Integrating terrestrial and orbital reflectance data improves the soil attribute modeling performance

A comprehensive understanding of soil attributes is crucial for effective environmental management. Geotechnologies offer an alternative to traditional soil surveying methods. This study evaluated the potential of multispectral data from terrestrial and orbital sensors to predict soil attributes of...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Regional Vol. 41; p. e00945
Main Authors Novais, Jean Jesus Macedo, Rosas, Jorge Tadeu Fim, Rosin, Nícolas Augusto, Santos, Uemeson José dos, Lacerda, Marilusa Pinto Coelho, Demattê, José Alexandre Melo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A comprehensive understanding of soil attributes is crucial for effective environmental management. Geotechnologies offer an alternative to traditional soil surveying methods. This study evaluated the potential of multispectral data from terrestrial and orbital sensors to predict soil attributes of Rhodic Ferralsols in Central Brazil using machine learning algorithms. Physicochemical and spectral attributes of 37 soil samples (0–20 cm depth) were collected and analyzed. Spectral signatures were extracted from visible to shortwave infrared using the ASTER, a satellite-based sensor providing multispectral data, for comparison to laboratory hyperspectral data from Fieldspec Pro 4, and resampled to ASTER bands. Random Forest (RF) and Multiple Linear Regression (MLR) modeled the soil attributes using the spectral libraries, individually and combined. Results showed similar spectral responses between the sensors, indicating that resampling hyperspectral data from terrestrial sensors can be a reliable reference for orbital data. Due to controlled conditions and reduced interference from moisture and atmosphere, the terrestrial sensor and combined approaches had a higher Pearson correlation with soil attributes than the orbital sensor. MLR with combined sensors effectively predicted soil attributes, achieving R2 of 0.65 for clay and 0.69 for organic matter. RF showed lower performance, with R2 of 0.32 for base saturation and 0.30 for Cation Exchange Capacity, attributed to limited datasets. Combining terrestrial and orbital sensors improves soil attribute modeling, nevertheless, it requires robust sampling, image processing, and sensors testing, datasets, and algorithms. This study highlights the potential of integrating multilevel remote sensing for efficient soil analysis and mapping, contributing to sustainable environmental management. [Display omitted]
AbstractList A comprehensive understanding of soil attributes is crucial for effective environmental management. Geotechnologies offer an alternative to traditional soil surveying methods. This study evaluated the potential of multispectral data from terrestrial and orbital sensors to predict soil attributes of Rhodic Ferralsols in Central Brazil using machine learning algorithms. Physicochemical and spectral attributes of 37 soil samples (0-20 cm depth) were collected and analyzed. Spectral signatures were extracted from visible to shortwave infrared using the ASTER, a satellite-based sensor providing multispectral data, for comparison to laboratory hyperspectral data from Fieldspec Pro 4, and resampled to ASTER bands. Random Forest (RF) and Multiple Linear Regression (MLR) modeled the soil attributes using the spectral libraries, individually and combined. Results showed similar spectral responses between the sensors, indicating that resampling hyperspectral data from terrestrial sensors can be a reliable reference for orbital data. Due to controlled conditions and reduced interference from moisture and atmosphere, the terrestrial sensor and combined approaches had a higher Pearson correlation with soil attributes than the orbital sensor. MLR with combined sensors effectively predicted soil attributes, achieving R² of 0.65 for clay and 0.69 for organic matter. RF showed lower performance, with R² of 0.32 for base saturation and 0.30 for Cation Exchange Capacity, attributed to limited datasets. Combining terrestrial and orbital sensors improves soil attribute modeling, nevertheless, it requires robust sampling, image processing, and sensors testing, datasets, and algorithms. This study highlights the potential of integrating multilevel remote sensing for efficient soil analysis and mapping, contributing to sustainable environmental management.
A comprehensive understanding of soil attributes is crucial for effective environmental management. Geotechnologies offer an alternative to traditional soil surveying methods. This study evaluated the potential of multispectral data from terrestrial and orbital sensors to predict soil attributes of Rhodic Ferralsols in Central Brazil using machine learning algorithms. Physicochemical and spectral attributes of 37 soil samples (0–20 cm depth) were collected and analyzed. Spectral signatures were extracted from visible to shortwave infrared using the ASTER, a satellite-based sensor providing multispectral data, for comparison to laboratory hyperspectral data from Fieldspec Pro 4, and resampled to ASTER bands. Random Forest (RF) and Multiple Linear Regression (MLR) modeled the soil attributes using the spectral libraries, individually and combined. Results showed similar spectral responses between the sensors, indicating that resampling hyperspectral data from terrestrial sensors can be a reliable reference for orbital data. Due to controlled conditions and reduced interference from moisture and atmosphere, the terrestrial sensor and combined approaches had a higher Pearson correlation with soil attributes than the orbital sensor. MLR with combined sensors effectively predicted soil attributes, achieving R2 of 0.65 for clay and 0.69 for organic matter. RF showed lower performance, with R2 of 0.32 for base saturation and 0.30 for Cation Exchange Capacity, attributed to limited datasets. Combining terrestrial and orbital sensors improves soil attribute modeling, nevertheless, it requires robust sampling, image processing, and sensors testing, datasets, and algorithms. This study highlights the potential of integrating multilevel remote sensing for efficient soil analysis and mapping, contributing to sustainable environmental management. [Display omitted]
ArticleNumber e00945
Author Santos, Uemeson José dos
Novais, Jean Jesus Macedo
Rosas, Jorge Tadeu Fim
Demattê, José Alexandre Melo
Lacerda, Marilusa Pinto Coelho
Rosin, Nícolas Augusto
Author_xml – sequence: 1
  givenname: Jean Jesus Macedo
  surname: Novais
  fullname: Novais, Jean Jesus Macedo
  email: jeannovais@usp.br, jjnagron@gmail.com
  organization: Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-260, São Paulo, Brazil
– sequence: 2
  givenname: Jorge Tadeu Fim
  surname: Rosas
  fullname: Rosas, Jorge Tadeu Fim
  email: jorge.fimrosas@usp.br
  organization: Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-260, São Paulo, Brazil
– sequence: 3
  givenname: Nícolas Augusto
  surname: Rosin
  fullname: Rosin, Nícolas Augusto
  email: narosin@usp.br
  organization: Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-260, São Paulo, Brazil
– sequence: 4
  givenname: Uemeson José dos
  surname: Santos
  fullname: Santos, Uemeson José dos
  email: uemeson.santos@ifpa.edu.br
  organization: Federal Institute of Education, Science, and Technology of Pará, Campus Santarém, Av. Mal. Castelo Branco, 621 - 68020-820, Interventoria, Santarém, PA, Brazil
– sequence: 5
  givenname: Marilusa Pinto Coelho
  surname: Lacerda
  fullname: Lacerda, Marilusa Pinto Coelho
  email: marilusa@unb.br, marilusapcl@gmail.com
  organization: Faculty of Agronomy and Veterinary Medicine, Darcy Ribeiro University Campus, University of Brasília, ICC Sul, Asa Norte 70910-960, Brazil
– sequence: 6
  givenname: José Alexandre Melo
  surname: Demattê
  fullname: Demattê, José Alexandre Melo
  email: jamdemat@usp.br
  organization: Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-260, São Paulo, Brazil
BookMark eNp9kD9PwzAQxS1UJErpN2DwyJJgO3ESL0io4k-lSiwwW7ZzKa6SuNhuJb49jsLAxHR30ntP93vXaDG6ERC6pSSnhFb3h3wPrvUhZ4TxHAgRJb9AS1Zwlk3H4s9-hdYhHAghTPCirtgSwXaMsPcq2nGPI3gPIXqreqzGFjuvbUy7h64HE9VoALcqKmyHo3dnCDh-Ag7OJnlMNn2KgAfXQj-lHcF3zg-T6wZddqoPsP6dK_Tx_PS-ec12by_bzeMuM4w2MWNVo0BoSoRpmlITAkI0Fel0zWstiKa16YrScGFYWZe8E0xpzpuOlskg2rZYobs5N733dUoocrDBQN-rEdwpyIIl9FpwUSZpOUuNdyEkQnn0dlD-W1Iip2LlQc7FyqlYORebbA-zDRLG2YKXwVhIiK31qSLZOvt_wA9qm4b7
Cites_doi 10.1007/s11368-020-02623-1
10.1016/j.rse.2018.04.047
10.1590/S0006-87052011000300017
10.1111/ejss.13370
10.1023/A:1010933404324
10.1590/S0006-87052010000200025
10.1038/s41598-020-61408-1
10.1127/0941-2948/2013/0507
10.1016/j.jenvman.2025.124155
10.1016/j.biosystemseng.2005.05.001
10.3390/rs13061181
10.1016/j.geoderma.2015.01.002
10.1016/j.scitotenv.2020.139895
10.3390/agriengineering5010011
10.3390/rs16162869
10.1590/S0006-87052012005000005
10.1007/s11053-023-10268-3
10.3390/rs15020465
10.1016/j.geoderma.2024.117094
10.1016/j.geoderma.2005.03.007
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geodrs.2025.e00945
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
EISSN 2352-0094
ExternalDocumentID 10_1016_j_geodrs_2025_e00945
S2352009425000306
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AHEUO
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
EBS
EFJIC
EFKBS
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SSA
SSE
SSH
SSJ
SSZ
T5K
~G-
AAYXX
CITATION
7S9
L.6
ID FETCH-LOGICAL-c218t-268ae9b109c884b00e99860fb757b90b17cf34c59c24745f92ab558f149c89dd3
IEDL.DBID AIKHN
ISSN 2352-0094
IngestDate Wed Jul 02 04:50:44 EDT 2025
Thu Jul 03 08:32:31 EDT 2025
Sat Jul 19 17:10:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Soil sensing
Random forest
Multiple linear regression
Mean equity test
ASTER
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c218t-268ae9b109c884b00e99860fb757b90b17cf34c59c24745f92ab558f149c89dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3200279594
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3200279594
crossref_primary_10_1016_j_geodrs_2025_e00945
elsevier_sciencedirect_doi_10_1016_j_geodrs_2025_e00945
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma Regional
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Xue, Xiao, Shi, Chen (bb0190) 2023; 15
Wadoux (bb0175) 2023; 74
(bb0080) 2017
Freitas-Silva, Campos (bb0090) 1998
Brady, Weil (bb0030) 2020
Martins (bb0105) 1998; vol. 1
Santos, Jacomine, Anjos, Oliveira, Lumbreras, Coelho, Almeida, Araújo Filho, Oliveira, Cunha (bb0150) 2018
Welch (bb0180) 1947; 34
ASD INC - Analytical Spectral Devices Inc (bb0020) 2002
de Oliveira, Gonçalves, Furlanetto, de Oliveira, Mendonça, de Haubert, Crusiol, Falcioni, de Oliveira, Reis, do Ecker, Nanni (bb0060) 2024; 16
Moura-Bueno, Dalmolin, Horst-Heinen, ten Caten, Vasques, Dotto, Grunwald (bb0120) 2020; 737
Charnet, Bonvino, Freire, Charnet (bb0045) 1999
Liu, Xie, Han, Wang, Sun, Li, Li (bb0100) 2020; 20
Cline, Buol (bb0050) 1973; 73
Dharumarajan, Lalitha, Kalaiselvi, Kaliraj, Adhikari, Vasundhara, Niranjana, Hegde, Pradeep, Hittanagi, Ramamurthy (bb0075) 2024
Fiorio, Demattê, Nanni, Formaggio (bb0085) 2010; 69
Carvalho, Moura-Bueno, Ramon, Almeida, Naibo, Martins, Santos, Gianello, Tiecher (bb0040) 2022; 29
Costa, Marcuzzo, Ferreira, Andrade (bb0055) 2012; 5
Novais, Melo, Junior, Lima, Souza, Melo, Amaral, Tziolas, Demattˆe (bb0135) 2025; 375
Novais, Lacerda, Sano, Demattê, Oliveira (bb0125) 2021; 13
EMBRAPA [Brazilian Agricultural Research Corporation] (bb6001) 1978
Abrams (bb0005) 2002
Alvares, Stape, Sentelhas, De Moraes Gonçalves, Sparovek (bb0015) 2013; 22
Genú, Demattê (bb0095) 2012; 71
Ben-Dor, Ong, Lau (bb0025) 2015; 245–246
Demattê, Safanelli, Poppiel, Rizzo, Silvero, de Mendes, Bonfatti, Dotto, Salazar, de Mello, da Paiva, Souza, dos Santos, Maria Nascimento, de Mello, Bellinaso, Gonzaga Neto, Amorim, de Resende, da Vieira, de Queiroz, Gallo, Sayão, da Lisboa (bb0070) 2020; 10
Breiman (bb0035) 2001; 45
Vibhute, Kale (bb0165) 2023; 12
Demattê, Fongaro, Rizzo, Safanelli (bb0065) 2018; 212
Saeys, Mouazen, Ramon (bb0145) 2005; 91
Sousa Junior, Dematte, Araujo (bb0160) 2011; 70
Zerai, Gorsevski, Panter, Farver, Tangestani (bb0185) 2023; 32
Abrams, Hook, Ramachandran (bb0010) 2007; 2007
Miller (bb0110) 2017
Minasny, Bandai, Ghezzehei, Huang, Ma, McBratney, Widyastuti (bb0115) 2024; 452
Viscarra Rossel, Walvoort, Mcbratney, Janik, Skjemstad (bb0170) 2006; 131
Novais, Poppiel, Lacerda, Oliveira, Demattê (bb0130) 2023; 5
R Core Team (bb0140) 2015; 55
Miller (10.1016/j.geodrs.2025.e00945_bb0110) 2017
R Core Team (10.1016/j.geodrs.2025.e00945_bb0140) 2015; 55
Sousa Junior (10.1016/j.geodrs.2025.e00945_bb0160) 2011; 70
Zerai (10.1016/j.geodrs.2025.e00945_bb0185) 2023; 32
Breiman (10.1016/j.geodrs.2025.e00945_bb0035) 2001; 45
(10.1016/j.geodrs.2025.e00945_bb0080) 2017
Charnet (10.1016/j.geodrs.2025.e00945_bb0045) 1999
Brady (10.1016/j.geodrs.2025.e00945_bb0030) 2020
Novais (10.1016/j.geodrs.2025.e00945_bb0130) 2023; 5
Ben-Dor (10.1016/j.geodrs.2025.e00945_bb0025) 2015; 245–246
Novais (10.1016/j.geodrs.2025.e00945_bb0125) 2021; 13
Fiorio (10.1016/j.geodrs.2025.e00945_bb0085) 2010; 69
Cline (10.1016/j.geodrs.2025.e00945_bb0050) 1973; 73
Freitas-Silva (10.1016/j.geodrs.2025.e00945_bb0090) 1998
Saeys (10.1016/j.geodrs.2025.e00945_bb0145) 2005; 91
Santos (10.1016/j.geodrs.2025.e00945_bb0150) 2018
Demattê (10.1016/j.geodrs.2025.e00945_bb0065) 2018; 212
Dharumarajan (10.1016/j.geodrs.2025.e00945_bb0075) 2024
de Oliveira (10.1016/j.geodrs.2025.e00945_bb0060) 2024; 16
Novais (10.1016/j.geodrs.2025.e00945_bb0135) 2025; 375
Viscarra Rossel (10.1016/j.geodrs.2025.e00945_bb0170) 2006; 131
Minasny (10.1016/j.geodrs.2025.e00945_bb0115) 2024; 452
Martins (10.1016/j.geodrs.2025.e00945_bb0105) 1998; vol. 1
Abrams (10.1016/j.geodrs.2025.e00945_bb0005)
Costa (10.1016/j.geodrs.2025.e00945_bb0055) 2012; 5
Alvares (10.1016/j.geodrs.2025.e00945_bb0015) 2013; 22
Vibhute (10.1016/j.geodrs.2025.e00945_bb0165) 2023; 12
Zhang (10.1016/j.geodrs.2025.e00945_bb0190) 2023; 15
Demattê (10.1016/j.geodrs.2025.e00945_bb0070) 2020; 10
Carvalho (10.1016/j.geodrs.2025.e00945_bb0040) 2022; 29
EMBRAPA [Brazilian Agricultural Research Corporation] (10.1016/j.geodrs.2025.e00945_bb6001) 1978
Liu (10.1016/j.geodrs.2025.e00945_bb0100) 2020; 20
Moura-Bueno (10.1016/j.geodrs.2025.e00945_bb0120) 2020; 737
Wadoux (10.1016/j.geodrs.2025.e00945_bb0175) 2023; 74
Genú (10.1016/j.geodrs.2025.e00945_bb0095) 2012; 71
Welch (10.1016/j.geodrs.2025.e00945_bb0180) 1947; 34
Abrams (10.1016/j.geodrs.2025.e00945_bb0010) 2007; 2007
ASD INC - Analytical Spectral Devices Inc (10.1016/j.geodrs.2025.e00945_bb0020) 2002
References_xml – volume: 91
  start-page: 393
  year: 2005
  end-page: 402
  ident: bb0145
  article-title: Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy
  publication-title: Biosyst. Eng.
– volume: 245–246
  start-page: 112
  year: 2015
  end-page: 124
  ident: bb0025
  article-title: Reflectance measurements of soils in the laboratory: standards and protocols
  publication-title: Geoderma
– volume: 69
  start-page: 453
  year: 2010
  end-page: 466
  ident: bb0085
  article-title: Spectral differentiation of soil using data obtained in laboratories and by orbital sensor
  publication-title: Bragantia
– year: 1978
  ident: bb6001
  article-title: National Service For Soil Survey And Conservation. Survey of soil recognition in the Federal District
– year: 1999
  ident: bb0045
  article-title: Analysis of Linear Regression Models with Applications
– start-page: 279
  year: 2017
  ident: bb0110
  article-title: Statistics for data science
  publication-title: Leverage the Power of Statistics for Data Analysis, Classification, Regression, Machine Learning, and Neural Networks
– volume: 737
  start-page: 139895
  year: 2020
  ident: bb0120
  article-title: When does stratification of a subtropical soil spectral library improve predictions of soil organic carbon content?
  publication-title: Sci. Total Environ.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0035
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 5
  start-page: 156
  year: 2023
  end-page: 172
  ident: bb0130
  article-title: Spectral mixture modeling of an ASTER Bare soil synthetic image using a representative spectral library to map soils in Central-Brazil
  publication-title: AgriEngineering
– volume: 452
  year: 2024
  ident: bb0115
  article-title: Soil science-informed machine learning
  publication-title: Geoderma
– volume: 375
  year: 2025
  ident: bb0135
  article-title: Online analysis of Amazon’s soils through reflectance spectroscopy and cloud computing can support policies and the sustainable development
  publication-title: J. Environ. Manag.
– volume: 22
  start-page: 711
  year: 2013
  end-page: 728
  ident: bb0015
  article-title: Köppen’s climate classification map for Brazil
  publication-title: Meteorol. Z.
– volume: 212
  start-page: 161
  year: 2018
  end-page: 175
  ident: bb0065
  article-title: Geospatial soil sensing system (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images
  publication-title: Remote Sens. Environ.
– volume: 2007
  year: 2007
  ident: bb0010
  article-title: Aster User Handbook: Version 2
– volume: 12
  year: 2023
  ident: bb0165
  article-title: Mapping several soil types using hyperspectral datasets and advanced machine learning methods
  publication-title: Res Opt
– start-page: 45
  year: 1998
  ident: bb0090
  article-title: Geologia do Distrito Federal
  publication-title: Institute of Geosciences of the University of Brasilia. IEMA/SEMATEC/UNB (Org.), Hydrogeological Inventory and Surface Water Resources of the Federal District
– volume: 70
  start-page: 610
  year: 2011
  end-page: 621
  ident: bb0160
  article-title: Terrestrial and orbital spectral models in the determination of soil attribute contents: potential and costs
  publication-title: Bragantia
– volume: 5
  start-page: 87
  year: 2012
  end-page: 100
  ident: bb0055
  article-title: Espacialização e Temporadaidade da Precipitação Pluviométrica do Estado de Goiás e Distrito Federal
  publication-title: Braz. J. Phys. Ther.
– volume: 13
  start-page: 1181
  year: 2021
  ident: bb0125
  article-title: Digital soil mapping using multispectral modeling with Landsat time series cloud computing based
  publication-title: Remote Sens.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 11
  ident: bb0070
  article-title: Bare Earth’s surface spectra as a proxy for soil resource monitoring
  publication-title: Sci. Rep.
– volume: 74
  year: 2023
  ident: bb0175
  article-title: Interpretable spectroscopic modelling of soil with machine learning
  publication-title: Eur. J. Soil Sci.
– year: 2002
  ident: bb0005
  article-title: The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra Spacecraft
– volume: 32
  start-page: 2463
  year: 2023
  end-page: 2493
  ident: bb0185
  article-title: Integration of ASTER and Soil survey data by principal components analysis and one-class support vector machine for mineral Prospectivity mapping in Kerkasha, southwestern Eritrea
  publication-title: Nat. Resour. Res.
– volume: 15
  start-page: 465
  year: 2023
  ident: bb0190
  article-title: Towards optimal variable selection methods for soil property prediction using a regional soil Vis-NIR spectral library
  publication-title: Remote Sens.
– year: 2002
  ident: bb0020
  article-title: FieldSpec pro User’s Guide
– volume: 34
  start-page: 28
  year: 1947
  end-page: 35
  ident: bb0180
  article-title: The generalization of 'Student' I problem when several ddferent popula-tion variances are involved
  publication-title: Biomefrika
– volume: 73
  start-page: 43
  year: 1973
  ident: bb0050
  article-title: Soils of the central plateau of Brazil and extension of results of field research conducted near Planaltina
  publication-title: Federal District Agronomy Mimeo
– volume: vol. 1
  start-page: 139
  year: 1998
  end-page: 163
  ident: bb0105
  article-title: Pedological systems of the federal district
  publication-title: Inventário Hidrogeológico e dos Recursos Hidricos Superficiais do Distrito Federal
– volume: 131
  start-page: 59
  year: 2006
  end-page: 75
  ident: bb0170
  article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties
  publication-title: Geoderma
– volume: 16
  start-page: 2869
  year: 2024
  ident: bb0060
  article-title: Predicting particle size and soil organic carbon of soil profiles using VIS-NIR-SWIR hyperspectral imaging and machine learning models
  publication-title: Remote Sens.
– year: 2017
  ident: bb0080
  publication-title: Soil Survey Manual Agriculture. In USDA Handbook 18
– volume: 20
  start-page: 2749
  year: 2020
  end-page: 2760
  ident: bb0100
  article-title: Visible and near-infrared spectroscopy with chemometrics are able to predict soil physical and chemical properties
  publication-title: J. Soils Sediments
– start-page: 13
  year: 2024
  end-page: 23
  ident: bb0075
  article-title: Remote sensing of soils: spectral signatures and spectral indices
  publication-title: Remote Sensing of Soils: Mapping, Monitoring, and Measurement
– volume: 29
  year: 2022
  ident: bb0040
  article-title: Combining different pre-processing and multivariate methods for prediction of soil organic matter by near infrared spectroscopy (NIRS) in southern Brazil
  publication-title: Geoderma Reg.
– volume: 71
  start-page: 82
  year: 2012
  end-page: 89
  ident: bb0095
  article-title: Spectroradiometry of soils and comparison with orbital sensors
  publication-title: Bragantia
– volume: 55
  year: 2015
  ident: bb0140
  article-title: A: A Language and Environment for Statistical Computing
– year: 2020
  ident: bb0030
  article-title: The Nature and Properties of Soils
– year: 2018
  ident: bb0150
  article-title: Sistema Brasileiro de Classificação de Solos
– volume: 12
  year: 2023
  ident: 10.1016/j.geodrs.2025.e00945_bb0165
  article-title: Mapping several soil types using hyperspectral datasets and advanced machine learning methods
  publication-title: Res Opt
– volume: 5
  start-page: 87
  issue: 1
  year: 2012
  ident: 10.1016/j.geodrs.2025.e00945_bb0055
  article-title: Espacialização e Temporadaidade da Precipitação Pluviométrica do Estado de Goiás e Distrito Federal
  publication-title: Braz. J. Phys. Ther.
– volume: 20
  start-page: 2749
  year: 2020
  ident: 10.1016/j.geodrs.2025.e00945_bb0100
  article-title: Visible and near-infrared spectroscopy with chemometrics are able to predict soil physical and chemical properties
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-020-02623-1
– volume: 34
  start-page: 28
  year: 1947
  ident: 10.1016/j.geodrs.2025.e00945_bb0180
  article-title: The generalization of 'Student' I problem when several ddferent popula-tion variances are involved
  publication-title: Biomefrika
– volume: 212
  start-page: 161
  year: 2018
  ident: 10.1016/j.geodrs.2025.e00945_bb0065
  article-title: Geospatial soil sensing system (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.047
– volume: 29
  year: 2022
  ident: 10.1016/j.geodrs.2025.e00945_bb0040
  article-title: Combining different pre-processing and multivariate methods for prediction of soil organic matter by near infrared spectroscopy (NIRS) in southern Brazil
  publication-title: Geoderma Reg.
– year: 2017
  ident: 10.1016/j.geodrs.2025.e00945_bb0080
– volume: 70
  start-page: 610
  issue: 3
  year: 2011
  ident: 10.1016/j.geodrs.2025.e00945_bb0160
  article-title: Terrestrial and orbital spectral models in the determination of soil attribute contents: potential and costs
  publication-title: Bragantia
  doi: 10.1590/S0006-87052011000300017
– volume: 74
  year: 2023
  ident: 10.1016/j.geodrs.2025.e00945_bb0175
  article-title: Interpretable spectroscopic modelling of soil with machine learning
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.13370
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.geodrs.2025.e00945_bb0035
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 69
  start-page: 453
  issue: 2
  year: 2010
  ident: 10.1016/j.geodrs.2025.e00945_bb0085
  article-title: Spectral differentiation of soil using data obtained in laboratories and by orbital sensor
  publication-title: Bragantia
  doi: 10.1590/S0006-87052010000200025
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.geodrs.2025.e00945_bb0070
  article-title: Bare Earth’s surface spectra as a proxy for soil resource monitoring
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61408-1
– year: 2018
  ident: 10.1016/j.geodrs.2025.e00945_bb0150
– volume: 22
  start-page: 711
  year: 2013
  ident: 10.1016/j.geodrs.2025.e00945_bb0015
  article-title: Köppen’s climate classification map for Brazil
  publication-title: Meteorol. Z.
  doi: 10.1127/0941-2948/2013/0507
– year: 1999
  ident: 10.1016/j.geodrs.2025.e00945_bb0045
– volume: 375
  year: 2025
  ident: 10.1016/j.geodrs.2025.e00945_bb0135
  article-title: Online analysis of Amazon’s soils through reflectance spectroscopy and cloud computing can support policies and the sustainable development
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2025.124155
– volume: 91
  start-page: 393
  issue: 4
  year: 2005
  ident: 10.1016/j.geodrs.2025.e00945_bb0145
  article-title: Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2005.05.001
– volume: 13
  start-page: 1181
  year: 2021
  ident: 10.1016/j.geodrs.2025.e00945_bb0125
  article-title: Digital soil mapping using multispectral modeling with Landsat time series cloud computing based
  publication-title: Remote Sens.
  doi: 10.3390/rs13061181
– volume: 55
  year: 2015
  ident: 10.1016/j.geodrs.2025.e00945_bb0140
– volume: 245–246
  start-page: 112
  year: 2015
  ident: 10.1016/j.geodrs.2025.e00945_bb0025
  article-title: Reflectance measurements of soils in the laboratory: standards and protocols
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.01.002
– volume: 737
  start-page: 139895
  year: 2020
  ident: 10.1016/j.geodrs.2025.e00945_bb0120
  article-title: When does stratification of a subtropical soil spectral library improve predictions of soil organic carbon content?
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139895
– volume: 5
  start-page: 156
  year: 2023
  ident: 10.1016/j.geodrs.2025.e00945_bb0130
  article-title: Spectral mixture modeling of an ASTER Bare soil synthetic image using a representative spectral library to map soils in Central-Brazil
  publication-title: AgriEngineering
  doi: 10.3390/agriengineering5010011
– start-page: 279
  year: 2017
  ident: 10.1016/j.geodrs.2025.e00945_bb0110
  article-title: Statistics for data science
– start-page: 45
  year: 1998
  ident: 10.1016/j.geodrs.2025.e00945_bb0090
  article-title: Geologia do Distrito Federal
– volume: 16
  start-page: 2869
  issue: 16
  year: 2024
  ident: 10.1016/j.geodrs.2025.e00945_bb0060
  article-title: Predicting particle size and soil organic carbon of soil profiles using VIS-NIR-SWIR hyperspectral imaging and machine learning models
  publication-title: Remote Sens.
  doi: 10.3390/rs16162869
– volume: vol. 1
  start-page: 139
  year: 1998
  ident: 10.1016/j.geodrs.2025.e00945_bb0105
  article-title: Pedological systems of the federal district
– year: 2020
  ident: 10.1016/j.geodrs.2025.e00945_bb0030
– volume: 71
  start-page: 82
  issue: 1
  year: 2012
  ident: 10.1016/j.geodrs.2025.e00945_bb0095
  article-title: Spectroradiometry of soils and comparison with orbital sensors
  publication-title: Bragantia
  doi: 10.1590/S0006-87052012005000005
– ident: 10.1016/j.geodrs.2025.e00945_bb0005
– volume: 2007
  year: 2007
  ident: 10.1016/j.geodrs.2025.e00945_bb0010
– volume: 73
  start-page: 43
  issue: 13
  year: 1973
  ident: 10.1016/j.geodrs.2025.e00945_bb0050
  article-title: Soils of the central plateau of Brazil and extension of results of field research conducted near Planaltina
  publication-title: Federal District Agronomy Mimeo
– volume: 32
  start-page: 2463
  year: 2023
  ident: 10.1016/j.geodrs.2025.e00945_bb0185
  article-title: Integration of ASTER and Soil survey data by principal components analysis and one-class support vector machine for mineral Prospectivity mapping in Kerkasha, southwestern Eritrea
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-023-10268-3
– volume: 15
  start-page: 465
  year: 2023
  ident: 10.1016/j.geodrs.2025.e00945_bb0190
  article-title: Towards optimal variable selection methods for soil property prediction using a regional soil Vis-NIR spectral library
  publication-title: Remote Sens.
  doi: 10.3390/rs15020465
– start-page: 13
  year: 2024
  ident: 10.1016/j.geodrs.2025.e00945_bb0075
  article-title: Remote sensing of soils: spectral signatures and spectral indices
– year: 2002
  ident: 10.1016/j.geodrs.2025.e00945_bb0020
– volume: 452
  year: 2024
  ident: 10.1016/j.geodrs.2025.e00945_bb0115
  article-title: Soil science-informed machine learning
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2024.117094
– volume: 131
  start-page: 59
  year: 2006
  ident: 10.1016/j.geodrs.2025.e00945_bb0170
  article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.03.007
– year: 1978
  ident: 10.1016/j.geodrs.2025.e00945_bb6001
SSID ssj0002953762
Score 2.3115027
Snippet A comprehensive understanding of soil attributes is crucial for effective environmental management. Geotechnologies offer an alternative to traditional soil...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage e00945
SubjectTerms ASTER
base saturation
Brazil
cation exchange capacity
clay
data collection
environmental management
Ferralsols
Mean equity test
Multiple linear regression
organic matter
Random forest
reflectance
regression analysis
satellites
soil analysis
Soil sensing
Title Integrating terrestrial and orbital reflectance data improves the soil attribute modeling performance
URI https://dx.doi.org/10.1016/j.geodrs.2025.e00945
https://www.proquest.com/docview/3200279594
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zu3gRRcX5RQSvcW2aNM1xDMfmcAd1uFtIk1TmoR1b9_-b1w9FQQRPpR9Jy-8l772k770fQreCWgll3kiW2IgwEVGiHedERybVgmUuiCHB-XEeTxbsYcmXHTRqc2EgrLLR_bVOr7R1c2XQoDlYr1aDZxpVJYP8oKsc-3gP9ai3rkEX9YbT2WT-udVCJdQsoRXNHKcE2rRJdFWk15sr7AZKd1N-5-Au_81I_VDXlQ0aH6KDxnnEw_r7jlDH5cfITZuKD94IYY8SkG3AqMI6t7jYpMAKgv0rYH8eRIwhKBSvqs0Et8XeAcTbYuUfL2vyK4crdhzobf2VVXCCFuP7l9GENOQJxHirXRIaJ9rJNAykSRLmJ5fzC6s4yFLBRSqDNBQmi5jh0lAmGM8k1SnnSeZXTCaR1kanqJsXuTtDOJBZmLHEiMiEjAdGc2v9KsdJ5iVpQ95HpEVLresaGaoNHntXNboK0FU1un0kWkjVN1krr8b_aHnTSkD5aQD_NnTuit1WRRBsArzp7PzfvV-gfTirA8EuUbfc7NyVdznK9LoZUnCcPb3OPgBVf9hT
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELaAHuCCQCxa3kZij6aJY8fxgQPioZZCL4DEzZvYDiqHpGqLEL-LP8hMHqwWCSEh9RrHTvT5s2fGngchR4o7jWneWJ64iAkVcZZ6KVka2SxVIvdBjAHON8O4dy-uHuTDAnlrY2HQrbLZ--s9vdqtmyfdBs3ueDTq3vKoShkEpKsU-7jxrBz41xew26Yn_XOY5D-cX17cnfVYU1qAWZBpM8bjJPU6CwNtk0QA9TyYHXGQZ0qqTAdZqGweCSu15UIJmWueZlImOdgTNtHORTDuIulgNixYVp3T_qA3_Dja4RpzpPCqrJ3kDP-xDdqrPMsefekmmCqcy2OPrfIrofhJPFQy73KNrDbKKj2t8VgnC77YIL7fZJgAoUdhVrC4B7KYpoWj5STDKiQUPoH3AUgpik6odFQdXvgpBYWTTssRvD6ri215WlXjwdHG_6IYfpH7uSC6SZaKsvC_CQ10HuYisSqyoZCBTaVzYFV5LYA5LpRbhLVomXGdk8O0zmpPpkbXILqmRneLqBZS8x-3DIiNb3oetjNgYNnhXUpa-PJ5aiJ0bsE67WL7x6MfkOXe3c21ue4PBztkBVtqJ7RdsjSbPPs9UHdm2X5DL0r-zpvR7_LLEqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+terrestrial+and+orbital+reflectance+data+improves+the+soil+attribute+modeling+performance&rft.jtitle=Geoderma+Regional&rft.au=Novais%2C+Jean+Jesus+Macedo&rft.au=Rosas%2C+Jorge+Tadeu+Fim&rft.au=Rosin%2C+Nicolas+Augusto&rft.au=dos+Santos%2C+Uemeson+Jos%C3%A9&rft.date=2025-06-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft_id=info:doi/10.1016%2Fj.geodrs.2025.e00945&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon