Counting Occurrences of Patterns in Permutations

We develop a new, powerful method for counting elements in a multiset. As a first application, we use this algorithm to study the number of occurrences of patterns in a permutation. For patterns of length 3 there are two Wilf classes, and the general behaviour of these is reasonably well-known. We s...

Full description

Saved in:
Bibliographic Details
Published inThe Electronic journal of combinatorics Vol. 32; no. 1
Main Authors Conway, Andrew, Guttmann, Anthony
Format Journal Article
LanguageEnglish
Published 17.01.2025
Online AccessGet full text
ISSN1077-8926
1077-8926
DOI10.37236/12963

Cover

Loading…
Abstract We develop a new, powerful method for counting elements in a multiset. As a first application, we use this algorithm to study the number of occurrences of patterns in a permutation. For patterns of length 3 there are two Wilf classes, and the general behaviour of these is reasonably well-known. We slightly extend some of the known results in that case, and exhaustively study the case of patterns of length 4, about which there is little previous knowledge. For such patterns, there are seven Wilf classes, and based on extensive enumerations and careful series analysis, we have conjectured the asymptotic behaviour for all classes.
AbstractList We develop a new, powerful method for counting elements in a multiset. As a first application, we use this algorithm to study the number of occurrences of patterns in a permutation. For patterns of length 3 there are two Wilf classes, and the general behaviour of these is reasonably well-known. We slightly extend some of the known results in that case, and exhaustively study the case of patterns of length 4, about which there is little previous knowledge. For such patterns, there are seven Wilf classes, and based on extensive enumerations and careful series analysis, we have conjectured the asymptotic behaviour for all classes.
Author Conway, Andrew
Guttmann, Anthony
Author_xml – sequence: 1
  givenname: Andrew
  surname: Conway
  fullname: Conway, Andrew
– sequence: 2
  givenname: Anthony
  surname: Guttmann
  fullname: Guttmann, Anthony
BookMark eNpNj8FKAzEURYNUsK36DVm5G81LZpLJUga1QqFd6HpI815kxCaSZBb-vVJduDp3cbhwVmwRUyTGrkHcKiOVvgNptTpjSxDGNL2VevFvX7BVKe9C_Ei2WzIxpDnWKb7xnfdzzhQ9FZ4C37taKcfCp8j3lI9zdXVKsVyy8-A-Cl39cc1eHx9ehk2z3T09D_fbxkvoawOIRNQigsUgQDtvhDmgBNsGE7QFh62TsuuFOJDG0GlShMZ43SHINqg1u_n99TmVkimMn3k6uvw1ghhPneOpU30DfpBGgw
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.37236/12963
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1077-8926
ExternalDocumentID 10_37236_12963
GroupedDBID -~9
29G
2WC
5GY
5VS
AAFWJ
AAYXX
ACGFO
ACIPV
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
E3Z
EBS
EJD
FRP
GROUPED_DOAJ
H13
KWQ
M~E
OK1
OVT
P2P
REM
RNS
TR2
XSB
ID FETCH-LOGICAL-c218t-1ddeee4dd19df016ac707bd2194f7f691ad4a225800be6df56e3ed77c65d124f3
ISSN 1077-8926
IngestDate Tue Jul 01 04:24:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c218t-1ddeee4dd19df016ac707bd2194f7f691ad4a225800be6df56e3ed77c65d124f3
OpenAccessLink https://www.combinatorics.org/ojs/index.php/eljc/article/download/v32i1p3/pdf
ParticipantIDs crossref_primary_10_37236_12963
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-17
PublicationDateYYYYMMDD 2025-01-17
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-17
  day: 17
PublicationDecade 2020
PublicationTitle The Electronic journal of combinatorics
PublicationYear 2025
SSID ssj0012995
Score 2.3548558
Snippet We develop a new, powerful method for counting elements in a multiset. As a first application, we use this algorithm to study the number of occurrences of...
SourceID crossref
SourceType Index Database
Title Counting Occurrences of Patterns in Permutations
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB60XvQgrrjWHLxGs840RymVIlQ8tNBbmRUUTKVNET34232zZGkpuFxCGDIhyTe8983Le99D6FriSOj6AF87V7tByRiPfRKymAlOaUB1vGPwiPuj5GGcjut-jqa6pGA3_HNtXcl_UIUxwFVXyf4B2eqmMADngC8cAWE4_grjbtnoQWsFz0zdnk1qM6KZNkX8CUzvomjE5V7q9dGre-A0FCTgSWG7TI16SMW4u9P8nX6spEDqvJ1FUby6RstOiKAZSIh0zp5v6yad7QsIOKwscsrUa8acwawDkuXCWLXDMYlMpxggE858LQldrzigKi0QNiRm5sTM20RbEXB_bW0HX73q1xD4z9Qmktonsw2jzLxbM6_BMBpUYbiHdh3H9-4sYPtoQ-YHaGdQCeTOD1FQQuc1oPOmyiuh855zrwndERrd94bdvu-aV_gcWFPhh-A3pEyECDOhgFdTTgLCBDiIRBGFs5CKhIIxBcLOJBYqxTKWghCOUwGcS8XHqJVPc3mCPN5RKo1ZBDcOE0EwzcAw4zRhHRlSkslTdFW-8OTNapRMlj_l2Y9XnKPtek1coFYxW8hLoFsFa5swRduA8A3Pni1C
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Counting+Occurrences+of+Patterns+in+Permutations&rft.jtitle=The+Electronic+journal+of+combinatorics&rft.au=Conway%2C+Andrew&rft.au=Guttmann%2C+Anthony&rft.date=2025-01-17&rft.issn=1077-8926&rft.eissn=1077-8926&rft.volume=32&rft.issue=1&rft_id=info:doi/10.37236%2F12963&rft.externalDBID=n%2Fa&rft.externalDocID=10_37236_12963
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-8926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-8926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-8926&client=summon