Integrating terrestrial and orbital reflectance data improves the soil attribute modeling performance
A comprehensive understanding of soil attributes is crucial for effective environmental management. Geotechnologies offer an alternative to traditional soil surveying methods. This study evaluated the potential of multispectral data from terrestrial and orbital sensors to predict soil attributes of...
Saved in:
Published in | Geoderma Regional Vol. 41; p. e00945 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A comprehensive understanding of soil attributes is crucial for effective environmental management. Geotechnologies offer an alternative to traditional soil surveying methods. This study evaluated the potential of multispectral data from terrestrial and orbital sensors to predict soil attributes of Rhodic Ferralsols in Central Brazil using machine learning algorithms. Physicochemical and spectral attributes of 37 soil samples (0–20 cm depth) were collected and analyzed. Spectral signatures were extracted from visible to shortwave infrared using the ASTER, a satellite-based sensor providing multispectral data, for comparison to laboratory hyperspectral data from Fieldspec Pro 4, and resampled to ASTER bands. Random Forest (RF) and Multiple Linear Regression (MLR) modeled the soil attributes using the spectral libraries, individually and combined. Results showed similar spectral responses between the sensors, indicating that resampling hyperspectral data from terrestrial sensors can be a reliable reference for orbital data. Due to controlled conditions and reduced interference from moisture and atmosphere, the terrestrial sensor and combined approaches had a higher Pearson correlation with soil attributes than the orbital sensor. MLR with combined sensors effectively predicted soil attributes, achieving R2 of 0.65 for clay and 0.69 for organic matter. RF showed lower performance, with R2 of 0.32 for base saturation and 0.30 for Cation Exchange Capacity, attributed to limited datasets. Combining terrestrial and orbital sensors improves soil attribute modeling, nevertheless, it requires robust sampling, image processing, and sensors testing, datasets, and algorithms. This study highlights the potential of integrating multilevel remote sensing for efficient soil analysis and mapping, contributing to sustainable environmental management.
[Display omitted] |
---|---|
AbstractList | A comprehensive understanding of soil attributes is crucial for effective environmental management. Geotechnologies offer an alternative to traditional soil surveying methods. This study evaluated the potential of multispectral data from terrestrial and orbital sensors to predict soil attributes of Rhodic Ferralsols in Central Brazil using machine learning algorithms. Physicochemical and spectral attributes of 37 soil samples (0-20 cm depth) were collected and analyzed. Spectral signatures were extracted from visible to shortwave infrared using the ASTER, a satellite-based sensor providing multispectral data, for comparison to laboratory hyperspectral data from Fieldspec Pro 4, and resampled to ASTER bands. Random Forest (RF) and Multiple Linear Regression (MLR) modeled the soil attributes using the spectral libraries, individually and combined. Results showed similar spectral responses between the sensors, indicating that resampling hyperspectral data from terrestrial sensors can be a reliable reference for orbital data. Due to controlled conditions and reduced interference from moisture and atmosphere, the terrestrial sensor and combined approaches had a higher Pearson correlation with soil attributes than the orbital sensor. MLR with combined sensors effectively predicted soil attributes, achieving R² of 0.65 for clay and 0.69 for organic matter. RF showed lower performance, with R² of 0.32 for base saturation and 0.30 for Cation Exchange Capacity, attributed to limited datasets. Combining terrestrial and orbital sensors improves soil attribute modeling, nevertheless, it requires robust sampling, image processing, and sensors testing, datasets, and algorithms. This study highlights the potential of integrating multilevel remote sensing for efficient soil analysis and mapping, contributing to sustainable environmental management. A comprehensive understanding of soil attributes is crucial for effective environmental management. Geotechnologies offer an alternative to traditional soil surveying methods. This study evaluated the potential of multispectral data from terrestrial and orbital sensors to predict soil attributes of Rhodic Ferralsols in Central Brazil using machine learning algorithms. Physicochemical and spectral attributes of 37 soil samples (0–20 cm depth) were collected and analyzed. Spectral signatures were extracted from visible to shortwave infrared using the ASTER, a satellite-based sensor providing multispectral data, for comparison to laboratory hyperspectral data from Fieldspec Pro 4, and resampled to ASTER bands. Random Forest (RF) and Multiple Linear Regression (MLR) modeled the soil attributes using the spectral libraries, individually and combined. Results showed similar spectral responses between the sensors, indicating that resampling hyperspectral data from terrestrial sensors can be a reliable reference for orbital data. Due to controlled conditions and reduced interference from moisture and atmosphere, the terrestrial sensor and combined approaches had a higher Pearson correlation with soil attributes than the orbital sensor. MLR with combined sensors effectively predicted soil attributes, achieving R2 of 0.65 for clay and 0.69 for organic matter. RF showed lower performance, with R2 of 0.32 for base saturation and 0.30 for Cation Exchange Capacity, attributed to limited datasets. Combining terrestrial and orbital sensors improves soil attribute modeling, nevertheless, it requires robust sampling, image processing, and sensors testing, datasets, and algorithms. This study highlights the potential of integrating multilevel remote sensing for efficient soil analysis and mapping, contributing to sustainable environmental management. [Display omitted] |
ArticleNumber | e00945 |
Author | Santos, Uemeson José dos Novais, Jean Jesus Macedo Rosas, Jorge Tadeu Fim Demattê, José Alexandre Melo Lacerda, Marilusa Pinto Coelho Rosin, Nícolas Augusto |
Author_xml | – sequence: 1 givenname: Jean Jesus Macedo surname: Novais fullname: Novais, Jean Jesus Macedo email: jeannovais@usp.br, jjnagron@gmail.com organization: Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-260, São Paulo, Brazil – sequence: 2 givenname: Jorge Tadeu Fim surname: Rosas fullname: Rosas, Jorge Tadeu Fim email: jorge.fimrosas@usp.br organization: Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-260, São Paulo, Brazil – sequence: 3 givenname: Nícolas Augusto surname: Rosin fullname: Rosin, Nícolas Augusto email: narosin@usp.br organization: Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-260, São Paulo, Brazil – sequence: 4 givenname: Uemeson José dos surname: Santos fullname: Santos, Uemeson José dos email: uemeson.santos@ifpa.edu.br organization: Federal Institute of Education, Science, and Technology of Pará, Campus Santarém, Av. Mal. Castelo Branco, 621 - 68020-820, Interventoria, Santarém, PA, Brazil – sequence: 5 givenname: Marilusa Pinto Coelho surname: Lacerda fullname: Lacerda, Marilusa Pinto Coelho email: marilusa@unb.br, marilusapcl@gmail.com organization: Faculty of Agronomy and Veterinary Medicine, Darcy Ribeiro University Campus, University of Brasília, ICC Sul, Asa Norte 70910-960, Brazil – sequence: 6 givenname: José Alexandre Melo surname: Demattê fullname: Demattê, José Alexandre Melo email: jamdemat@usp.br organization: Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-260, São Paulo, Brazil |
BookMark | eNp9kD9PwzAQxS1UJErpN2DwyJJgO3ESL0io4k-lSiwwW7ZzKa6SuNhuJb49jsLAxHR30ntP93vXaDG6ERC6pSSnhFb3h3wPrvUhZ4TxHAgRJb9AS1Zwlk3H4s9-hdYhHAghTPCirtgSwXaMsPcq2nGPI3gPIXqreqzGFjuvbUy7h64HE9VoALcqKmyHo3dnCDh-Ag7OJnlMNn2KgAfXQj-lHcF3zg-T6wZddqoPsP6dK_Tx_PS-ec12by_bzeMuM4w2MWNVo0BoSoRpmlITAkI0Fel0zWstiKa16YrScGFYWZe8E0xpzpuOlskg2rZYobs5N733dUoocrDBQN-rEdwpyIIl9FpwUSZpOUuNdyEkQnn0dlD-W1Iip2LlQc7FyqlYORebbA-zDRLG2YKXwVhIiK31qSLZOvt_wA9qm4b7 |
Cites_doi | 10.1007/s11368-020-02623-1 10.1016/j.rse.2018.04.047 10.1590/S0006-87052011000300017 10.1111/ejss.13370 10.1023/A:1010933404324 10.1590/S0006-87052010000200025 10.1038/s41598-020-61408-1 10.1127/0941-2948/2013/0507 10.1016/j.jenvman.2025.124155 10.1016/j.biosystemseng.2005.05.001 10.3390/rs13061181 10.1016/j.geoderma.2015.01.002 10.1016/j.scitotenv.2020.139895 10.3390/agriengineering5010011 10.3390/rs16162869 10.1590/S0006-87052012005000005 10.1007/s11053-023-10268-3 10.3390/rs15020465 10.1016/j.geoderma.2024.117094 10.1016/j.geoderma.2005.03.007 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geodrs.2025.e00945 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-0094 |
ExternalDocumentID | 10_1016_j_geodrs_2025_e00945 S2352009425000306 |
GeographicLocations | Brazil |
GeographicLocations_xml | – name: Brazil |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AATTM AAXKI AAXUO AAYWO ABGRD ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AHEUO AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ATOGT AXJTR BKOJK BLECG BLXMC BNPGV EBS EFJIC EFKBS EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSA SSE SSH SSJ SSZ T5K ~G- AAYXX CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c218t-268ae9b109c884b00e99860fb757b90b17cf34c59c24745f92ab558f149c89dd3 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Wed Jul 02 04:50:44 EDT 2025 Thu Jul 03 08:32:31 EDT 2025 Sat Jul 19 17:10:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil sensing Random forest Multiple linear regression Mean equity test ASTER |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c218t-268ae9b109c884b00e99860fb757b90b17cf34c59c24745f92ab558f149c89dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3200279594 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3200279594 crossref_primary_10_1016_j_geodrs_2025_e00945 elsevier_sciencedirect_doi_10_1016_j_geodrs_2025_e00945 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Xue, Xiao, Shi, Chen (bb0190) 2023; 15 Wadoux (bb0175) 2023; 74 (bb0080) 2017 Freitas-Silva, Campos (bb0090) 1998 Brady, Weil (bb0030) 2020 Martins (bb0105) 1998; vol. 1 Santos, Jacomine, Anjos, Oliveira, Lumbreras, Coelho, Almeida, Araújo Filho, Oliveira, Cunha (bb0150) 2018 Welch (bb0180) 1947; 34 ASD INC - Analytical Spectral Devices Inc (bb0020) 2002 de Oliveira, Gonçalves, Furlanetto, de Oliveira, Mendonça, de Haubert, Crusiol, Falcioni, de Oliveira, Reis, do Ecker, Nanni (bb0060) 2024; 16 Moura-Bueno, Dalmolin, Horst-Heinen, ten Caten, Vasques, Dotto, Grunwald (bb0120) 2020; 737 Charnet, Bonvino, Freire, Charnet (bb0045) 1999 Liu, Xie, Han, Wang, Sun, Li, Li (bb0100) 2020; 20 Cline, Buol (bb0050) 1973; 73 Dharumarajan, Lalitha, Kalaiselvi, Kaliraj, Adhikari, Vasundhara, Niranjana, Hegde, Pradeep, Hittanagi, Ramamurthy (bb0075) 2024 Fiorio, Demattê, Nanni, Formaggio (bb0085) 2010; 69 Carvalho, Moura-Bueno, Ramon, Almeida, Naibo, Martins, Santos, Gianello, Tiecher (bb0040) 2022; 29 Costa, Marcuzzo, Ferreira, Andrade (bb0055) 2012; 5 Novais, Melo, Junior, Lima, Souza, Melo, Amaral, Tziolas, Demattˆe (bb0135) 2025; 375 Novais, Lacerda, Sano, Demattê, Oliveira (bb0125) 2021; 13 EMBRAPA [Brazilian Agricultural Research Corporation] (bb6001) 1978 Abrams (bb0005) 2002 Alvares, Stape, Sentelhas, De Moraes Gonçalves, Sparovek (bb0015) 2013; 22 Genú, Demattê (bb0095) 2012; 71 Ben-Dor, Ong, Lau (bb0025) 2015; 245–246 Demattê, Safanelli, Poppiel, Rizzo, Silvero, de Mendes, Bonfatti, Dotto, Salazar, de Mello, da Paiva, Souza, dos Santos, Maria Nascimento, de Mello, Bellinaso, Gonzaga Neto, Amorim, de Resende, da Vieira, de Queiroz, Gallo, Sayão, da Lisboa (bb0070) 2020; 10 Breiman (bb0035) 2001; 45 Vibhute, Kale (bb0165) 2023; 12 Demattê, Fongaro, Rizzo, Safanelli (bb0065) 2018; 212 Saeys, Mouazen, Ramon (bb0145) 2005; 91 Sousa Junior, Dematte, Araujo (bb0160) 2011; 70 Zerai, Gorsevski, Panter, Farver, Tangestani (bb0185) 2023; 32 Abrams, Hook, Ramachandran (bb0010) 2007; 2007 Miller (bb0110) 2017 Minasny, Bandai, Ghezzehei, Huang, Ma, McBratney, Widyastuti (bb0115) 2024; 452 Viscarra Rossel, Walvoort, Mcbratney, Janik, Skjemstad (bb0170) 2006; 131 Novais, Poppiel, Lacerda, Oliveira, Demattê (bb0130) 2023; 5 R Core Team (bb0140) 2015; 55 Miller (10.1016/j.geodrs.2025.e00945_bb0110) 2017 R Core Team (10.1016/j.geodrs.2025.e00945_bb0140) 2015; 55 Sousa Junior (10.1016/j.geodrs.2025.e00945_bb0160) 2011; 70 Zerai (10.1016/j.geodrs.2025.e00945_bb0185) 2023; 32 Breiman (10.1016/j.geodrs.2025.e00945_bb0035) 2001; 45 (10.1016/j.geodrs.2025.e00945_bb0080) 2017 Charnet (10.1016/j.geodrs.2025.e00945_bb0045) 1999 Brady (10.1016/j.geodrs.2025.e00945_bb0030) 2020 Novais (10.1016/j.geodrs.2025.e00945_bb0130) 2023; 5 Ben-Dor (10.1016/j.geodrs.2025.e00945_bb0025) 2015; 245–246 Novais (10.1016/j.geodrs.2025.e00945_bb0125) 2021; 13 Fiorio (10.1016/j.geodrs.2025.e00945_bb0085) 2010; 69 Cline (10.1016/j.geodrs.2025.e00945_bb0050) 1973; 73 Freitas-Silva (10.1016/j.geodrs.2025.e00945_bb0090) 1998 Saeys (10.1016/j.geodrs.2025.e00945_bb0145) 2005; 91 Santos (10.1016/j.geodrs.2025.e00945_bb0150) 2018 Demattê (10.1016/j.geodrs.2025.e00945_bb0065) 2018; 212 Dharumarajan (10.1016/j.geodrs.2025.e00945_bb0075) 2024 de Oliveira (10.1016/j.geodrs.2025.e00945_bb0060) 2024; 16 Novais (10.1016/j.geodrs.2025.e00945_bb0135) 2025; 375 Viscarra Rossel (10.1016/j.geodrs.2025.e00945_bb0170) 2006; 131 Minasny (10.1016/j.geodrs.2025.e00945_bb0115) 2024; 452 Martins (10.1016/j.geodrs.2025.e00945_bb0105) 1998; vol. 1 Abrams (10.1016/j.geodrs.2025.e00945_bb0005) Costa (10.1016/j.geodrs.2025.e00945_bb0055) 2012; 5 Alvares (10.1016/j.geodrs.2025.e00945_bb0015) 2013; 22 Vibhute (10.1016/j.geodrs.2025.e00945_bb0165) 2023; 12 Zhang (10.1016/j.geodrs.2025.e00945_bb0190) 2023; 15 Demattê (10.1016/j.geodrs.2025.e00945_bb0070) 2020; 10 Carvalho (10.1016/j.geodrs.2025.e00945_bb0040) 2022; 29 EMBRAPA [Brazilian Agricultural Research Corporation] (10.1016/j.geodrs.2025.e00945_bb6001) 1978 Liu (10.1016/j.geodrs.2025.e00945_bb0100) 2020; 20 Moura-Bueno (10.1016/j.geodrs.2025.e00945_bb0120) 2020; 737 Wadoux (10.1016/j.geodrs.2025.e00945_bb0175) 2023; 74 Genú (10.1016/j.geodrs.2025.e00945_bb0095) 2012; 71 Welch (10.1016/j.geodrs.2025.e00945_bb0180) 1947; 34 Abrams (10.1016/j.geodrs.2025.e00945_bb0010) 2007; 2007 ASD INC - Analytical Spectral Devices Inc (10.1016/j.geodrs.2025.e00945_bb0020) 2002 |
References_xml | – volume: 91 start-page: 393 year: 2005 end-page: 402 ident: bb0145 article-title: Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy publication-title: Biosyst. Eng. – volume: 245–246 start-page: 112 year: 2015 end-page: 124 ident: bb0025 article-title: Reflectance measurements of soils in the laboratory: standards and protocols publication-title: Geoderma – volume: 69 start-page: 453 year: 2010 end-page: 466 ident: bb0085 article-title: Spectral differentiation of soil using data obtained in laboratories and by orbital sensor publication-title: Bragantia – year: 1978 ident: bb6001 article-title: National Service For Soil Survey And Conservation. Survey of soil recognition in the Federal District – year: 1999 ident: bb0045 article-title: Analysis of Linear Regression Models with Applications – start-page: 279 year: 2017 ident: bb0110 article-title: Statistics for data science publication-title: Leverage the Power of Statistics for Data Analysis, Classification, Regression, Machine Learning, and Neural Networks – volume: 737 start-page: 139895 year: 2020 ident: bb0120 article-title: When does stratification of a subtropical soil spectral library improve predictions of soil organic carbon content? publication-title: Sci. Total Environ. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0035 article-title: Random forests publication-title: Mach. Learn. – volume: 5 start-page: 156 year: 2023 end-page: 172 ident: bb0130 article-title: Spectral mixture modeling of an ASTER Bare soil synthetic image using a representative spectral library to map soils in Central-Brazil publication-title: AgriEngineering – volume: 452 year: 2024 ident: bb0115 article-title: Soil science-informed machine learning publication-title: Geoderma – volume: 375 year: 2025 ident: bb0135 article-title: Online analysis of Amazon’s soils through reflectance spectroscopy and cloud computing can support policies and the sustainable development publication-title: J. Environ. Manag. – volume: 22 start-page: 711 year: 2013 end-page: 728 ident: bb0015 article-title: Köppen’s climate classification map for Brazil publication-title: Meteorol. Z. – volume: 212 start-page: 161 year: 2018 end-page: 175 ident: bb0065 article-title: Geospatial soil sensing system (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images publication-title: Remote Sens. Environ. – volume: 2007 year: 2007 ident: bb0010 article-title: Aster User Handbook: Version 2 – volume: 12 year: 2023 ident: bb0165 article-title: Mapping several soil types using hyperspectral datasets and advanced machine learning methods publication-title: Res Opt – start-page: 45 year: 1998 ident: bb0090 article-title: Geologia do Distrito Federal publication-title: Institute of Geosciences of the University of Brasilia. IEMA/SEMATEC/UNB (Org.), Hydrogeological Inventory and Surface Water Resources of the Federal District – volume: 70 start-page: 610 year: 2011 end-page: 621 ident: bb0160 article-title: Terrestrial and orbital spectral models in the determination of soil attribute contents: potential and costs publication-title: Bragantia – volume: 5 start-page: 87 year: 2012 end-page: 100 ident: bb0055 article-title: Espacialização e Temporadaidade da Precipitação Pluviométrica do Estado de Goiás e Distrito Federal publication-title: Braz. J. Phys. Ther. – volume: 13 start-page: 1181 year: 2021 ident: bb0125 article-title: Digital soil mapping using multispectral modeling with Landsat time series cloud computing based publication-title: Remote Sens. – volume: 10 start-page: 1 year: 2020 end-page: 11 ident: bb0070 article-title: Bare Earth’s surface spectra as a proxy for soil resource monitoring publication-title: Sci. Rep. – volume: 74 year: 2023 ident: bb0175 article-title: Interpretable spectroscopic modelling of soil with machine learning publication-title: Eur. J. Soil Sci. – year: 2002 ident: bb0005 article-title: The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra Spacecraft – volume: 32 start-page: 2463 year: 2023 end-page: 2493 ident: bb0185 article-title: Integration of ASTER and Soil survey data by principal components analysis and one-class support vector machine for mineral Prospectivity mapping in Kerkasha, southwestern Eritrea publication-title: Nat. Resour. Res. – volume: 15 start-page: 465 year: 2023 ident: bb0190 article-title: Towards optimal variable selection methods for soil property prediction using a regional soil Vis-NIR spectral library publication-title: Remote Sens. – year: 2002 ident: bb0020 article-title: FieldSpec pro User’s Guide – volume: 34 start-page: 28 year: 1947 end-page: 35 ident: bb0180 article-title: The generalization of 'Student' I problem when several ddferent popula-tion variances are involved publication-title: Biomefrika – volume: 73 start-page: 43 year: 1973 ident: bb0050 article-title: Soils of the central plateau of Brazil and extension of results of field research conducted near Planaltina publication-title: Federal District Agronomy Mimeo – volume: vol. 1 start-page: 139 year: 1998 end-page: 163 ident: bb0105 article-title: Pedological systems of the federal district publication-title: Inventário Hidrogeológico e dos Recursos Hidricos Superficiais do Distrito Federal – volume: 131 start-page: 59 year: 2006 end-page: 75 ident: bb0170 article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties publication-title: Geoderma – volume: 16 start-page: 2869 year: 2024 ident: bb0060 article-title: Predicting particle size and soil organic carbon of soil profiles using VIS-NIR-SWIR hyperspectral imaging and machine learning models publication-title: Remote Sens. – year: 2017 ident: bb0080 publication-title: Soil Survey Manual Agriculture. In USDA Handbook 18 – volume: 20 start-page: 2749 year: 2020 end-page: 2760 ident: bb0100 article-title: Visible and near-infrared spectroscopy with chemometrics are able to predict soil physical and chemical properties publication-title: J. Soils Sediments – start-page: 13 year: 2024 end-page: 23 ident: bb0075 article-title: Remote sensing of soils: spectral signatures and spectral indices publication-title: Remote Sensing of Soils: Mapping, Monitoring, and Measurement – volume: 29 year: 2022 ident: bb0040 article-title: Combining different pre-processing and multivariate methods for prediction of soil organic matter by near infrared spectroscopy (NIRS) in southern Brazil publication-title: Geoderma Reg. – volume: 71 start-page: 82 year: 2012 end-page: 89 ident: bb0095 article-title: Spectroradiometry of soils and comparison with orbital sensors publication-title: Bragantia – volume: 55 year: 2015 ident: bb0140 article-title: A: A Language and Environment for Statistical Computing – year: 2020 ident: bb0030 article-title: The Nature and Properties of Soils – year: 2018 ident: bb0150 article-title: Sistema Brasileiro de Classificação de Solos – volume: 12 year: 2023 ident: 10.1016/j.geodrs.2025.e00945_bb0165 article-title: Mapping several soil types using hyperspectral datasets and advanced machine learning methods publication-title: Res Opt – volume: 5 start-page: 87 issue: 1 year: 2012 ident: 10.1016/j.geodrs.2025.e00945_bb0055 article-title: Espacialização e Temporadaidade da Precipitação Pluviométrica do Estado de Goiás e Distrito Federal publication-title: Braz. J. Phys. Ther. – volume: 20 start-page: 2749 year: 2020 ident: 10.1016/j.geodrs.2025.e00945_bb0100 article-title: Visible and near-infrared spectroscopy with chemometrics are able to predict soil physical and chemical properties publication-title: J. Soils Sediments doi: 10.1007/s11368-020-02623-1 – volume: 34 start-page: 28 year: 1947 ident: 10.1016/j.geodrs.2025.e00945_bb0180 article-title: The generalization of 'Student' I problem when several ddferent popula-tion variances are involved publication-title: Biomefrika – volume: 212 start-page: 161 year: 2018 ident: 10.1016/j.geodrs.2025.e00945_bb0065 article-title: Geospatial soil sensing system (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.047 – volume: 29 year: 2022 ident: 10.1016/j.geodrs.2025.e00945_bb0040 article-title: Combining different pre-processing and multivariate methods for prediction of soil organic matter by near infrared spectroscopy (NIRS) in southern Brazil publication-title: Geoderma Reg. – year: 2017 ident: 10.1016/j.geodrs.2025.e00945_bb0080 – volume: 70 start-page: 610 issue: 3 year: 2011 ident: 10.1016/j.geodrs.2025.e00945_bb0160 article-title: Terrestrial and orbital spectral models in the determination of soil attribute contents: potential and costs publication-title: Bragantia doi: 10.1590/S0006-87052011000300017 – volume: 74 year: 2023 ident: 10.1016/j.geodrs.2025.e00945_bb0175 article-title: Interpretable spectroscopic modelling of soil with machine learning publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.13370 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.geodrs.2025.e00945_bb0035 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 69 start-page: 453 issue: 2 year: 2010 ident: 10.1016/j.geodrs.2025.e00945_bb0085 article-title: Spectral differentiation of soil using data obtained in laboratories and by orbital sensor publication-title: Bragantia doi: 10.1590/S0006-87052010000200025 – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.geodrs.2025.e00945_bb0070 article-title: Bare Earth’s surface spectra as a proxy for soil resource monitoring publication-title: Sci. Rep. doi: 10.1038/s41598-020-61408-1 – year: 2018 ident: 10.1016/j.geodrs.2025.e00945_bb0150 – volume: 22 start-page: 711 year: 2013 ident: 10.1016/j.geodrs.2025.e00945_bb0015 article-title: Köppen’s climate classification map for Brazil publication-title: Meteorol. Z. doi: 10.1127/0941-2948/2013/0507 – year: 1999 ident: 10.1016/j.geodrs.2025.e00945_bb0045 – volume: 375 year: 2025 ident: 10.1016/j.geodrs.2025.e00945_bb0135 article-title: Online analysis of Amazon’s soils through reflectance spectroscopy and cloud computing can support policies and the sustainable development publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2025.124155 – volume: 91 start-page: 393 issue: 4 year: 2005 ident: 10.1016/j.geodrs.2025.e00945_bb0145 article-title: Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2005.05.001 – volume: 13 start-page: 1181 year: 2021 ident: 10.1016/j.geodrs.2025.e00945_bb0125 article-title: Digital soil mapping using multispectral modeling with Landsat time series cloud computing based publication-title: Remote Sens. doi: 10.3390/rs13061181 – volume: 55 year: 2015 ident: 10.1016/j.geodrs.2025.e00945_bb0140 – volume: 245–246 start-page: 112 year: 2015 ident: 10.1016/j.geodrs.2025.e00945_bb0025 article-title: Reflectance measurements of soils in the laboratory: standards and protocols publication-title: Geoderma doi: 10.1016/j.geoderma.2015.01.002 – volume: 737 start-page: 139895 year: 2020 ident: 10.1016/j.geodrs.2025.e00945_bb0120 article-title: When does stratification of a subtropical soil spectral library improve predictions of soil organic carbon content? publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139895 – volume: 5 start-page: 156 year: 2023 ident: 10.1016/j.geodrs.2025.e00945_bb0130 article-title: Spectral mixture modeling of an ASTER Bare soil synthetic image using a representative spectral library to map soils in Central-Brazil publication-title: AgriEngineering doi: 10.3390/agriengineering5010011 – start-page: 279 year: 2017 ident: 10.1016/j.geodrs.2025.e00945_bb0110 article-title: Statistics for data science – start-page: 45 year: 1998 ident: 10.1016/j.geodrs.2025.e00945_bb0090 article-title: Geologia do Distrito Federal – volume: 16 start-page: 2869 issue: 16 year: 2024 ident: 10.1016/j.geodrs.2025.e00945_bb0060 article-title: Predicting particle size and soil organic carbon of soil profiles using VIS-NIR-SWIR hyperspectral imaging and machine learning models publication-title: Remote Sens. doi: 10.3390/rs16162869 – volume: vol. 1 start-page: 139 year: 1998 ident: 10.1016/j.geodrs.2025.e00945_bb0105 article-title: Pedological systems of the federal district – year: 2020 ident: 10.1016/j.geodrs.2025.e00945_bb0030 – volume: 71 start-page: 82 issue: 1 year: 2012 ident: 10.1016/j.geodrs.2025.e00945_bb0095 article-title: Spectroradiometry of soils and comparison with orbital sensors publication-title: Bragantia doi: 10.1590/S0006-87052012005000005 – ident: 10.1016/j.geodrs.2025.e00945_bb0005 – volume: 2007 year: 2007 ident: 10.1016/j.geodrs.2025.e00945_bb0010 – volume: 73 start-page: 43 issue: 13 year: 1973 ident: 10.1016/j.geodrs.2025.e00945_bb0050 article-title: Soils of the central plateau of Brazil and extension of results of field research conducted near Planaltina publication-title: Federal District Agronomy Mimeo – volume: 32 start-page: 2463 year: 2023 ident: 10.1016/j.geodrs.2025.e00945_bb0185 article-title: Integration of ASTER and Soil survey data by principal components analysis and one-class support vector machine for mineral Prospectivity mapping in Kerkasha, southwestern Eritrea publication-title: Nat. Resour. Res. doi: 10.1007/s11053-023-10268-3 – volume: 15 start-page: 465 year: 2023 ident: 10.1016/j.geodrs.2025.e00945_bb0190 article-title: Towards optimal variable selection methods for soil property prediction using a regional soil Vis-NIR spectral library publication-title: Remote Sens. doi: 10.3390/rs15020465 – start-page: 13 year: 2024 ident: 10.1016/j.geodrs.2025.e00945_bb0075 article-title: Remote sensing of soils: spectral signatures and spectral indices – year: 2002 ident: 10.1016/j.geodrs.2025.e00945_bb0020 – volume: 452 year: 2024 ident: 10.1016/j.geodrs.2025.e00945_bb0115 article-title: Soil science-informed machine learning publication-title: Geoderma doi: 10.1016/j.geoderma.2024.117094 – volume: 131 start-page: 59 year: 2006 ident: 10.1016/j.geodrs.2025.e00945_bb0170 article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties publication-title: Geoderma doi: 10.1016/j.geoderma.2005.03.007 – year: 1978 ident: 10.1016/j.geodrs.2025.e00945_bb6001 |
SSID | ssj0002953762 |
Score | 2.3115027 |
Snippet | A comprehensive understanding of soil attributes is crucial for effective environmental management. Geotechnologies offer an alternative to traditional soil... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e00945 |
SubjectTerms | ASTER base saturation Brazil cation exchange capacity clay data collection environmental management Ferralsols Mean equity test Multiple linear regression organic matter Random forest reflectance regression analysis satellites soil analysis Soil sensing |
Title | Integrating terrestrial and orbital reflectance data improves the soil attribute modeling performance |
URI | https://dx.doi.org/10.1016/j.geodrs.2025.e00945 https://www.proquest.com/docview/3200279594 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zu3gRRcX5RQSvcW2aNM1xDMfmcAd1uFtIk1TmoR1b9_-b1w9FQQRPpR9Jy-8l772k770fQreCWgll3kiW2IgwEVGiHedERybVgmUuiCHB-XEeTxbsYcmXHTRqc2EgrLLR_bVOr7R1c2XQoDlYr1aDZxpVJYP8oKsc-3gP9ai3rkEX9YbT2WT-udVCJdQsoRXNHKcE2rRJdFWk15sr7AZKd1N-5-Au_81I_VDXlQ0aH6KDxnnEw_r7jlDH5cfITZuKD94IYY8SkG3AqMI6t7jYpMAKgv0rYH8eRIwhKBSvqs0Et8XeAcTbYuUfL2vyK4crdhzobf2VVXCCFuP7l9GENOQJxHirXRIaJ9rJNAykSRLmJ5fzC6s4yFLBRSqDNBQmi5jh0lAmGM8k1SnnSeZXTCaR1kanqJsXuTtDOJBZmLHEiMiEjAdGc2v9KsdJ5iVpQ95HpEVLresaGaoNHntXNboK0FU1un0kWkjVN1krr8b_aHnTSkD5aQD_NnTuit1WRRBsArzp7PzfvV-gfTirA8EuUbfc7NyVdznK9LoZUnCcPb3OPgBVf9hT |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELaAHuCCQCxa3kZij6aJY8fxgQPioZZCL4DEzZvYDiqHpGqLEL-LP8hMHqwWCSEh9RrHTvT5s2fGngchR4o7jWneWJ64iAkVcZZ6KVka2SxVIvdBjAHON8O4dy-uHuTDAnlrY2HQrbLZ--s9vdqtmyfdBs3ueDTq3vKoShkEpKsU-7jxrBz41xew26Yn_XOY5D-cX17cnfVYU1qAWZBpM8bjJPU6CwNtk0QA9TyYHXGQZ0qqTAdZqGweCSu15UIJmWueZlImOdgTNtHORTDuIulgNixYVp3T_qA3_Dja4RpzpPCqrJ3kDP-xDdqrPMsefekmmCqcy2OPrfIrofhJPFQy73KNrDbKKj2t8VgnC77YIL7fZJgAoUdhVrC4B7KYpoWj5STDKiQUPoH3AUgpik6odFQdXvgpBYWTTssRvD6ri215WlXjwdHG_6IYfpH7uSC6SZaKsvC_CQ10HuYisSqyoZCBTaVzYFV5LYA5LpRbhLVomXGdk8O0zmpPpkbXILqmRneLqBZS8x-3DIiNb3oetjNgYNnhXUpa-PJ5aiJ0bsE67WL7x6MfkOXe3c21ue4PBztkBVtqJ7RdsjSbPPs9UHdm2X5DL0r-zpvR7_LLEqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+terrestrial+and+orbital+reflectance+data+improves+the+soil+attribute+modeling+performance&rft.jtitle=Geoderma+Regional&rft.au=Novais%2C+Jean+Jesus+Macedo&rft.au=Rosas%2C+Jorge+Tadeu+Fim&rft.au=Rosin%2C+Nicolas+Augusto&rft.au=dos+Santos%2C+Uemeson+Jos%C3%A9&rft.date=2025-06-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft_id=info:doi/10.1016%2Fj.geodrs.2025.e00945&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |