Formation and microbial decomposability of new leaf- and root-derived soil organic carbon in forests varied with soil depth and duration: Direct evidence from 13C-labelled litter incubation
Litter inputs control the formation and accumulation of soil organic carbon (SOC) in terrestrial ecosystems. However, we still lack a complete understanding of how leaf and root litter inputs influence the formation and microbial decomposition of newly formed SOC. Here we used unique soil-litter (13...
Saved in:
Published in | Applied soil ecology : a section of Agriculture, ecosystems & environment Vol. 211; p. 106137 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0929-1393 |
DOI | 10.1016/j.apsoil.2025.106137 |
Cover
Loading…
Abstract | Litter inputs control the formation and accumulation of soil organic carbon (SOC) in terrestrial ecosystems. However, we still lack a complete understanding of how leaf and root litter inputs influence the formation and microbial decomposition of newly formed SOC. Here we used unique soil-litter (13C enriched) mesocosms in the field to explore the effects of leaf and root litter on SOC formation, and then through lab-incubation further assessed microbial decomposability of the new leaf and root litter-derived SOC. We found that the amount of new SOC from root litter was lower 34.3 %–49.2 % than leaf litter in the surface soil after two years of field incubation, but in the subsurface soils it was inversely (higher 110.2 %–688.9 %) and also in all soil depths over the three years of incubation. Furthermore, root litter-derived SOC in the surface soil increased with ongoing time. The differences in the decomposability between new root- and leaf-derived SOC had no clear pattern along with soil depth and incubation duration, but their decomposability at the first two year of field incubation (0.57 %–1.16 %) was significantly higher at the third year (0.09 %–0.29 %), suggesting that new SOC became more stable. The microbial decomposability of newly formed SOC was controlled by soil microbial biomass nitrogen and leucine aminopeptidase activity. These results indicated that the importance of leaf and root litter to new SOC formation and their decomposability varied with soil depth and incubation duration. Overall, our findings provide the direct experimental evidence that the importance of new leaf- and root-derived SOC for the formation and the decomposability of new SOC were soil depth-dependent.
•Root litter formed higher new SOC than leaf litter in subsurface soils.•Root litter-derived new SOC in surface soil increased with ongoing time.•Root- and leaf-derived SOC had different decomposability, depending on soil depth.•Decomposability of new SOC was lower at the 3-year field incubation than others.•Decomposability was controlled by soil microbial biomass N and LAP activity. |
---|---|
AbstractList | Litter inputs control the formation and accumulation of soil organic carbon (SOC) in terrestrial ecosystems. However, we still lack a complete understanding of how leaf and root litter inputs influence the formation and microbial decomposition of newly formed SOC. Here we used unique soil-litter (¹³C enriched) mesocosms in the field to explore the effects of leaf and root litter on SOC formation, and then through lab-incubation further assessed microbial decomposability of the new leaf and root litter-derived SOC. We found that the amount of new SOC from root litter was lower 34.3 %–49.2 % than leaf litter in the surface soil after two years of field incubation, but in the subsurface soils it was inversely (higher 110.2 %–688.9 %) and also in all soil depths over the three years of incubation. Furthermore, root litter-derived SOC in the surface soil increased with ongoing time. The differences in the decomposability between new root- and leaf-derived SOC had no clear pattern along with soil depth and incubation duration, but their decomposability at the first two year of field incubation (0.57 %–1.16 %) was significantly higher at the third year (0.09 %–0.29 %), suggesting that new SOC became more stable. The microbial decomposability of newly formed SOC was controlled by soil microbial biomass nitrogen and leucine aminopeptidase activity. These results indicated that the importance of leaf and root litter to new SOC formation and their decomposability varied with soil depth and incubation duration. Overall, our findings provide the direct experimental evidence that the importance of new leaf- and root-derived SOC for the formation and the decomposability of new SOC were soil depth-dependent. Litter inputs control the formation and accumulation of soil organic carbon (SOC) in terrestrial ecosystems. However, we still lack a complete understanding of how leaf and root litter inputs influence the formation and microbial decomposition of newly formed SOC. Here we used unique soil-litter (13C enriched) mesocosms in the field to explore the effects of leaf and root litter on SOC formation, and then through lab-incubation further assessed microbial decomposability of the new leaf and root litter-derived SOC. We found that the amount of new SOC from root litter was lower 34.3 %–49.2 % than leaf litter in the surface soil after two years of field incubation, but in the subsurface soils it was inversely (higher 110.2 %–688.9 %) and also in all soil depths over the three years of incubation. Furthermore, root litter-derived SOC in the surface soil increased with ongoing time. The differences in the decomposability between new root- and leaf-derived SOC had no clear pattern along with soil depth and incubation duration, but their decomposability at the first two year of field incubation (0.57 %–1.16 %) was significantly higher at the third year (0.09 %–0.29 %), suggesting that new SOC became more stable. The microbial decomposability of newly formed SOC was controlled by soil microbial biomass nitrogen and leucine aminopeptidase activity. These results indicated that the importance of leaf and root litter to new SOC formation and their decomposability varied with soil depth and incubation duration. Overall, our findings provide the direct experimental evidence that the importance of new leaf- and root-derived SOC for the formation and the decomposability of new SOC were soil depth-dependent. •Root litter formed higher new SOC than leaf litter in subsurface soils.•Root litter-derived new SOC in surface soil increased with ongoing time.•Root- and leaf-derived SOC had different decomposability, depending on soil depth.•Decomposability of new SOC was lower at the 3-year field incubation than others.•Decomposability was controlled by soil microbial biomass N and LAP activity. |
ArticleNumber | 106137 |
Author | Song, Tianyang Cheng, Siqi Fornara, Dario A. Wang, Qingkui Zhao, Xuechao |
Author_xml | – sequence: 1 givenname: Tianyang surname: Song fullname: Song, Tianyang organization: Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China – sequence: 2 givenname: Siqi surname: Cheng fullname: Cheng, Siqi organization: Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China – sequence: 3 givenname: Xuechao surname: Zhao fullname: Zhao, Xuechao organization: Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei 230036, China – sequence: 4 givenname: Dario A. surname: Fornara fullname: Fornara, Dario A. organization: Davines Group-Rodale Institute European Regenerative Organic Center (EROC), Via Don Angelo Calzolari 55/a, Parma 43126, Italy – sequence: 5 givenname: Qingkui surname: Wang fullname: Wang, Qingkui email: wqkui@163.com organization: Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang 110016, China |
BookMark | eNp9UU1v1DAU9KFItIV_wMFHLln8kU1jDkhooYBUiUvvlmM_w1sldnjObtUfx3-rs-HMyU_WzLw3MzfsKuUEjL2TYieF7D4cd24uGcedEmpfvzqp767YtTDKNFIb_ZrdlHIUQuxVr6_Z3_tMk1swJ-5S4BN6ygO6kQfweZpzcQOOuDzzHHmCJz6Ci80FSjkvTQDCMwS-buSZfrmEnntHQ9XDxGMmKEvhZ0dYUU-4_N6gAeY6rjLhRJf1H_kXJPALhzMGSB54pDxxqQ_N6AYYx8qvhyxAVdifhgvpDXsV3Vjg7b_3lj3ef308fG8efn77cfj80Hgl-6XZt8GBdkYFr2Jv-qCq9641ujN3nYw6iKgCGK-DMRqkbE1UsevD0GotlNe37P0mO1P-c6qO7ITF15tcgnwqVqtWib2skVZou0FrjqUQRDsTTo6erRR2Lcge7VaQXQuyW0GV9mmjQXVxRiBbPK4phEsoNmT8v8ALCCii5g |
Cites_doi | 10.1111/gcb.16107 10.1111/1365-2435.13256 10.1038/ngeo2520 10.1016/j.agee.2013.04.020 10.1016/j.soilbio.2021.108381 10.1016/j.envres.2024.120285 10.1016/j.soilbio.2016.07.008 10.1038/s41559-017-0259-7 10.1016/j.geoderma.2022.116186 10.1007/s11104-004-0907-y 10.1016/j.geoderma.2024.116803 10.1146/annurev-ecolsys-112414-054234 10.1073/pnas.1716595115 10.1007/s00374-021-01613-w 10.1007/s00374-013-0794-6 10.1016/j.catena.2023.107317 10.1002/rcm.1965 10.1111/nph.12531 10.1016/0038-0717(87)90051-4 10.1016/j.scitotenv.2018.05.388 10.1111/gcb.12113 10.1007/s10533-008-9229-0 10.1111/nph.15361 10.1038/s41561-018-0258-6 10.1111/gcb.13850 10.1002/ecy.3113 10.1016/j.scitotenv.2019.135341 10.1016/j.soilbio.2015.01.015 10.1016/j.soilbio.2021.108390 10.1126/science.1097396 10.1016/j.soilbio.2018.02.016 10.5194/bg-12-6291-2015 10.1023/A:1016125726789 10.1016/j.soilbio.2021.108189 10.1111/gcb.13071 10.1016/j.foreco.2009.01.014 10.1111/gcb.12458 10.1016/j.agrformet.2013.04.021 10.1016/j.soilbio.2010.02.018 10.1007/s11104-016-3139-z 10.1007/s10533-018-0428-z 10.1007/s10533-021-00757-z 10.1007/s10533-021-00804-9 10.1007/s10533-015-0171-7 10.1016/S0146-6380(01)00166-8 10.1016/j.soilbio.2023.109017 10.2136/sssaj2013.09.0413nafsc 10.1111/2041-210X.12512 10.1111/gcbb.12598 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apsoil.2025.106137 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology Ecology |
ExternalDocumentID | 10_1016_j_apsoil_2025_106137 S0929139325002756 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYWO ABFNM ABFRF ABFYP ABGRD ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV AEBSH AEFWE AEGFY AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHEUO AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HMC HVGLF HZ~ IHE J1W KCYFY KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPCBC SSA SSH SSJ SSZ T5K UHS UNMZH WUQ XPP Y6R ZMT ~G- ~KM AAYXX CITATION EFKBS 7S9 EFLBG L.6 |
ID | FETCH-LOGICAL-c218t-54dae3a92dc2f898d2283649369761f3d0f2de9c3d993e1149f2f68db43302c3 |
IEDL.DBID | AIKHN |
ISSN | 0929-1393 |
IngestDate | Fri Sep 05 15:03:19 EDT 2025 Tue Jul 29 02:14:11 EDT 2025 Sat Jun 14 16:54:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Forest soil Litter input Soil organic carbon formation Carbon decomposability Field mesocosm incubation Carbon sequestration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c218t-54dae3a92dc2f898d2283649369761f3d0f2de9c3d993e1149f2f68db43302c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3242051052 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3242051052 crossref_primary_10_1016_j_apsoil_2025_106137 elsevier_sciencedirect_doi_10_1016_j_apsoil_2025_106137 |
PublicationCentury | 2000 |
PublicationDate | July 2025 2025-07-00 20250701 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
PublicationDecade | 2020 |
PublicationTitle | Applied soil ecology : a section of Agriculture, ecosystems & environment |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bell, Carrillo, Boot, Rocca, Pendall, Wallenstein (bb0020) 2013; 201 Cotrufo, Soong, Horton, Campbell, Haddix, Wall, Parton (bb0040) 2015; 8 Delgado-Baquerizo, Bissett, Eldridge, Maestre, He, Wang, Hamonts, Liu, Singh, Fierer (bb0050) 2017; 1 Wei, Zhang, Li, Niu, Xu, Yao (bb0235) 2022; 428 Fulton-Smith, Cotrufo (bb5000) 2019; 11 Archer (bb0010) 2016 Pisani, Lin, Lun, Lajtha, Nadelhoffer, Simpson, Simpson (bb0155) 2016; 127 Sokol, Bradford (bb0190) 2019; 12 Cotrufo, Wallenstein, Boot, Denef, Paul (bb0035) 2013; 19 Wang, Yu, He, Wang (bb0220) 2017; 421 Vance, Brookes, Jenkinson (bb0210) 1987; 19 Grandy, Salam, Wickings, McDaniel, Culman, Snapp (bb0080) 2013; 179 Pierson, Evans, Kayhani, Bowden, Nadelhoffer, Simpson, Lajtha (bb0150) 2021; 154 Cao, He, Chen, Chen, Zhang, Yu, Zhou, Liu, Zhang, Fu (bb0030) 2020; 704 Lin, Zhu, Cheng (bb0135) 2015; 21 Lavallee, Conant, Paul, Cotrufo (bb0120) 2018; 137 Sokol, Kuebbing, Karlsen-Ayala, Bradford (bb0195) 2019; 221 Yang, Wang, Fakher, An, Kuzyakov (bb0250) 2023; 231 Zhang, Tang, You, Guo, Wu, Liu, Sun (bb0260) 2023; 180 Sun, Hobbie, Berg, Zhang, Wang, Wang, Hättenschwiler (bb0205) 2018; 115 Hall, Huang, Timokhin, Hammel (bb0090) 2020; 101 Poirier, Roumet, Munson (bb0160) 2018; 120 Six, Conant, Paul, Paustian (bb0185) 2002; 241 Qiao, Schaefer, Blagodatskaya, Zou, Xu, Kuzyakov (bb0165) 2014; 20 Fortmann-Roe (bb0065) 2015 Wang, He, Wang, Liu (bb0215) 2013; 178-179 Lajtha, Bowden, Crow, Fekete, Kotroczó, Plante, Simpson, Nadelhoffer (bb0110) 2018; 640-641 Whalen, Lounsbury, Geyer, Anthony, Morrison, van Diepen, Le Moine, Nadelhoffer, vanden Enden, Simpson, Frey (bb0240) 2021; 161 Zhao, Tian, Wang (bb0265) 2024; 442 Lal (bb0115) 2004; 304 Mitchell, Scheer, Rowlings, Conant, Cotrufo, van Delden, Grace (bb0140) 2016; 101 Wang, Zhao, Chen, Yang, Chen, Zhang (bb0225) 2019; 33 Sauheitl, Glaser, Bol (bb0180) 2005; 19 Steffens, Helfrich, Joergensen, Eissfeller, Flessa (bb0200) 2015; 83 Zeng, Li, Jian, Xing, Li, Wang, Zhang, Ren, Yang, Han (bb0255) 2024; 263 Angst, Mueller, Nierop, Simpson (bb0005) 2021; 156 Basler, Dippold, Helfrich, Dychmans (bb0015) 2015; 12 Crow, Lajtha, Bowden, Yano, Brant, Caldwell, Sulzman (bb0045) 2009; 258 Lefcheck (bb0125) 2016; 7 Feng, Schaefer, Li, Chen, Feng, Zou (bb0060) 2009; 92 Pausch, Kuzyakov (bb0145) 2018; 24 Feng, He, Zhang, Han, Zhu (bb0055) 2021; 28 Poirier, Angers, Rochette, Whalen (bb5005) 2013; 49 Rasse, Rumpel, Dignac (bb0170) 2005; 269 Guo, Luo, Sun (bb0085) 2021; 152 Rubino, Dungait, Evershed, Bertolini, De Angelis, D’Onofrio, Lagomarsino, Lubritto, Merola, Terrasi, Cotrufo (bb0175) 2010; 42 Wang, Dai, Filley, Wang, Bai (bb0230) 2021; 161 Jackson, Lajtha, Crow, Hugelius, Kramer, Piñeiro (bb0100) 2017; 48 White, Ringelberg (bb0245) 1998 Gleixner, Poirier, Bol, Balesdent (bb0075) 2002; 33 Joergensen (bb0105) 2022; 58 Bowden, Deem, Plante, Peltre, Nadelhoffer, Lajtha (bb0025) 2014; 78 Steffens (10.1016/j.apsoil.2025.106137_bb0200) 2015; 83 Zhao (10.1016/j.apsoil.2025.106137_bb0265) 2024; 442 Sokol (10.1016/j.apsoil.2025.106137_bb0190) 2019; 12 Poirier (10.1016/j.apsoil.2025.106137_bb0160) 2018; 120 Guo (10.1016/j.apsoil.2025.106137_bb0085) 2021; 152 Wang (10.1016/j.apsoil.2025.106137_bb0230) 2021; 161 Lefcheck (10.1016/j.apsoil.2025.106137_bb0125) 2016; 7 Wang (10.1016/j.apsoil.2025.106137_bb0220) 2017; 421 Pisani (10.1016/j.apsoil.2025.106137_bb0155) 2016; 127 Whalen (10.1016/j.apsoil.2025.106137_bb0240) 2021; 161 Cotrufo (10.1016/j.apsoil.2025.106137_bb0035) 2013; 19 Mitchell (10.1016/j.apsoil.2025.106137_bb0140) 2016; 101 Wang (10.1016/j.apsoil.2025.106137_bb0215) 2013; 178-179 Sokol (10.1016/j.apsoil.2025.106137_bb0195) 2019; 221 Poirier (10.1016/j.apsoil.2025.106137_bb5005) 2013; 49 Angst (10.1016/j.apsoil.2025.106137_bb0005) 2021; 156 Wei (10.1016/j.apsoil.2025.106137_bb0235) 2022; 428 Qiao (10.1016/j.apsoil.2025.106137_bb0165) 2014; 20 Archer (10.1016/j.apsoil.2025.106137_bb0010) 2016 Six (10.1016/j.apsoil.2025.106137_bb0185) 2002; 241 Feng (10.1016/j.apsoil.2025.106137_bb0060) 2009; 92 Lajtha (10.1016/j.apsoil.2025.106137_bb0110) 2018; 640-641 Sun (10.1016/j.apsoil.2025.106137_bb0205) 2018; 115 Basler (10.1016/j.apsoil.2025.106137_bb0015) 2015; 12 Cotrufo (10.1016/j.apsoil.2025.106137_bb0040) 2015; 8 Lal (10.1016/j.apsoil.2025.106137_bb0115) 2004; 304 Lavallee (10.1016/j.apsoil.2025.106137_bb0120) 2018; 137 Yang (10.1016/j.apsoil.2025.106137_bb0250) 2023; 231 Zhang (10.1016/j.apsoil.2025.106137_bb0260) 2023; 180 Cao (10.1016/j.apsoil.2025.106137_bb0030) 2020; 704 Lin (10.1016/j.apsoil.2025.106137_bb0135) 2015; 21 Grandy (10.1016/j.apsoil.2025.106137_bb0080) 2013; 179 Feng (10.1016/j.apsoil.2025.106137_bb0055) 2021; 28 Joergensen (10.1016/j.apsoil.2025.106137_bb0105) 2022; 58 Sauheitl (10.1016/j.apsoil.2025.106137_bb0180) 2005; 19 Wang (10.1016/j.apsoil.2025.106137_bb0225) 2019; 33 Bell (10.1016/j.apsoil.2025.106137_bb0020) 2013; 201 Rubino (10.1016/j.apsoil.2025.106137_bb0175) 2010; 42 Hall (10.1016/j.apsoil.2025.106137_bb0090) 2020; 101 Rasse (10.1016/j.apsoil.2025.106137_bb0170) 2005; 269 Fulton-Smith (10.1016/j.apsoil.2025.106137_bb5000) 2019; 11 Bowden (10.1016/j.apsoil.2025.106137_bb0025) 2014; 78 Delgado-Baquerizo (10.1016/j.apsoil.2025.106137_bb0050) 2017; 1 Crow (10.1016/j.apsoil.2025.106137_bb0045) 2009; 258 Fortmann-Roe (10.1016/j.apsoil.2025.106137_bb0065) 2015 Zeng (10.1016/j.apsoil.2025.106137_bb0255) 2024; 263 Vance (10.1016/j.apsoil.2025.106137_bb0210) 1987; 19 White (10.1016/j.apsoil.2025.106137_bb0245) 1998 Gleixner (10.1016/j.apsoil.2025.106137_bb0075) 2002; 33 Jackson (10.1016/j.apsoil.2025.106137_bb0100) 2017; 48 Pausch (10.1016/j.apsoil.2025.106137_bb0145) 2018; 24 Pierson (10.1016/j.apsoil.2025.106137_bb0150) 2021; 154 |
References_xml | – volume: 49 start-page: 527 year: 2013 end-page: 535 ident: bb5005 article-title: Initial soil organic carbon concentration influences the short-term retention of crop-residue carbon in the fine fraction of a heavy clay soil publication-title: Biol. Fertil. Soils – volume: 11 start-page: 971 year: 2019 end-page: 987 ident: bb5000 article-title: Pathways of soil organic matter formation from above and belowground inputs in a Sorghum bicolor bioenergy crop publication-title: Glob. Change Biol. Bioenergy – volume: 12 start-page: 6291 year: 2015 end-page: 6299 ident: bb0015 article-title: Microbial carbon recycling: an underestimated process controlling soil carbon dynamics – part 2: a C publication-title: Biogeosciences – volume: 42 start-page: 1009 year: 2010 end-page: 1016 ident: bb0175 article-title: Carbon input belowground is the major C flux contributing to leaf litter mass loss: evidences from a publication-title: Soil Biol. Biochem. – volume: 241 start-page: 155 year: 2002 end-page: 176 ident: bb0185 article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils publication-title: Plant Soil – volume: 258 start-page: 2224 year: 2009 end-page: 2232 ident: bb0045 article-title: Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest publication-title: Forest Ecol. Manag. – volume: 19 start-page: 988 year: 2013 end-page: 995 ident: bb0035 article-title: The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs formstable soil organic matter? publication-title: Glob. Chang. Biol. – volume: 263 year: 2024 ident: bb0255 article-title: Differences in the regulation of soil carbon pool quality and stability by leaf-litter and root-litter decomposition publication-title: Environ. Res. – volume: 28 start-page: 3426 year: 2021 end-page: 3440 ident: bb0055 article-title: Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems publication-title: Glob. Chang. Biol. – volume: 19 start-page: 697 year: 1987 end-page: 702 ident: bb0210 article-title: Microbial biomass measurements in forest soils: the use of the chloroform fumigation incubation method for strongly acid soils publication-title: Soil Biol. Biochem. – volume: 7 start-page: 573 year: 2016 end-page: 579 ident: bb0125 article-title: piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics publication-title: Methods Ecol. Evol. – volume: 127 start-page: 1 year: 2016 end-page: 14 ident: bb0155 article-title: Long-term doubling of litter inputs accelerates soil organic matter degradation and reduces soil carbon stocks publication-title: Biogeochemistry – volume: 178-179 start-page: 152 year: 2013 end-page: 160 ident: bb0215 article-title: Carbon input manipulation affects soil respiration and microbial community composition in a subtropical coniferous forest publication-title: Agric. For. Meteorol. – volume: 8 start-page: 776 year: 2015 end-page: 779 ident: bb0040 article-title: Formation of soil organic matter via biochemical and physical pathways of litter mass loss publication-title: Nat. Geosci. – volume: 304 start-page: 1623 year: 2004 end-page: 1627 ident: bb0115 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science – volume: 58 start-page: 1 year: 2022 end-page: 6 ident: bb0105 article-title: Phospholipid fatty acids in soil-drawbacks and future prospects publication-title: Biol. Fertil. Soils – volume: 101 year: 2020 ident: bb0090 article-title: Lignin lags, leads, or limits the decomposition of litter and soil organic carbon publication-title: Ecology – volume: 231 year: 2023 ident: bb0250 article-title: Contribution of roots to soil organic carbon: from growth to decomposition experiment publication-title: Catena – volume: 137 start-page: 379 year: 2018 end-page: 393 ident: bb0120 article-title: Incorporation of shoot versus root-derived publication-title: Biogeochemistry – year: 2015 ident: bb0065 article-title: A3: Accurate, Adaptable, and Accessible Error Metrics for Predictive Models – volume: 428 year: 2022 ident: bb0235 article-title: Absorptive rather than transport root decomposition drives soil carbon sequestration: a case study of publication-title: Geoderma – volume: 221 start-page: 233 year: 2019 end-page: 246 ident: bb0195 article-title: Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon publication-title: New Phytol. – volume: 640-641 start-page: 1112 year: 2018 end-page: 1120 ident: bb0110 article-title: The detrital input and removal treatment (DIRT) network: insights into soil carbon stabilization publication-title: Sci. Total Environ. – volume: 92 start-page: 119 year: 2009 end-page: 128 ident: bb0060 article-title: Soil monoand disaccharides and amino acids as influenced by plant litter and root processes in a subtropical moist forest of Southwest China publication-title: Biogeochemistry – volume: 101 start-page: 104 year: 2016 end-page: 113 ident: bb0140 article-title: The influence of above-ground residue input and incorporation on GHG fluxes and stable SOM formation in a sandy soil publication-title: Soil Biol. Biochem. – volume: 269 start-page: 341 year: 2005 end-page: 356 ident: bb0170 article-title: Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation publication-title: Plant Soil – volume: 161 year: 2021 ident: bb0240 article-title: Root control of fungal communities and soil carbon stocks in a temperate forest publication-title: Soil Biol. Biochem. – volume: 442 year: 2024 ident: bb0265 article-title: Roots have greater effects on the accumulation of soil microbial residue carbon in microaggregate fractions than leaf litter in a subtropical forest publication-title: Geoderma – volume: 704 year: 2020 ident: bb0030 article-title: Leaf litter contributes more to soil organic carbon than fine roots in two 10-year-old subtropical plantations publication-title: Sci. Total Environ. – volume: 421 start-page: 1 year: 2017 end-page: 11 ident: bb0220 article-title: Aboveground and belowground litter have equal contributions to soil CO publication-title: Plant Soil – volume: 152 start-page: 327 year: 2021 end-page: 343 ident: bb0085 article-title: Long-term litter type treatments alter soil carbon composition but not microbial carbon utilization in a mixed pine-oak forest publication-title: Biogeochemistry – volume: 161 year: 2021 ident: bb0230 article-title: Aboveground litter addition for five years changes the chemical composition of soil organic matter in a temperate deciduous forest publication-title: Soil Biol. Biochem. – volume: 1 start-page: 1339 year: 2017 end-page: 1347 ident: bb0050 article-title: Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities publication-title: Nat. Ecol. Evol. – volume: 48 start-page: 419 year: 2017 end-page: 445 ident: bb0100 article-title: The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 33 start-page: 357 year: 2002 end-page: 366 ident: bb0075 article-title: Molecular dynamics of organic matter in a cultivated soil publication-title: Org. Geochem. – volume: 33 start-page: 514 year: 2019 end-page: 523 ident: bb0225 article-title: Global synthesis of temperature sensitivity of soil organic carbon decomposition: latitudinal patterns and mechanisms publication-title: Funct. Ecol. – volume: 180 year: 2023 ident: bb0260 article-title: Differential effects of forest-floor litter and roots on soil organic carbon formation in a temperate oak forest publication-title: Soil Biol. Biochem. – year: 2016 ident: bb0010 article-title: rfPermute: Estimate Permutation P-Values for Random Forest Importance Metrics – volume: 179 start-page: 35 year: 2013 end-page: 40 ident: bb0080 article-title: Soil respiration and litter decomposition responses to nitrogen fertilization rate in no-till corn systems publication-title: Agric. Ecosyst. Environ. – volume: 20 start-page: 1943 year: 2014 end-page: 1954 ident: bb0165 article-title: Labile carbon retention compensates for CO publication-title: Glob. Chang. Biol. – volume: 115 start-page: 10392 year: 2018 end-page: 10397 ident: bb0205 article-title: Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition publication-title: Proc. Natl. Acad. Sci. USA – volume: 201 start-page: 505 year: 2013 end-page: 517 ident: bb0020 article-title: Rhizosphere stoichiometry: are C: N: P ratios of plants, soils, and enzymes conserved at the plant species-level? publication-title: New Phytol. – volume: 156 year: 2021 ident: bb0005 article-title: Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter publication-title: Soil Biol. Biochem. – volume: 120 start-page: 246 year: 2018 end-page: 259 ident: bb0160 article-title: The root of the matter: linking root traits and soil organic matter stabilization processes publication-title: Soil Biol. Biochem. – volume: 12 start-page: 46 year: 2019 end-page: 53 ident: bb0190 article-title: Microbial formation of stable soil carbon is more efficient from belowground than aboveground input publication-title: Nat. Geosci. – volume: 83 start-page: 125 year: 2015 end-page: 137 ident: bb0200 article-title: Translocation of publication-title: Soil Biol. Biochem. – start-page: 255 year: 1998 end-page: 272 ident: bb0245 article-title: Signature lipid biomarker analysis publication-title: Techniques in Microbial Ecology – volume: 78 start-page: S66 year: 2014 end-page: S75 ident: bb0025 article-title: Litter input controls on soil carbon in a temperate deciduous forest publication-title: Soil Sci. Soc. Amer. J. – volume: 24 start-page: 1 year: 2018 end-page: 12 ident: bb0145 article-title: Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale publication-title: Glob. Chang. Biol. – volume: 19 start-page: 1437 year: 2005 end-page: 1446 ident: bb0180 article-title: Short-term dynamics of slurry-derived plant and microbial sugars in a temperate grassland soil as assessed by compound-specific delta C-13 analyses publication-title: Rapid Commun. Mass Sp. – volume: 21 start-page: 4602 year: 2015 end-page: 4612 ident: bb0135 article-title: Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon publication-title: Glob. Chang. Biol. – volume: 154 start-page: 433 year: 2021 end-page: 449 ident: bb0150 article-title: Mineral stabilization of soil carbon is suppressed by live roots, outweighing influences from litter quality or quantity publication-title: Biogeochemistry – volume: 28 start-page: 3426 year: 2021 ident: 10.1016/j.apsoil.2025.106137_bb0055 article-title: Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.16107 – volume: 33 start-page: 514 year: 2019 ident: 10.1016/j.apsoil.2025.106137_bb0225 article-title: Global synthesis of temperature sensitivity of soil organic carbon decomposition: latitudinal patterns and mechanisms publication-title: Funct. Ecol. doi: 10.1111/1365-2435.13256 – volume: 8 start-page: 776 issue: 10 year: 2015 ident: 10.1016/j.apsoil.2025.106137_bb0040 article-title: Formation of soil organic matter via biochemical and physical pathways of litter mass loss publication-title: Nat. Geosci. doi: 10.1038/ngeo2520 – volume: 179 start-page: 35 year: 2013 ident: 10.1016/j.apsoil.2025.106137_bb0080 article-title: Soil respiration and litter decomposition responses to nitrogen fertilization rate in no-till corn systems publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2013.04.020 – volume: 161 year: 2021 ident: 10.1016/j.apsoil.2025.106137_bb0230 article-title: Aboveground litter addition for five years changes the chemical composition of soil organic matter in a temperate deciduous forest publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2021.108381 – volume: 263 year: 2024 ident: 10.1016/j.apsoil.2025.106137_bb0255 article-title: Differences in the regulation of soil carbon pool quality and stability by leaf-litter and root-litter decomposition publication-title: Environ. Res. doi: 10.1016/j.envres.2024.120285 – volume: 101 start-page: 104 year: 2016 ident: 10.1016/j.apsoil.2025.106137_bb0140 article-title: The influence of above-ground residue input and incorporation on GHG fluxes and stable SOM formation in a sandy soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.07.008 – volume: 1 start-page: 1339 issue: 9 year: 2017 ident: 10.1016/j.apsoil.2025.106137_bb0050 article-title: Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-017-0259-7 – volume: 428 year: 2022 ident: 10.1016/j.apsoil.2025.106137_bb0235 article-title: Absorptive rather than transport root decomposition drives soil carbon sequestration: a case study of Platycladus orientalis and Quercus variabilis publication-title: Geoderma doi: 10.1016/j.geoderma.2022.116186 – volume: 269 start-page: 341 issue: 1–2 year: 2005 ident: 10.1016/j.apsoil.2025.106137_bb0170 article-title: Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation publication-title: Plant Soil doi: 10.1007/s11104-004-0907-y – volume: 442 year: 2024 ident: 10.1016/j.apsoil.2025.106137_bb0265 article-title: Roots have greater effects on the accumulation of soil microbial residue carbon in microaggregate fractions than leaf litter in a subtropical forest publication-title: Geoderma doi: 10.1016/j.geoderma.2024.116803 – volume: 48 start-page: 419 year: 2017 ident: 10.1016/j.apsoil.2025.106137_bb0100 article-title: The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev-ecolsys-112414-054234 – volume: 115 start-page: 10392 issue: 41 year: 2018 ident: 10.1016/j.apsoil.2025.106137_bb0205 article-title: Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1716595115 – year: 2015 ident: 10.1016/j.apsoil.2025.106137_bb0065 – volume: 58 start-page: 1 year: 2022 ident: 10.1016/j.apsoil.2025.106137_bb0105 article-title: Phospholipid fatty acids in soil-drawbacks and future prospects publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-021-01613-w – start-page: 255 year: 1998 ident: 10.1016/j.apsoil.2025.106137_bb0245 article-title: Signature lipid biomarker analysis – volume: 49 start-page: 527 issue: 5 year: 2013 ident: 10.1016/j.apsoil.2025.106137_bb5005 article-title: Initial soil organic carbon concentration influences the short-term retention of crop-residue carbon in the fine fraction of a heavy clay soil publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-013-0794-6 – volume: 231 year: 2023 ident: 10.1016/j.apsoil.2025.106137_bb0250 article-title: Contribution of roots to soil organic carbon: from growth to decomposition experiment publication-title: Catena doi: 10.1016/j.catena.2023.107317 – volume: 19 start-page: 1437 year: 2005 ident: 10.1016/j.apsoil.2025.106137_bb0180 article-title: Short-term dynamics of slurry-derived plant and microbial sugars in a temperate grassland soil as assessed by compound-specific delta C-13 analyses publication-title: Rapid Commun. Mass Sp. doi: 10.1002/rcm.1965 – volume: 201 start-page: 505 year: 2013 ident: 10.1016/j.apsoil.2025.106137_bb0020 article-title: Rhizosphere stoichiometry: are C: N: P ratios of plants, soils, and enzymes conserved at the plant species-level? publication-title: New Phytol. doi: 10.1111/nph.12531 – volume: 19 start-page: 697 year: 1987 ident: 10.1016/j.apsoil.2025.106137_bb0210 article-title: Microbial biomass measurements in forest soils: the use of the chloroform fumigation incubation method for strongly acid soils publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(87)90051-4 – volume: 640-641 start-page: 1112 year: 2018 ident: 10.1016/j.apsoil.2025.106137_bb0110 article-title: The detrital input and removal treatment (DIRT) network: insights into soil carbon stabilization publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.05.388 – volume: 19 start-page: 988 issue: 4 year: 2013 ident: 10.1016/j.apsoil.2025.106137_bb0035 article-title: The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs formstable soil organic matter? publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12113 – volume: 92 start-page: 119 year: 2009 ident: 10.1016/j.apsoil.2025.106137_bb0060 article-title: Soil monoand disaccharides and amino acids as influenced by plant litter and root processes in a subtropical moist forest of Southwest China publication-title: Biogeochemistry doi: 10.1007/s10533-008-9229-0 – volume: 221 start-page: 233 year: 2019 ident: 10.1016/j.apsoil.2025.106137_bb0195 article-title: Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon publication-title: New Phytol. doi: 10.1111/nph.15361 – volume: 12 start-page: 46 year: 2019 ident: 10.1016/j.apsoil.2025.106137_bb0190 article-title: Microbial formation of stable soil carbon is more efficient from belowground than aboveground input publication-title: Nat. Geosci. doi: 10.1038/s41561-018-0258-6 – volume: 24 start-page: 1 year: 2018 ident: 10.1016/j.apsoil.2025.106137_bb0145 article-title: Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13850 – volume: 101 issue: 9 year: 2020 ident: 10.1016/j.apsoil.2025.106137_bb0090 article-title: Lignin lags, leads, or limits the decomposition of litter and soil organic carbon publication-title: Ecology doi: 10.1002/ecy.3113 – volume: 704 year: 2020 ident: 10.1016/j.apsoil.2025.106137_bb0030 article-title: Leaf litter contributes more to soil organic carbon than fine roots in two 10-year-old subtropical plantations publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135341 – volume: 83 start-page: 125 year: 2015 ident: 10.1016/j.apsoil.2025.106137_bb0200 article-title: Translocation of 13C-labeled leaf or root litter carbon of beech (Fraxinus excelsior L.) and ash (Fagus sylvatica L.) during decomposition-a laboratory incubation experiment publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.01.015 – volume: 161 year: 2021 ident: 10.1016/j.apsoil.2025.106137_bb0240 article-title: Root control of fungal communities and soil carbon stocks in a temperate forest publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2021.108390 – volume: 304 start-page: 1623 year: 2004 ident: 10.1016/j.apsoil.2025.106137_bb0115 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science doi: 10.1126/science.1097396 – volume: 120 start-page: 246 year: 2018 ident: 10.1016/j.apsoil.2025.106137_bb0160 article-title: The root of the matter: linking root traits and soil organic matter stabilization processes publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.02.016 – volume: 12 start-page: 6291 year: 2015 ident: 10.1016/j.apsoil.2025.106137_bb0015 article-title: Microbial carbon recycling: an underestimated process controlling soil carbon dynamics – part 2: a C3-C4 vegetation change field labelling experiment publication-title: Biogeosciences doi: 10.5194/bg-12-6291-2015 – year: 2016 ident: 10.1016/j.apsoil.2025.106137_bb0010 – volume: 241 start-page: 155 issue: 2 year: 2002 ident: 10.1016/j.apsoil.2025.106137_bb0185 article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils publication-title: Plant Soil doi: 10.1023/A:1016125726789 – volume: 156 year: 2021 ident: 10.1016/j.apsoil.2025.106137_bb0005 article-title: Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2021.108189 – volume: 21 start-page: 4602 year: 2015 ident: 10.1016/j.apsoil.2025.106137_bb0135 article-title: Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13071 – volume: 258 start-page: 2224 year: 2009 ident: 10.1016/j.apsoil.2025.106137_bb0045 article-title: Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest publication-title: Forest Ecol. Manag. doi: 10.1016/j.foreco.2009.01.014 – volume: 20 start-page: 1943 year: 2014 ident: 10.1016/j.apsoil.2025.106137_bb0165 article-title: Labile carbon retention compensates for CO2 released by priming in forest soils publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12458 – volume: 178-179 start-page: 152 year: 2013 ident: 10.1016/j.apsoil.2025.106137_bb0215 article-title: Carbon input manipulation affects soil respiration and microbial community composition in a subtropical coniferous forest publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2013.04.021 – volume: 42 start-page: 1009 issue: 7 year: 2010 ident: 10.1016/j.apsoil.2025.106137_bb0175 article-title: Carbon input belowground is the major C flux contributing to leaf litter mass loss: evidences from a 13C labelled-leaf litter experiment publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.02.018 – volume: 421 start-page: 1 year: 2017 ident: 10.1016/j.apsoil.2025.106137_bb0220 article-title: Aboveground and belowground litter have equal contributions to soil CO2 emission: an evidence from a 4-year measurement in a subtropical forest publication-title: Plant Soil doi: 10.1007/s11104-016-3139-z – volume: 137 start-page: 379 year: 2018 ident: 10.1016/j.apsoil.2025.106137_bb0120 article-title: Incorporation of shoot versus root-derived 13C and 15N into mineral-associated organic matter fractions: results of a soil slurry incubation with dual-labelled plant material publication-title: Biogeochemistry doi: 10.1007/s10533-018-0428-z – volume: 152 start-page: 327 issue: 2–3 year: 2021 ident: 10.1016/j.apsoil.2025.106137_bb0085 article-title: Long-term litter type treatments alter soil carbon composition but not microbial carbon utilization in a mixed pine-oak forest publication-title: Biogeochemistry doi: 10.1007/s10533-021-00757-z – volume: 154 start-page: 433 year: 2021 ident: 10.1016/j.apsoil.2025.106137_bb0150 article-title: Mineral stabilization of soil carbon is suppressed by live roots, outweighing influences from litter quality or quantity publication-title: Biogeochemistry doi: 10.1007/s10533-021-00804-9 – volume: 127 start-page: 1 year: 2016 ident: 10.1016/j.apsoil.2025.106137_bb0155 article-title: Long-term doubling of litter inputs accelerates soil organic matter degradation and reduces soil carbon stocks publication-title: Biogeochemistry doi: 10.1007/s10533-015-0171-7 – volume: 33 start-page: 357 year: 2002 ident: 10.1016/j.apsoil.2025.106137_bb0075 article-title: Molecular dynamics of organic matter in a cultivated soil publication-title: Org. Geochem. doi: 10.1016/S0146-6380(01)00166-8 – volume: 180 year: 2023 ident: 10.1016/j.apsoil.2025.106137_bb0260 article-title: Differential effects of forest-floor litter and roots on soil organic carbon formation in a temperate oak forest publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2023.109017 – volume: 78 start-page: S66 year: 2014 ident: 10.1016/j.apsoil.2025.106137_bb0025 article-title: Litter input controls on soil carbon in a temperate deciduous forest publication-title: Soil Sci. Soc. Amer. J. doi: 10.2136/sssaj2013.09.0413nafsc – volume: 7 start-page: 573 year: 2016 ident: 10.1016/j.apsoil.2025.106137_bb0125 article-title: piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12512 – volume: 11 start-page: 971 issue: 8 year: 2019 ident: 10.1016/j.apsoil.2025.106137_bb5000 article-title: Pathways of soil organic matter formation from above and belowground inputs in a Sorghum bicolor bioenergy crop publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/gcbb.12598 |
SSID | ssj0005283 |
Score | 2.4404397 |
Snippet | Litter inputs control the formation and accumulation of soil organic carbon (SOC) in terrestrial ecosystems. However, we still lack a complete understanding of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 106137 |
SubjectTerms | biodegradation Carbon decomposability Carbon sequestration Field mesocosm incubation Forest soil leaves leucyl aminopeptidase Litter input microbial nitrogen plant litter soil depth soil ecology soil organic carbon Soil organic carbon formation |
Title | Formation and microbial decomposability of new leaf- and root-derived soil organic carbon in forests varied with soil depth and duration: Direct evidence from 13C-labelled litter incubation |
URI | https://dx.doi.org/10.1016/j.apsoil.2025.106137 https://www.proquest.com/docview/3242051052 |
Volume | 211 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA93ewjeg-ipeKcuEXzNbTdps61vy3LL-nWInnBvIc0kR0XbZbd7sC_-Z_5vzjQtqAiCb2mbDKEznflNMx-MvSwU-ES5VCTeZSJVeiryUloBMs2tc1miJeU7v7_Uq8_pm-vs-oAthlwYCqvsdX_U6Z227u9M-rc5WVfV5FOClh3xi0IjTmdv-pAdSVXobMSO5q_fri5_ifSI1ThxvqAFQwZdF-Zl19umojMImZ2Te0QN0f9uof7Q1Z0BWt5n93rkyOdxcw_Yga9P2PH8ZtNXz_An7E7sLLnH0UVXjXr_kP1YDumJ3NbAv1Vd5SUkBJ7CyZtYYrfd8yZwhNj8q7dBdFMRU7cCUEJvPXDaPo8toBx3dlMivarmCHlxq1t-Sy43cPqrG6eCX-OQyMAuCtkrHtUr930jU06pLXyqFgIlkc4PgONGkM9I2O3KbtEjdrW8uFqsRN-zQTgEC63IUrBe2UKCkyEvcqDyOjqltoEzPQ0KkiDBF04BAiOPzlgRZNA5lKlSiXTqMRvVTe2fMI6ODyiqblhqjw9RglSOujj4WWGLJKhTJgY2mXWszGGGkLUvJrLVEFtNZOspmw28NL9JmEHj8Y-VLwbWG_z46ETF1r7ZbQ2hUdJqmTz7b-pP2V26iiHAz9io3ez8cwQ6bTlmh-ffp2MU58XHdx_GvVj_BAyBAXY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_niagPoqfi-TmCr7ntJm239e1Ybln17l5c4d5Cmkmkou2y2z3YF_8z_zdnmhZUBMG30EyG0JnO_NLMhxBvSo0-0S6ViXeZTHU-lUWlrESVFta5LMkV5ztfXObLT-n7q-zqQMzHXBgOqxxsf7TpvbUenkyGtzlZ1_XkY0KenfCLJifOd2_5DXEzzfSM4_pOvv8a5xFrcRK1ZPIxf64P8rLrbVvzDYTKTvhwxO3Q_-6f_rDUvftZ3Bf3BtwIp3FrD8SBb47E3dPPm6F2hj8St2JfyT2Nzvpa1PuH4sdiTE4E2yB8q_u6S8QIPQeTt7HAbreHNgABbPjqbZA9KSHqTiLp57VH4O1DbADlwNlNRfzqBgjw0la3cM0HbgT-pxtJ0a9pyGxwF1XsLUTjCn5oYwqc2AJTPZekh3x7gEAbISkTY7er-kWPxGpxtpov5dCxQTqCCp3MUrRe21KhU6EoC-TiOnnKTQNn-TRoTIJCXzqNBIs8HcXKoEJeYJVqnSinH4vDpm38EwF07EHNtQ2r3NMk6Y8uyBIHPyttmQR9LOQoJrOOdTnMGLD2xUSxGhariWI9FrNRluY3_TLkOv6x8vUoekOfHt-n2Ma3u61hLMo2LVNP_5v7K3F7ubo4N-fvLj88E3d4JgYDPxeH3WbnXxDk6aqXvUr_BDhQAKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+and+microbial+decomposability+of+new+leaf-+and+root-derived+soil+organic+carbon+in+forests+varied+with+soil+depth+and+duration%3A+Direct+evidence+from+13C-labelled+litter+incubation&rft.jtitle=Applied+soil+ecology+%3A+a+section+of+Agriculture%2C+ecosystems+%26+environment&rft.au=Song%2C+Tianyang&rft.au=Cheng%2C+Siqi&rft.au=Zhao%2C+Xuechao&rft.au=Fornara%2C+Dario+A.&rft.date=2025-07-01&rft.pub=Elsevier+B.V&rft.issn=0929-1393&rft.volume=211&rft_id=info:doi/10.1016%2Fj.apsoil.2025.106137&rft.externalDocID=S0929139325002756 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-1393&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-1393&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-1393&client=summon |