Exploring the potential of natural materials as eco-friendly sound absorbers
In recent years, the use of natural materials in acoustic applications has drawn a lot of interest as a viable and eco-friendly substitute for synthetic materials. This study examines the potential for sound absorption by natural materials and assesses how well they perform acoustically. The followi...
Saved in:
Published in | Materials today : proceedings |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, the use of natural materials in acoustic applications has drawn a lot of interest as a viable and eco-friendly substitute for synthetic materials. This study examines the potential for sound absorption by natural materials and assesses how well they perform acoustically. The following factors are taken into account when assessing a material's acoustic performance: fibre size, thickness, density, porosity, pore tortuosity, and flow resistance. In-depth discussion is also given on the physics of sound wave interaction and the methods used to calculate the sound absorption coefficient. Kenaf, coconut fibre, jute felt, rice straw, tea leaf fibre, sugarcane bagasse, date palm fibre, and wool are among the sustainable resources that are the subject of the study. For kenaf, in particular, the effect of bulk density and thickness on sound absorption is examined. The study's findings demonstrate the potential of natural materials to offer reliable sound absorption options while fostering sustainability. Because they are renewable, biodegradable, and have a smaller environmental impact than synthetic materials, natural materials can be used in acoustic applications. Natural materials also have special acoustic characteristics that can be enhanced with the right preparation and handling. This study shows the potential of natural materials in offering sustainable acoustic solutions and offers useful insights for architects, engineers, and researchers working in the field of acoustic design. The results of this study can aid in the creation of new and enhanced acoustic materials, hence fostering sustainability and minimising the negative environmental effects of the built environment. |
---|---|
AbstractList | In recent years, the use of natural materials in acoustic applications has drawn a lot of interest as a viable and eco-friendly substitute for synthetic materials. This study examines the potential for sound absorption by natural materials and assesses how well they perform acoustically. The following factors are taken into account when assessing a material's acoustic performance: fibre size, thickness, density, porosity, pore tortuosity, and flow resistance. In-depth discussion is also given on the physics of sound wave interaction and the methods used to calculate the sound absorption coefficient. Kenaf, coconut fibre, jute felt, rice straw, tea leaf fibre, sugarcane bagasse, date palm fibre, and wool are among the sustainable resources that are the subject of the study. For kenaf, in particular, the effect of bulk density and thickness on sound absorption is examined. The study's findings demonstrate the potential of natural materials to offer reliable sound absorption options while fostering sustainability. Because they are renewable, biodegradable, and have a smaller environmental impact than synthetic materials, natural materials can be used in acoustic applications. Natural materials also have special acoustic characteristics that can be enhanced with the right preparation and handling. This study shows the potential of natural materials in offering sustainable acoustic solutions and offers useful insights for architects, engineers, and researchers working in the field of acoustic design. The results of this study can aid in the creation of new and enhanced acoustic materials, hence fostering sustainability and minimising the negative environmental effects of the built environment. |
Author | Patil, Chetan Salunkhe, Smita Thakar, Chetan M. |
Author_xml | – sequence: 1 givenname: Smita surname: Salunkhe fullname: Salunkhe, Smita email: smitasalunkhe7199@gmail.com organization: MIT World Peace University, Pune, India – sequence: 2 givenname: Chetan surname: Patil fullname: Patil, Chetan email: chetan.patil@mitwpu.edu.in organization: MIT World Peace University, Pune, India – sequence: 3 givenname: Chetan M. orcidid: 0000-0002-3720-1143 surname: Thakar fullname: Thakar, Chetan M. email: cthakar12@gmail.com organization: Savitribai Phule University, Pune, India |
BookMark | eNqFkM1KAzEUhYNUsNY-gZu8wIz5aTozCxdS6g8U3Og6ZJIbTZkmQxLFvr2pdSEuFA7cw-V-B-45RxMfPCB0SUlNCV1ebeudymOsGWG8JkVde4KmjNFF1bSCT374MzRPaUsIoWJJWrqcos36YxxCdP4F51fAY8jgs1MDDhZ7ld9isSUeYtklrBIGHSobHXgz7HEKb95g1acQe4jpAp3acgbz7zlDz7frp9V9tXm8e1jdbCrNaJur1jLRaa2BNsICMG16a3ijaG-AECGMWKgWRM-4IUJbShrOtbCio7TvKGd8hvgxV8eQUgQrx-h2Ku4lJfLQidzKr07koRNJirq2UN0vSrussgs-R-WGf9jrIwvlrXcHUSZdOtBgXASdpQnuT_4TXPmCLQ |
CitedBy_id | crossref_primary_10_1080_17480272_2025_2453013 crossref_primary_10_3390_ma17225421 crossref_primary_10_1007_s12221_024_00582_9 crossref_primary_10_1007_s00107_024_02135_6 crossref_primary_10_1007_s12008_024_01864_5 crossref_primary_10_1007_s13762_023_05413_7 |
Cites_doi | 10.1016/j.apacoust.2007.12.005 10.1515/aut-2017-0020 10.2478/rput-2019-0031 10.1088/1757-899X/612/5/052062 10.15376/biores.11.2.4159-4167 10.1016/j.buildenv.2020.107087 10.1088/1742-6596/908/1/012023 10.1260/1351-010X.19.4.283 10.1177/1528083718805714 10.1007/978-3-319-48281-1_137-1 10.1088/1757-899X/226/1/012014 10.3844/ajassp.2013.1307.1314 10.1590/1516-1439.010515 10.15376/biores.10.2.3378-3392 10.1121/2.0000336 10.1115/IMECE2022-96880 10.3844/ajassp.2010.260.264 10.1016/S0960-8524(02)00163-3 10.11113/jt.v78.8280 10.1155/2016/5836107 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matpr.2023.03.098 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2214-7853 |
ExternalDocumentID | 10_1016_j_matpr_2023_03_098 S2214785323011410 |
GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GBLVA HZ~ KOM M41 NCXOZ O9- OAUVE P-8 P-9 PC. ROL SPC SPCBC SSM SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c218t-8f259ccce175fee2cdbfd37a1bde0055d54a8e5b23d05cf10733c5f5911b91323 |
IEDL.DBID | .~1 |
ISSN | 2214-7853 |
IngestDate | Tue Jul 01 02:10:52 EDT 2025 Thu Apr 24 23:09:16 EDT 2025 Fri Feb 23 02:36:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sound absorption coefficient Natural fibres Natural materials |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c218t-8f259ccce175fee2cdbfd37a1bde0055d54a8e5b23d05cf10733c5f5911b91323 |
ORCID | 0000-0002-3720-1143 |
ParticipantIDs | crossref_primary_10_1016_j_matpr_2023_03_098 crossref_citationtrail_10_1016_j_matpr_2023_03_098 elsevier_sciencedirect_doi_10_1016_j_matpr_2023_03_098 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-3-00 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-3-00 |
PublicationDecade | 2020 |
PublicationTitle | Materials today : proceedings |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | E.M. Samsudina, L.H. Ismail, A. Abdul Kadir, S.S. Sayed Mokdar, Comparison on acoustic performance between dust and coir form empty fruit bunches (EFB) as sound absorption material, 2016. M.R. Ghotbi Ravandi, N. Khanjani, M. Mohammadian, A review on the acoustical properties of natural and synthetic noise absorbents, 2, 7-8, 2015. Alshiri, et al., Airflow resistance of acoustical fibrous materials: Measurements, calculations, and applications, 2021. X. Tang, X. Yan, Airflow resistance of acoustical fibrous materials: Measurements, calculations, and applications, 2018. E. Labašová, R. Ďuriš, Measurement of the acoustic absorption coefficient by impedance tube, 2019. R. Kulifli, Noise control using coconut coir fibre sound absorber with porous layer backing and perforated panel. 262-263, 2010. J.P. Arenas, F. Asdrubali, Eco-Materials with noise reduction properties, 2017. Ersoy, Kucuk (b0110) 2009; 70 F. Asdrubali, S. Schiavoni, K.V. Horoshenkov, A review of sustainable materials for acoustic applications, 2012. Mohanty, A. R., & Fatima, S. (n.d.). Noise Control Using Green Materials, 14-15. Berardi, Iannace, Di Gabriele (b0160) 2016; 28 N.H. Zunaidi et al., Effect of physical properties of natural fibre on the sound absorption coefficient, 2017. S.T.M. Carvalho, L.M. Mendesa, A.A.S. Cesar, J.B. Flórez, F.A. Mori, Acoustic Characterization of Sugarcane Bagasse Particleboard Panels (Saccharum officinarum L), 2015. M.J. Saad, I. Kamal, Kenaf core particleboard and its sound absorbing properties, n.d.. E. Taban, P. Soltani, U. Berardi, A. Putra, S.M. Mousavi, M. Faridan, S.E. Samaei, A. Khavanin, Measurement, modeling, and optimization of sound absorption performance of Kenaf fibres for building applications, 2020. Y. Tao, L. Kai, P. Li, Effect of fibre content on sound absorption, thermal conductivity, and compression strength of straw fibre-filled rigid polyurethane foams, 2016. Patil, C, Ghorpade, R, Askhedkar, R. Effect of Air Gap, Thickness of Polyurethane (PU) Foam, and Perforated Panel on Sound Absorption Coefficient for Acoustic Structures. Proceedings of the ASME 2022 International Mechanical Engineering Congress and Exposition. Volume 1 : Acoustics, Vibration, and Phononics. Columbus, Ohio, USA. October 30–November 3, 2022. V001T01A031. ASME. D. Cabrera, Sound absorption coefficient measurement: Re-examining the relationship between impedance tube and reverberant room methods, 2012. S. Singh, A.R. Mohanty, S.N. Namasivayam, HVAC noise control using natural materials to improve vehicle interior sound quality, 101-109, 2016. M.A. Mahadzir, H. Bakar, A review on sound absorption properties using natural fibres, 2021. H. Mamtaz, M.H. Fouladi, M. Al-Atabi, S.N. Namasivayam, Acoustic absorption of natural fibre composites, 1-2, 2016. R. Urš, E. Labašová, The design of an impedance tube and testing of the sound absorption coefficient of selected materials, 2021. Kuczmarski, Johnston (b0070) 2011 W. Chan & et al., Review on research process of Sound Reduction Materials, 2019. H. Qui, Y. Enhui, Effect of thickness, density and cavity depth on the sound absorption properties of wool boards, 206-207, 2018. P. Shravage, S.K. Jain, N.V. Karanth, S. Raju, Characterization of sound absorbing materials for noise control, 2010. S.S. Bhattacharya, D.V. Bihola, Design and construction of impedance tube for sound absorption coefficients measurements. Asdrubali, Schiavoni, Horoshenkov (b0075) 2012; 19 H.-S. Yang, D.-J. Kim, H.-J. Kim, Rice straw–wood particle composite for sound absorbing wooden construction materials, 2002. Azimi (b0130) 2017 A.E. Tiuc, O. Vasile, A. Didona Uscă, T. Gabor, H. Vermeùan, The analysis of factors that influence the sound absorption coefficient of porous materials, 2014. M.N. Yahya, D.D.V.S. Chin, A review on the potential of natural fibre for sound absorption application, 2017. E. Jayamani, S. Hamdan, M.R. Rahman, M.K. Bakri, Study of sound absorption coefficients and characterization of rice straw stem fibres reinforced polypropylene composites, 2015. Al Rahman (b0015) 2013; 10 S.R. Rozli, N.A. Azmir, The study on acoustic properties of sugarcane bagasse as sound absorber, 2020. Asdrubali (10.1016/j.matpr.2023.03.098_b0075) 2012; 19 Kuczmarski (10.1016/j.matpr.2023.03.098_b0070) 2011 Ersoy (10.1016/j.matpr.2023.03.098_b0110) 2009; 70 10.1016/j.matpr.2023.03.098_b0090 10.1016/j.matpr.2023.03.098_b0030 10.1016/j.matpr.2023.03.098_b0095 10.1016/j.matpr.2023.03.098_b0150 10.1016/j.matpr.2023.03.098_b0050 10.1016/j.matpr.2023.03.098_b0170 10.1016/j.matpr.2023.03.098_b0155 10.1016/j.matpr.2023.03.098_b0055 10.1016/j.matpr.2023.03.098_b0010 10.1016/j.matpr.2023.03.098_b0175 10.1016/j.matpr.2023.03.098_b0115 10.1016/j.matpr.2023.03.098_b0135 10.1016/j.matpr.2023.03.098_b0035 10.1016/j.matpr.2023.03.098_b0105 Azimi (10.1016/j.matpr.2023.03.098_b0130) 2017 Berardi (10.1016/j.matpr.2023.03.098_b0160) 2016; 28 10.1016/j.matpr.2023.03.098_b0080 10.1016/j.matpr.2023.03.098_b0085 10.1016/j.matpr.2023.03.098_b0140 10.1016/j.matpr.2023.03.098_b0040 Al Rahman (10.1016/j.matpr.2023.03.098_b0015) 2013; 10 10.1016/j.matpr.2023.03.098_b0060 10.1016/j.matpr.2023.03.098_b0045 10.1016/j.matpr.2023.03.098_b0100 10.1016/j.matpr.2023.03.098_b0165 10.1016/j.matpr.2023.03.098_b0065 10.1016/j.matpr.2023.03.098_b0120 10.1016/j.matpr.2023.03.098_b0020 10.1016/j.matpr.2023.03.098_b0005 10.1016/j.matpr.2023.03.098_b0125 10.1016/j.matpr.2023.03.098_b0025 10.1016/j.matpr.2023.03.098_b0145 |
References_xml | – reference: A.E. Tiuc, O. Vasile, A. Didona Uscă, T. Gabor, H. Vermeùan, The analysis of factors that influence the sound absorption coefficient of porous materials, 2014. – reference: M.R. Ghotbi Ravandi, N. Khanjani, M. Mohammadian, A review on the acoustical properties of natural and synthetic noise absorbents, 2, 7-8, 2015. – volume: 10 start-page: 1307 year: 2013 end-page: 1314 ident: b0015 article-title: Experimental study on natural fibres for green acoustic absorption materials publication-title: Am. J. Appl. Sci. – reference: F. Asdrubali, S. Schiavoni, K.V. Horoshenkov, A review of sustainable materials for acoustic applications, 2012. – reference: N.H. Zunaidi et al., Effect of physical properties of natural fibre on the sound absorption coefficient, 2017. – reference: Mohanty, A. R., & Fatima, S. (n.d.). Noise Control Using Green Materials, 14-15. – reference: E. Taban, P. Soltani, U. Berardi, A. Putra, S.M. Mousavi, M. Faridan, S.E. Samaei, A. Khavanin, Measurement, modeling, and optimization of sound absorption performance of Kenaf fibres for building applications, 2020. – reference: P. Shravage, S.K. Jain, N.V. Karanth, S. Raju, Characterization of sound absorbing materials for noise control, 2010. – volume: 70 start-page: 215 year: 2009 end-page: 220 ident: b0110 article-title: Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties publication-title: Appl. Acoustics – reference: W. Chan & et al., Review on research process of Sound Reduction Materials, 2019. – reference: H. Qui, Y. Enhui, Effect of thickness, density and cavity depth on the sound absorption properties of wool boards, 206-207, 2018. – reference: M.J. Saad, I. Kamal, Kenaf core particleboard and its sound absorbing properties, n.d.. – reference: D. Cabrera, Sound absorption coefficient measurement: Re-examining the relationship between impedance tube and reverberant room methods, 2012. – reference: J.P. Arenas, F. Asdrubali, Eco-Materials with noise reduction properties, 2017. – reference: Patil, C, Ghorpade, R, Askhedkar, R. Effect of Air Gap, Thickness of Polyurethane (PU) Foam, and Perforated Panel on Sound Absorption Coefficient for Acoustic Structures. Proceedings of the ASME 2022 International Mechanical Engineering Congress and Exposition. Volume 1 : Acoustics, Vibration, and Phononics. Columbus, Ohio, USA. October 30–November 3, 2022. V001T01A031. ASME. – year: 2011 ident: b0070 article-title: Acoustic Absorption in Porous Materials – reference: E. Labašová, R. Ďuriš, Measurement of the acoustic absorption coefficient by impedance tube, 2019. – reference: X. Tang, X. Yan, Airflow resistance of acoustical fibrous materials: Measurements, calculations, and applications, 2018. – reference: S.R. Rozli, N.A. Azmir, The study on acoustic properties of sugarcane bagasse as sound absorber, 2020. – reference: M.N. Yahya, D.D.V.S. Chin, A review on the potential of natural fibre for sound absorption application, 2017. – reference: S.S. Bhattacharya, D.V. Bihola, Design and construction of impedance tube for sound absorption coefficients measurements. – reference: H. Mamtaz, M.H. Fouladi, M. Al-Atabi, S.N. Namasivayam, Acoustic absorption of natural fibre composites, 1-2, 2016. – volume: 28 year: 2016 ident: b0160 article-title: Characterization of sheep wool panels for room acoustic applications publication-title: Proc. Meetings Acoustics – reference: R. Urš, E. Labašová, The design of an impedance tube and testing of the sound absorption coefficient of selected materials, 2021. – reference: M.A. Mahadzir, H. Bakar, A review on sound absorption properties using natural fibres, 2021. – reference: H.-S. Yang, D.-J. Kim, H.-J. Kim, Rice straw–wood particle composite for sound absorbing wooden construction materials, 2002. – reference: Y. Tao, L. Kai, P. Li, Effect of fibre content on sound absorption, thermal conductivity, and compression strength of straw fibre-filled rigid polyurethane foams, 2016. – reference: E.M. Samsudina, L.H. Ismail, A. Abdul Kadir, S.S. Sayed Mokdar, Comparison on acoustic performance between dust and coir form empty fruit bunches (EFB) as sound absorption material, 2016. – reference: Alshiri, et al., Airflow resistance of acoustical fibrous materials: Measurements, calculations, and applications, 2021. – reference: S.T.M. Carvalho, L.M. Mendesa, A.A.S. Cesar, J.B. Flórez, F.A. Mori, Acoustic Characterization of Sugarcane Bagasse Particleboard Panels (Saccharum officinarum L), 2015. – reference: R. Kulifli, Noise control using coconut coir fibre sound absorber with porous layer backing and perforated panel. 262-263, 2010. – year: 2017 ident: b0130 article-title: Noise Reduction in Buildings Using Sound Absorbing Materials – reference: S. Singh, A.R. Mohanty, S.N. Namasivayam, HVAC noise control using natural materials to improve vehicle interior sound quality, 101-109, 2016. – volume: 19 year: 2012 ident: b0075 publication-title: J. Build. Acoustics – reference: E. Jayamani, S. Hamdan, M.R. Rahman, M.K. Bakri, Study of sound absorption coefficients and characterization of rice straw stem fibres reinforced polypropylene composites, 2015. – volume: 70 start-page: 215 issue: 1 year: 2009 ident: 10.1016/j.matpr.2023.03.098_b0110 article-title: Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties publication-title: Appl. Acoustics doi: 10.1016/j.apacoust.2007.12.005 – ident: 10.1016/j.matpr.2023.03.098_b0045 doi: 10.1515/aut-2017-0020 – ident: 10.1016/j.matpr.2023.03.098_b0080 – ident: 10.1016/j.matpr.2023.03.098_b0120 doi: 10.2478/rput-2019-0031 – year: 2011 ident: 10.1016/j.matpr.2023.03.098_b0070 – ident: 10.1016/j.matpr.2023.03.098_b0095 – ident: 10.1016/j.matpr.2023.03.098_b0150 – ident: 10.1016/j.matpr.2023.03.098_b0135 – ident: 10.1016/j.matpr.2023.03.098_b0040 doi: 10.1088/1757-899X/612/5/052062 – ident: 10.1016/j.matpr.2023.03.098_b0065 – ident: 10.1016/j.matpr.2023.03.098_b0100 doi: 10.15376/biores.11.2.4159-4167 – ident: 10.1016/j.matpr.2023.03.098_b0115 doi: 10.1016/j.buildenv.2020.107087 – ident: 10.1016/j.matpr.2023.03.098_b0170 doi: 10.1088/1742-6596/908/1/012023 – ident: 10.1016/j.matpr.2023.03.098_b0035 doi: 10.1260/1351-010X.19.4.283 – ident: 10.1016/j.matpr.2023.03.098_b0105 – ident: 10.1016/j.matpr.2023.03.098_b0085 doi: 10.1177/1528083718805714 – year: 2017 ident: 10.1016/j.matpr.2023.03.098_b0130 – ident: 10.1016/j.matpr.2023.03.098_b0005 doi: 10.1007/978-3-319-48281-1_137-1 – ident: 10.1016/j.matpr.2023.03.098_b0165 doi: 10.1088/1757-899X/226/1/012014 – volume: 10 start-page: 1307 issue: 10 year: 2013 ident: 10.1016/j.matpr.2023.03.098_b0015 article-title: Experimental study on natural fibres for green acoustic absorption materials publication-title: Am. J. Appl. Sci. doi: 10.3844/ajassp.2013.1307.1314 – ident: 10.1016/j.matpr.2023.03.098_b0155 doi: 10.1590/1516-1439.010515 – ident: 10.1016/j.matpr.2023.03.098_b0055 doi: 10.15376/biores.10.2.3378-3392 – volume: 28 year: 2016 ident: 10.1016/j.matpr.2023.03.098_b0160 article-title: Characterization of sheep wool panels for room acoustic applications publication-title: Proc. Meetings Acoustics doi: 10.1121/2.0000336 – ident: 10.1016/j.matpr.2023.03.098_b0020 doi: 10.1115/IMECE2022-96880 – ident: 10.1016/j.matpr.2023.03.098_b0125 doi: 10.3844/ajassp.2010.260.264 – ident: 10.1016/j.matpr.2023.03.098_b0025 – ident: 10.1016/j.matpr.2023.03.098_b0090 – volume: 19 issue: 4 year: 2012 ident: 10.1016/j.matpr.2023.03.098_b0075 publication-title: J. Build. Acoustics – ident: 10.1016/j.matpr.2023.03.098_b0175 – ident: 10.1016/j.matpr.2023.03.098_b0145 doi: 10.1016/S0960-8524(02)00163-3 – ident: 10.1016/j.matpr.2023.03.098_b0060 doi: 10.11113/jt.v78.8280 – ident: 10.1016/j.matpr.2023.03.098_b0050 – ident: 10.1016/j.matpr.2023.03.098_b0140 – ident: 10.1016/j.matpr.2023.03.098_b0010 – ident: 10.1016/j.matpr.2023.03.098_b0030 doi: 10.1155/2016/5836107 |
SSID | ssj0001560816 |
Score | 2.2123396 |
Snippet | In recent years, the use of natural materials in acoustic applications has drawn a lot of interest as a viable and eco-friendly substitute for synthetic... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | Natural fibres Natural materials Sound absorption coefficient |
Title | Exploring the potential of natural materials as eco-friendly sound absorbers |
URI | https://dx.doi.org/10.1016/j.matpr.2023.03.098 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXgRRcX6KHvwaGyz2aS7x1Is9dWLFnoL2RdUShPaePDib3dmk1QF6UHIIQkzbJhs5psJM98Qcm1dIjOHHT0yMQHnRgZSWR44x5QdQCqnBDYKP0-TyYw_zON5i4yaXhgsq6x9f-XTvbeu7_Rqa_aKxaL3wnDEDqAN80G9b7PifIC7_PYz_P7PApAu_ARUlA9QoSEf8mVeEBcWyAvKIk92KsXfAPUDdMaH5KCOFumweqAj0rKrY_K0rZujEL3RIi-x4gfEckc9TyecwnrV1qLZhkKGGTjkMzbLD7rBOUo0U5t8rSD0OyGz8d3raBLUQxECDWhcBsJBwqK1toD7zlqmjXImGmShMhYJtUzMM2FjxSLTj7ULcSijjl0MTk1JSD2jU9Je5St7RmCpxOoBs6HLNNdSCy4z-CalBcwWWrAOYY0lUl0zhuPgimXalIa9pd58KZov7cMhRYfcbJWKijBjt3jSmDj99d5TcOm7FM__q3hB9vGqqiO7JO1y_W6vILAoVdfvnC7ZG94_TqZf4LrPZQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke9CLKCrW5x48urTdPLp7LMUS7eNiC72F7AsqpQltPPjvncmjKkgPQg5LssOGye58M2HmG0IerQtl4rCiR4aG-b6RTCrrM-e4sn0I5ZTAQuHpLIwW_usyWDbIsK6FwbTKyvaXNr2w1tWdTqXNTrZadd44ttgBtOGFU49lVi1kpwqapDV4GUez718tgOqiaIKKIgxlav6hItMLXMMMqUG5V_CdSvE3Rv3AndEpOakcRjoo3-mMNOzmnEz2qXMUHDiapTkm_cC01NGCqhOGsF65u2iyoxBkMoeUxmb9SXfYSokmapduFXh_F2Qxep4PI1b1RWAaADlnwkHMorW2AP3OWq6NcsbrJz1lLHJqmcBPhA0U90w30K6HfRl14AKwa0pC9OldkuYm3dgrAkuFVve57blE-1pq4csEjqW0ANtCC94mvNZErCvScOxdsY7r7LD3uFBfjOqLu3BJ0SZPe6Gs5Mw4PD2sVRz_-vQxWPVDgtf_FXwgR9F8OoknL7PxDTnGJ2Va2S1p5tsPewd-Rq7uq330BQrx0hY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+potential+of+natural+materials+as+eco-friendly+sound+absorbers&rft.jtitle=Materials+today+%3A+proceedings&rft.au=Salunkhe%2C+Smita&rft.au=Patil%2C+Chetan&rft.au=Thakar%2C+Chetan+M.&rft.date=2023-03-01&rft.pub=Elsevier+Ltd&rft.issn=2214-7853&rft.eissn=2214-7853&rft_id=info:doi/10.1016%2Fj.matpr.2023.03.098&rft.externalDocID=S2214785323011410 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7853&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7853&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7853&client=summon |