A Monte‐Carlo Chemical Budget Approach to Assess Ambient Groundwater Flow in Bedrock Open Boreholes
Abstract In low‐permeability rocks, ambient groundwater flow in open boreholes may go undetected using conventional borehole‐flowmeter tools and alternative approaches may be needed to identify flow. Understanding ambient flow in open boreholes is important for tracking of cross contamination in gro...
Saved in:
Published in | Ground water monitoring & remediation Vol. 44; no. 1; pp. 57 - 71 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Westerville
Wiley Subscription Services, Inc
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
In low‐permeability rocks, ambient groundwater flow in open boreholes may go undetected using conventional borehole‐flowmeter tools and alternative approaches may be needed to identify flow. Understanding ambient flow in open boreholes is important for tracking of cross contamination in groundwater. Chlorinated volatile organic compound (CVOC) concentrations from three open boreholes set in a crystalline‐rock aquifer (two of three open boreholes) and a siltstone aquifer (one of three open boreholes) were examined using a new approach and associated software program called the AFCE (Aqueous‐Flow‐Concentration‐Estimator). The program allows comparison of coupled chemical datasets through a Monte‐Carlo simulation and a chemical‐budget approach to assess ambient groundwater flow in open boreholes. The coupled datasets required for the comparison include aqueous CVOC concentrations from groundwater samples from (1) discrete fractures, such as those measured from temporary deployment of straddle‐borehole packer assemblies; and (2) the concentration of the open borehole (wellbore) water, as measured by a vertical profile of passive samplers from within the same open borehole. Because results from the passive samplers represent a composite mixture of the results from the discrete samples under ambient groundwater‐flow conditions, potentially at unknown proportions, the comparison between coupled datasets affords the ability to discern likely water contributions of CVOC from discrete fractures (or fracture zones), and which fractures may be dominating the water chemistry of the open borehole. |
---|---|
AbstractList | In low‐permeability rocks, ambient groundwater flow in open boreholes may go undetected using conventional borehole‐flowmeter tools and alternative approaches may be needed to identify flow. Understanding ambient flow in open boreholes is important for tracking of cross contamination in groundwater. Chlorinated volatile organic compound (CVOC) concentrations from three open boreholes set in a crystalline‐rock aquifer (two of three open boreholes) and a siltstone aquifer (one of three open boreholes) were examined using a new approach and associated software program called the AFCE (Aqueous‐Flow‐Concentration‐Estimator). The program allows comparison of coupled chemical datasets through a Monte‐Carlo simulation and a chemical‐budget approach to assess ambient groundwater flow in open boreholes. The coupled datasets required for the comparison include aqueous CVOC concentrations from groundwater samples from (1) discrete fractures, such as those measured from temporary deployment of straddle‐borehole packer assemblies; and (2) the concentration of the open borehole (wellbore) water, as measured by a vertical profile of passive samplers from within the same open borehole. Because results from the passive samplers represent a composite mixture of the results from the discrete samples under ambient groundwater‐flow conditions, potentially at unknown proportions, the comparison between coupled datasets affords the ability to discern likely water contributions of CVOC from discrete fractures (or fracture zones), and which fractures may be dominating the water chemistry of the open borehole. Abstract In low‐permeability rocks, ambient groundwater flow in open boreholes may go undetected using conventional borehole‐flowmeter tools and alternative approaches may be needed to identify flow. Understanding ambient flow in open boreholes is important for tracking of cross contamination in groundwater. Chlorinated volatile organic compound (CVOC) concentrations from three open boreholes set in a crystalline‐rock aquifer (two of three open boreholes) and a siltstone aquifer (one of three open boreholes) were examined using a new approach and associated software program called the AFCE (Aqueous‐Flow‐Concentration‐Estimator). The program allows comparison of coupled chemical datasets through a Monte‐Carlo simulation and a chemical‐budget approach to assess ambient groundwater flow in open boreholes. The coupled datasets required for the comparison include aqueous CVOC concentrations from groundwater samples from (1) discrete fractures, such as those measured from temporary deployment of straddle‐borehole packer assemblies; and (2) the concentration of the open borehole (wellbore) water, as measured by a vertical profile of passive samplers from within the same open borehole. Because results from the passive samplers represent a composite mixture of the results from the discrete samples under ambient groundwater‐flow conditions, potentially at unknown proportions, the comparison between coupled datasets affords the ability to discern likely water contributions of CVOC from discrete fractures (or fracture zones), and which fractures may be dominating the water chemistry of the open borehole. |
Author | Harte, Philip T. |
Author_xml | – sequence: 1 givenname: Philip T. orcidid: 0000-0002-7718-1204 surname: Harte fullname: Harte, Philip T. |
BookMark | eNotkEFOwzAQRS1UJNrChhNYYoeU4rFrJ1mmFS1IRd3AOnKcSZuSxMFOVLHjCJyRk5BS_mb-l75mRm9CRo1tkJBbYDMY9LA71m4GXAFckDGEcxkoGfPR4JmKA6F4fEUm3h8YE0pGckwwoS-26fDn63upXWXpco91aXRFF32-w44mbeusNnvaWZp4j97TpM5KbDq6drZv8qPu0NFVZY-0bOgCc2fNO922OATrcG8r9NfkstCVx5v_OSVvq8fX5VOw2a6fl8kmMByiLghFAWGkdM7yXCujdCTCSGeMKy6yoogMhFpkLJQ4ZzKLTKwk13MAxhEKDVJMyd157_DzR4--Sw-2d81wMuWxAJCKSz607s8t46z3Dou0dWWt3WcKLD1hTE8Y0z-M4hcwSWfR |
Cites_doi | 10.1111/j.1745-6584.2006.00258.x 10.1007/s10040-020-02271-2 10.3133/fs19699 10.1111/gwmr.12157 10.3133/pp1767 10.3133/ofr20131224 10.1190/SAGEEP.27-034 10.3133/sir20205140 10.3133/tm4A3 10.3133/tm1D8 10.1111/j.1745-6584.2010.00708.x 10.1016/0375-6505(84)90013-0 10.3133/wsp2394 10.1029/WR026i004p00561 10.3133/twri02E2 10.1002/rem.21637 10.3133/wsp1544C 10.3133/ofr20081349 10.1002/2016WR018789 10.3133/ofr20071134 |
ContentType | Journal Article |
Copyright | Copyright © 2024 National Ground Water Association |
Copyright_xml | – notice: Copyright © 2024 National Ground Water Association |
DBID | AAYXX CITATION 7QH 7QL 7T7 7TV 7U9 7UA 8FD C1K F1W FR3 H94 H97 KR7 L.G M7N P64 |
DOI | 10.1111/gwmr.12611 |
DatabaseName | CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Pollution Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1745-6592 |
EndPage | 71 |
ExternalDocumentID | 10_1111_gwmr_12611 |
GroupedDBID | -DZ .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 4P2 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAYXX AAZKR ABCQN ABCUV ABEML ABJNI ABPPZ ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CITATION COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EDH EDO EJD ESTFP F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 I-F IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 ML. MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TAE TUS UB1 VH1 VJK W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 YCJ ZCA ZY4 ZZTAW ~02 ~IA ~KM ~WT 7QH 7QL 7T7 7TV 7U9 7UA 8FD C1K F1W FR3 H94 H97 KR7 L.G M7N P64 |
ID | FETCH-LOGICAL-c218t-73f1786ad0dda6c6a8378ab02623bff8c17a3b075e405b8c9652a41102e1fa153 |
ISSN | 1069-3629 |
IngestDate | Thu Oct 10 17:12:35 EDT 2024 Fri Aug 23 01:30:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c218t-73f1786ad0dda6c6a8378ab02623bff8c17a3b075e405b8c9652a41102e1fa153 |
ORCID | 0000-0002-7718-1204 |
PQID | 2931156252 |
PQPubID | 996356 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2931156252 crossref_primary_10_1111_gwmr_12611 |
PublicationCentury | 2000 |
PublicationDate | 2024-01-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-00 |
PublicationDecade | 2020 |
PublicationPlace | Westerville |
PublicationPlace_xml | – name: Westerville |
PublicationTitle | Ground water monitoring & remediation |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_11_10_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_12_1 e_1_2_11_11_1 e_1_2_11_7_1 e_1_2_11_6_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_3_1 e_1_2_11_2_1 Weston Solutions, Inc (e_1_2_11_26_1) 2013 e_1_2_11_21_1 e_1_2_11_20_1 e_1_2_11_25_1 e_1_2_11_24_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_8_1 Pehme P.E. (e_1_2_11_19_1) 2012; 484 e_1_2_11_22_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 |
References_xml | – start-page: 255 volume-title: Remedial Investigation Report, Savage Municipal Water Supply Site OU‐1 year: 2013 ident: e_1_2_11_26_1 contributor: fullname: Weston Solutions, Inc – ident: e_1_2_11_24_1 – ident: e_1_2_11_20_1 doi: 10.1111/j.1745-6584.2006.00258.x – ident: e_1_2_11_5_1 doi: 10.1007/s10040-020-02271-2 – ident: e_1_2_11_13_1 doi: 10.3133/fs19699 – ident: e_1_2_11_25_1 doi: 10.1111/gwmr.12157 – ident: e_1_2_11_27_1 doi: 10.3133/pp1767 – ident: e_1_2_11_2_1 doi: 10.3133/ofr20131224 – ident: e_1_2_11_9_1 doi: 10.1190/SAGEEP.27-034 – ident: e_1_2_11_7_1 doi: 10.3133/sir20205140 – ident: e_1_2_11_10_1 doi: 10.3133/tm4A3 – ident: e_1_2_11_12_1 doi: 10.3133/tm1D8 – ident: e_1_2_11_17_1 doi: 10.1111/j.1745-6584.2010.00708.x – ident: e_1_2_11_23_1 – ident: e_1_2_11_3_1 doi: 10.1016/0375-6505(84)90013-0 – ident: e_1_2_11_6_1 – ident: e_1_2_11_14_1 doi: 10.3133/wsp2394 – ident: e_1_2_11_22_1 doi: 10.1029/WR026i004p00561 – ident: e_1_2_11_15_1 doi: 10.3133/twri02E2 – volume: 484 start-page: 15 year: 2012 ident: e_1_2_11_19_1 article-title: Enhanced detection of hydraulically active fractures by temperature profiling in lined heated bedrock boreholes publication-title: Hydrogeology Journal contributor: fullname: Pehme P.E. – ident: e_1_2_11_8_1 doi: 10.1002/rem.21637 – ident: e_1_2_11_4_1 – ident: e_1_2_11_18_1 doi: 10.3133/wsp1544C – ident: e_1_2_11_11_1 doi: 10.3133/ofr20081349 – ident: e_1_2_11_16_1 doi: 10.1002/2016WR018789 – ident: e_1_2_11_21_1 doi: 10.3133/ofr20071134 |
SSID | ssj0036585 |
Score | 2.3751037 |
Snippet | Abstract
In low‐permeability rocks, ambient groundwater flow in open boreholes may go undetected using conventional borehole‐flowmeter tools and alternative... In low‐permeability rocks, ambient groundwater flow in open boreholes may go undetected using conventional borehole‐flowmeter tools and alternative approaches... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 57 |
SubjectTerms | Aquifers Boreholes Budgets Contamination Datasets Fracture zones Fractures Groundwater Groundwater flow Organic compounds Permeability Rocks Samplers Siltstone Software Tracking Vertical profiles VOCs Volatile organic compounds Water analysis Water chemistry Water sampling |
Title | A Monte‐Carlo Chemical Budget Approach to Assess Ambient Groundwater Flow in Bedrock Open Boreholes |
URI | https://www.proquest.com/docview/2931156252 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEF5BOLQXRKGoUFqtBDdro_gntnNMoqKoEhxQkLhZu941oBIbGaMITjwCz9gnYWZ3_RPaSpSLZa20juL5PPPNzM4MIUe-5CORKcWkDCIGFj9lXHiCxQKN5cDNIj3O5-Q0nJ0HPy-GF217Al1dUol--vjXupL3SBXWQK5YJfsfkm0eCgtwD_KFK0gYrm-S8Rg_yUo1BxamvLwpnKYHwOReXqoKiWZTNmVyvM54IbAOUkeecrnk2Cnx-KZYYvRjoiQYtV8OHjVxJkWpcILuXZfEml2O2bbQSqE0EYfQwXCjvF5J78_w2GgbvHHm_W6owQs6oQajHQfhiIHFMzpOmbUoGDLMzXZVqmnpuAIdox9NM2prac3slX_o8Mvlouy74N-5raWqs_OvDFhzrLB2aHBvoveukw0PNJDO3581fcV8oF1DnQa3_8f2rcUjXu3vrjKVVUOt2cd8i2xat4GODQY-kTWVb5MPdoL91cMOUWOqsfD76VmjgNYooAYFtEYBrQpqUEAtCmgHBRRRQK9zalFAEQW0QcFncn78Yz6dMTtCg6XA3SoW-ZkbxSGXAyl5mIYc5wdwAY6354ssi1M34r4A2qiAuIs4HYVDjwdACT3lZhys4S7p5UWuvhAKtAX4nQQGm_LAF2HMgyAD-qpiN40j398jh_XrSm5Np5TkT4HskYP6TSb2S7pLgHKCYwKeuLf_pod8JR9beB6QXlXeq2_ADSvxXcv5BSlzZYU |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Monte%E2%80%90Carlo+Chemical+Budget+Approach+to+Assess+Ambient+Groundwater+Flow+in+Bedrock+Open+Boreholes&rft.jtitle=Ground+water+monitoring+%26+remediation&rft.au=Harte%2C+Philip+T.&rft.date=2024-01-01&rft.issn=1069-3629&rft.eissn=1745-6592&rft.volume=44&rft.issue=1&rft.spage=57&rft.epage=71&rft_id=info:doi/10.1111%2Fgwmr.12611&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_gwmr_12611 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1069-3629&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1069-3629&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1069-3629&client=summon |