088/1757-899X/226/1/012014
– volume: 10
  start-page: 1307
  issue: 10
  year: 2013
  ident: 10.1016/j.matpr.2023.03.098_b0015
  article-title: Experimental study on natural fibres for green acoustic absorption materials
  publication-title: Am. J. Appl. Sci.
  doi: 10.3844/ajassp.2013.1307.1314
– ident: 10.1016/j.matpr.2023.03.098_b0155
  doi: 10.1590/1516-1439.010515
– ident: 10.1016/j.matpr.2023.03.098_b0055
  doi: 10.15376/biores.10.2.3378-3392
– volume: 28
  year: 2016
  ident: 10.1016/j.matpr.2023.03.098_b0160
  article-title: Characterization of sheep wool panels for room acoustic applications
  publication-title: Proc. Meetings Acoustics
  doi: 10.1121/2.0000336
– ident: 10.1016/j.matpr.2023.03.098_b0020
  doi: 10.1115/IMECE2022-96880
– ident: 10.1016/j.matpr.2023.03.098_b0125
  doi: 10.3844/ajassp.2010.260.264
– ident: 10.1016/j.matpr.2023.03.098_b0025
– ident: 10.1016/j.matpr.2023.03.098_b0090
– volume: 19
  issue: 4
  year: 2012
  ident: 10.1016/j.matpr.2023.03.098_b0075
  publication-title: J. Build. Acoustics
– ident: 10.1016/j.matpr.2023.03.098_b0175
– ident: 10.1016/j.matpr.2023.03.098_b0145
  doi: 10.1016/S0960-8524(02)00163-3
– ident: 10.1016/j.matpr.2023.03.098_b0060
  doi: 10.11113/jt.v78.8280
– ident: 10.1016/j.matpr.2023.03.098_b0050
– ident: 10.1016/j.matpr.2023.03.098_b0140
– ident: 10.1016/j.matpr.2023.03.098_b0010
– ident: 10.1016/j.matpr.2023.03.098_b0030
  doi: 10.1155/2016/5836107
SSID ssj0001560816
Score 2.2123396
Snippet In recent years, the use of natural materials in acoustic applications has drawn a lot of interest as a viable and eco-friendly substitute for synthetic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Natural fibres
Natural materials
Sound absorption coefficient
Title Exploring the potential of natural materials as eco-friendly sound absorbers
URI https://dx.doi.org/10.1016/j.matpr.2023.03.098
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXgRRcX6KHvwaGyz2aS7x1Is9dWLFnoL2RdUShPaePDib3dmk1QF6UHIIQkzbJhs5psJM98Qcm1dIjOHHT0yMQHnRgZSWR44x5QdQCqnBDYKP0-TyYw_zON5i4yaXhgsq6x9f-XTvbeu7_Rqa_aKxaL3wnDEDqAN80G9b7PifIC7_PYz_P7PApAu_ARUlA9QoSEf8mVeEBcWyAvKIk92KsXfAPUDdMaH5KCOFumweqAj0rKrY_K0rZujEL3RIi-x4gfEckc9TyecwnrV1qLZhkKGGTjkMzbLD7rBOUo0U5t8rSD0OyGz8d3raBLUQxECDWhcBsJBwqK1toD7zlqmjXImGmShMhYJtUzMM2FjxSLTj7ULcSijjl0MTk1JSD2jU9Je5St7RmCpxOoBs6HLNNdSCy4z-CalBcwWWrAOYY0lUl0zhuPgimXalIa9pd58KZov7cMhRYfcbJWKijBjt3jSmDj99d5TcOm7FM__q3hB9vGqqiO7JO1y_W6vILAoVdfvnC7ZG94_TqZf4LrPZQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke9CLKCrW5x48urTdPLp7LMUS7eNiC72F7AsqpQltPPjvncmjKkgPQg5LssOGye58M2HmG0IerQtl4rCiR4aG-b6RTCrrM-e4sn0I5ZTAQuHpLIwW_usyWDbIsK6FwbTKyvaXNr2w1tWdTqXNTrZadd44ttgBtOGFU49lVi1kpwqapDV4GUez718tgOqiaIKKIgxlav6hItMLXMMMqUG5V_CdSvE3Rv3AndEpOakcRjoo3-mMNOzmnEz2qXMUHDiapTkm_cC01NGCqhOGsF65u2iyoxBkMoeUxmb9SXfYSokmapduFXh_F2Qxep4PI1b1RWAaADlnwkHMorW2AP3OWq6NcsbrJz1lLHJqmcBPhA0U90w30K6HfRl14AKwa0pC9OldkuYm3dgrAkuFVve57blE-1pq4csEjqW0ANtCC94mvNZErCvScOxdsY7r7LD3uFBfjOqLu3BJ0SZPe6Gs5Mw4PD2sVRz_-vQxWPVDgtf_FXwgR9F8OoknL7PxDTnGJ2Va2S1p5tsPewd-Rq7uq330BQrx0hY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+potential+of+natural+materials+as+eco-friendly+sound+absorbers&rft.jtitle=Materials+today+%3A+proceedings&rft.au=Salunkhe%2C+Smita&rft.au=Patil%2C+Chetan&rft.au=Thakar%2C+Chetan+M.&rft.date=2023-03-01&rft.pub=Elsevier+Ltd&rft.issn=2214-7853&rft.eissn=2214-7853&rft_id=info:doi/10.1016%2Fj.matpr.2023.03.098&rft.externalDocID=S2214785323011410
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7853&client=summon