Sliding Mode Resonant Controlled Step up Coupled Inductor fed DC-DC converter with Gallium Oxide Semiconductor Material

Resonant controlled step up coupled inductor fed DC-DC converter has received a lot of consideration in gridconnected generation systems using fuel cells or photovoltaics. The main subjects of this work are Open loop and closed loop design, modelling, and simulation on a resonant controlled step up...

Full description

Saved in:
Bibliographic Details
Published inMaterials today : proceedings Vol. 77; pp. 414 - 423
Main Authors Suganya, R., Naveenkumar, P., Balaji, B., Gayathri, D.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2023
Subjects
Online AccessGet full text
ISSN2214-7853
2214-7853
DOI10.1016/j.matpr.2022.10.262

Cover

Loading…
Abstract Resonant controlled step up coupled inductor fed DC-DC converter has received a lot of consideration in gridconnected generation systems using fuel cells or photovoltaics. The main subjects of this work are Open loop and closed loop design, modelling, and simulation on a resonant controlled step up coupled inductor fed DC-DC converter with a proportional integral (PI) controller and sliding mode controller (SMC).The findings are compared and analyzed using time domain aspects. The intention of this work is to enhance the net power with better performance of using semiconductor material such as Beta type of gallium Oxide utilized in different types of power generation, electric vehicles and other fields and also to reduce the steady state error. The results of this work represents the grander enactment of closed loop SM Resonant controlled DC-DC converter fed with step-up coupled inductor.
AbstractList Resonant controlled step up coupled inductor fed DC-DC converter has received a lot of consideration in gridconnected generation systems using fuel cells or photovoltaics. The main subjects of this work are Open loop and closed loop design, modelling, and simulation on a resonant controlled step up coupled inductor fed DC-DC converter with a proportional integral (PI) controller and sliding mode controller (SMC).The findings are compared and analyzed using time domain aspects. The intention of this work is to enhance the net power with better performance of using semiconductor material such as Beta type of gallium Oxide utilized in different types of power generation, electric vehicles and other fields and also to reduce the steady state error. The results of this work represents the grander enactment of closed loop SM Resonant controlled DC-DC converter fed with step-up coupled inductor.
Author Balaji, B.
Gayathri, D.
Suganya, R.
Naveenkumar, P.
Author_xml – sequence: 1
  givenname: R.
  surname: Suganya
  fullname: Suganya, R.
  email: suganikee@gmail.com
– sequence: 2
  givenname: P.
  surname: Naveenkumar
  fullname: Naveenkumar, P.
  email: naveenkumarnk097@gmail.com
– sequence: 3
  givenname: B.
  surname: Balaji
  fullname: Balaji, B.
  email: balaji.bc91@gmail.com
– sequence: 4
  givenname: D.
  surname: Gayathri
  fullname: Gayathri, D.
  email: gayathria2420@gmail.com
BookMark eNqFkM1OwzAQhC1UJErpE3DxCyTYzm8PHFAKpVIrJArnyLU34CqxI8dp4e1xaA-IA5x2drTfSjOXaKSNBoSuKQkpoenNLmy4a23ICGPeCVnKztCYMRoHWZ5Eox_6Ak27bkcIoUlKcpqO0WFTK6n0G14bCfgZOqO5drgw2llT1yDxxkGL-9ZbfTvsSy174YzFlV_mRTAvsDB6D9aBxQfl3vGC17XqG_z0ofzPDTTKH5ygNfdnitdX6LzidQfT05yg14f7l-IxWD0tlsXdKhCM5i6gPGNSJBkXVSW2sIVY5LISkEG05TSXCU2qGGZZlBCI8ziKvJjFVcxJwryQ0QTNjn-FNV1noSqFctypIR9XdUlJOZRY7srvEsuhxMH0JXo2-sW2VjXcfv5D3R4p8LH2CmzZCQVagFQWhCulUX_yXyLkkLs
CitedBy_id crossref_primary_10_3390_ma17164109
Cites_doi 10.1109/TPEL.2020.2975130
10.1109/PESC.2007.4342342
10.1109/TPEL.2020.2972583
10.1109/TIE.2012.2208438
10.1109/TPEL.2010.2096826
10.1109/APEX.2007.357537
10.1109/TCSI.2008.916427
10.1109/TPEL.2017.2787907
10.1109/TCSI.2016.2603782
10.1109/TIE.2017.2733476
10.1109/TCSI.2020.2973154
10.1109/TIE.2017.2733421
10.1109/TPEL.2020.2968613
10.1109/TPEL.2020.2995911
10.1109/TPEL.2014.2309793
10.1109/TPEL.2020.2965030
10.1109/PESC.2007.4341961
10.1109/TPEL.2008.2005500
10.1109/TPEL.2019.2897871
10.1088/1674-4926/40/1/011802
10.1109/JESTPE.2020.2971525
10.1109/JESTPE.2018.2830650
10.1109/TPEL.2005.846547
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.matpr.2022.10.262
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2214-7853
EndPage 423
ExternalDocumentID 10_1016_j_matpr_2022_10_262
S2214785322067815
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
HZ~
KOM
M41
NCXOZ
O9-
OAUVE
P-8
P-9
PC.
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c218t-1a72dc57acffcbebe4c8dfce7e3ba18d515f4e97350e4843335094f4a052094d3
IEDL.DBID .~1
ISSN 2214-7853
IngestDate Tue Jul 01 02:10:41 EDT 2025
Thu Apr 24 23:04:32 EDT 2025
Fri Feb 23 02:37:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Photovoltaic
Proportional integral (PI)
High step-up parallel to parallel converters
PWM
Sliding mode controller (SMC)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c218t-1a72dc57acffcbebe4c8dfce7e3ba18d515f4e97350e4843335094f4a052094d3
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_matpr_2022_10_262
crossref_primary_10_1016_j_matpr_2022_10_262
elsevier_sciencedirect_doi_10_1016_j_matpr_2022_10_262
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationTitle Materials today : proceedings
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lenon Schmitz, Denizar C. Martins, Roberto F. Coelho, “Comprehensive Conception of High Step-Up DC–DC Converters With Coupled Inductor and Voltage Multipliers Techniques”, IEEE Transactions on Circuits and Systems, Volume: 67, Issue: 6, 2020.
Lenon Schmitz, Denizar C. Martins, Roberto F. Coelho, ”High Step-Up Nonisolated ZVS/ZCS DC–DC Converter for Photovoltaic Thin-Film Module Applications”, IEEE Journal of Emerging and Selected Topics in Power Electronics, Volume: 7, Issue: 1, 2019.
“Assessing the Impact of SiC MOSFETs on Converter Interfaces for Distributed Energy Resources”, IEEE Transactions On Power Electronics, Vol. 24, No. 1, January 2009.
Tseng, Lin, Huang (b0025) February 2015; 30
Liang, Lu, van Wyk, Lee (b0120) May 2005; 20
Aydemir (b0010) July 2014; 29
D. Domes andW. Hofmann, “SiC JFET in contrast to high speed Si IGBT in matrix converter topology,” in
O
Alvin Ong
Yuanmao Ye, Shikai Chen, Yong Yi, “Switched-Capacitor and Coupled-Inductor-Based High Step-Up Converter with Improved Voltage Gain”, IEEE Journal of Emerging and Selected Topics in Power Electronics, Volume: 9, Issue: 1, 2021.
H. Alan Mantooth
Si Chen, Luowei Zhou, Quanming Luo, Wei Gao, Yuqi Wei, Pengju Sun, Xiong Du, “ Research on Topology of the High Step-Up Boost Converter With Coupled Inductor”, IEEE Transactions on Power Electronics, Volume: 34, Issue: 11, 2019.
Anant Agarwal
Tseng, Huang, Cheng (b0030) June 2016; 04
Reza Moradpour, Hossein Ardi, Abdolreza Tavakoli, “Design and Implementation of a New SEPIC-Based High Step-Up DC/DC Converter for Renewable Energy Applications”, IEEE Transactions on Industrial Electronics, Volume: 65, Issue: 2, 2018.
Lenon Schmitz;Denizar C. Martins;Roberto F. Coelho, “Generalized High Step-Up DC-DC Boost-Based Converter With Gain Cell”, IEEE Transactions on Circuits and Systems, Volume 64, Issue: 2, 2017.
pp. 54–60.
Hwu, Yau (b0035) 2014; 29
Ajami, Ardi, Farakhor (b0040) 2015; 30
Joseph Alexander Carr
Xiangjun Zhangr, Lei Sun, Yueshi Guan, Shouheng Han, Hongye Cai, Yijie Wang, Dianguo Xu, “Novel High Step-Up Soft-Switching DC–DC Converter Based on Switched Capacitor and Coupled Inductor”, IEEE Transactions on Power Electronics, Volume: 35, Issue: 9, 2020.
Behzad Poorali;Hamed Moradmand Jazi;Ehsan Adib, “Improved High Step-Up Z-Source DC–DC Converter With Single Core and ZVT Operation”, IEEE Transactions on Power Electronics, Volume: 33, Issue: 11, 2018.
Zhang, Du, Chen (b0015) Sep. 2013; 60
C. J. Cass, Y. Wang, R. Burgos, T. P. Chow, and F. Wang, “Evaluation of SiC JFETs for a three-phase current-source rectifier with high switching frequency,” in
Ismail, Al-Saffar, Sabzali, Fardoun (b0020) May 2008; 55
pp. 2162–2167.
Hang Dong, Huiwen Xue, Qiming He, Yuan Qin, Guangzhong Jian, Shibing Long, and Ming Liu, “Progress of power field effect transistor based on ultra-wide bandgap Ga
semiconductor material”, Journal of Semiconductors, September, 2018.
Renjun Hu, Jun Zeng, Junfeng Liu, Zhiyu Guo, Ningrui Yang, “An Ultrahigh Step-Up Quadratic Boost Converter Based on Coupled-Inductor”, IEEE Transactions on Power Electronics , Volume: 35, Issue: 12, 2020.
C. J. Cass, R. Burgos, F.Wang, and D. Boroyevich, “Three-phase ac buck rectifier using normally-on SiC JFETs at 150 kHz switching frequency,” in
Yifei Zheng;Benjamin Brown;Wenhao Xie;Shouxiang Li;Keyue Smedley, “High Step-Up DC–DC Converter With Zero Voltage Switching and Low Input Current Ripple”, IEEE Transactions on Power Electronics, Volume: 35, Issue: 9, 2020.
Hsieh, Chen, Liang, Yang (b0005) April 2011; 26
Hossein Ardi, Ali Ajami, Mehran Sabahi, “A Novel High Step-Up DC–DC Converter With Continuous Input Current Integrating Coupled Inductor for Renewable Energy Applications”, IEEE Transactions on Industrial Electronics, Volume: 65, Issue: 2, 2018.
pp. 345–351.
Shanshan Gao, Yijie Wang, Yining Liu, Yueshi Guan, “A Novel DCM Soft-Switched SEPIC-Based High-Frequency Converter With High Step-Up Capacity”, IEEE Transactions on Power Electronics, Volume: 35, Issue: 10, 2020.
Daniel Hotz, Juan Carlos Balda
Konstantinos Zaoskoufis, Emmanuel C. Tatakis, “A Thorough Analysis for the Impact of the Coupling Coefficient on the Behavior of the Coupled Inductor High Step-Up Converters”, IEEE Transactions on Power Electronics, Volume: 35, Issue: 8, 2020.
10.1016/j.matpr.2022.10.262_b0080
Tseng (10.1016/j.matpr.2022.10.262_b0030) 2016; 04
Ismail (10.1016/j.matpr.2022.10.262_b0020) 2008; 55
Tseng (10.1016/j.matpr.2022.10.262_b0025) 2015; 30
Liang (10.1016/j.matpr.2022.10.262_b0120) 2005; 20
10.1016/j.matpr.2022.10.262_b0135
10.1016/j.matpr.2022.10.262_b0115
Ajami (10.1016/j.matpr.2022.10.262_b0040) 2015; 30
10.1016/j.matpr.2022.10.262_b0050
10.1016/j.matpr.2022.10.262_b0095
Aydemir (10.1016/j.matpr.2022.10.262_b0010) 2014; 29
10.1016/j.matpr.2022.10.262_b0075
10.1016/j.matpr.2022.10.262_b0130
10.1016/j.matpr.2022.10.262_b0055
10.1016/j.matpr.2022.10.262_b0110
10.1016/j.matpr.2022.10.262_b0090
10.1016/j.matpr.2022.10.262_b0070
Zhang (10.1016/j.matpr.2022.10.262_b0015) 2013; 60
Hwu (10.1016/j.matpr.2022.10.262_b0035) 2014; 29
10.1016/j.matpr.2022.10.262_b0125
Hsieh (10.1016/j.matpr.2022.10.262_b0005) 2011; 26
10.1016/j.matpr.2022.10.262_b0105
10.1016/j.matpr.2022.10.262_b0060
10.1016/j.matpr.2022.10.262_b0085
10.1016/j.matpr.2022.10.262_b0065
10.1016/j.matpr.2022.10.262_b0045
10.1016/j.matpr.2022.10.262_b0100
References_xml – reference: Konstantinos Zaoskoufis, Emmanuel C. Tatakis, “A Thorough Analysis for the Impact of the Coupling Coefficient on the Behavior of the Coupled Inductor High Step-Up Converters”, IEEE Transactions on Power Electronics, Volume: 35, Issue: 8, 2020.
– reference: D. Domes andW. Hofmann, “SiC JFET in contrast to high speed Si IGBT in matrix converter topology,” in
– volume: 55
  year: May 2008
  ident: b0020
  article-title: “A family of single-switch PWM converters with high step-up conversion ratio”
  publication-title: IEEE Trans. Circuits Syst.-I: Regular Pap.
– reference: Behzad Poorali;Hamed Moradmand Jazi;Ehsan Adib, “Improved High Step-Up Z-Source DC–DC Converter With Single Core and ZVT Operation”, IEEE Transactions on Power Electronics, Volume: 33, Issue: 11, 2018.
– reference: Hang Dong, Huiwen Xue, Qiming He, Yuan Qin, Guangzhong Jian, Shibing Long, and Ming Liu, “Progress of power field effect transistor based on ultra-wide bandgap Ga
– volume: 29
  year: 2014
  ident: b0035
  article-title: “High step-up converter based on coupling inductor and bootstrap capacitors with active clamping”
  publication-title: EEE Trans. Power Electron.
– reference: Lenon Schmitz;Denizar C. Martins;Roberto F. Coelho, “Generalized High Step-Up DC-DC Boost-Based Converter With Gain Cell”, IEEE Transactions on Circuits and Systems, Volume 64, Issue: 2, 2017.
– reference: Anant Agarwal
– reference: Lenon Schmitz, Denizar C. Martins, Roberto F. Coelho, ”High Step-Up Nonisolated ZVS/ZCS DC–DC Converter for Photovoltaic Thin-Film Module Applications”, IEEE Journal of Emerging and Selected Topics in Power Electronics, Volume: 7, Issue: 1, 2019.
– reference: Alvin Ong
– reference: , pp. 2162–2167.
– reference: , pp. 345–351.
– volume: 04
  year: June 2016
  ident: b0030
  article-title: A single-switch converter with high step-up gain and low diode voltage stress suitable for green power-source conversion
  publication-title: IEEE J. Emerg. Selected Topics Power Electron.
– volume: 30
  year: 2015
  ident: b0040
  article-title: A novel high step-up DC/DC converter based on integrating coupled inductor and switched-capacitor techniques for renewable energy applications
  publication-title: IEEE Trans. Power Electron. Year
– reference: Renjun Hu, Jun Zeng, Junfeng Liu, Zhiyu Guo, Ningrui Yang, “An Ultrahigh Step-Up Quadratic Boost Converter Based on Coupled-Inductor”, IEEE Transactions on Power Electronics , Volume: 35, Issue: 12, 2020.
– volume: 60
  start-page: 3775
  year: Sep. 2013
  end-page: 3783
  ident: b0015
  article-title: A novel scheme suitable for high-voltage and large-capacity photovoltaic power stations
  publication-title: IEEE Trans. Ind. Electron.
– volume: 20
  start-page: 679
  year: May 2005
  end-page: 686
  ident: b0120
  article-title: Integrated Cool MOSFET/SiC-diode module for high performance power switching
  publication-title: IEEE Trans. Power Electron.
– volume: 29
  year: July 2014
  ident: b0010
  article-title: “Isolated high step-up DC–DC converter with low voltage stress”
  publication-title: IEEE Trans. Power Electron.
– reference: C. J. Cass, Y. Wang, R. Burgos, T. P. Chow, and F. Wang, “Evaluation of SiC JFETs for a three-phase current-source rectifier with high switching frequency,” in
– volume: 30
  year: February 2015
  ident: b0025
  article-title: “High step-up converter with three-winding coupled inductor for fuel cell energy source applications”
  publication-title: IEEE Trans. Power Electron.
– reference: Si Chen, Luowei Zhou, Quanming Luo, Wei Gao, Yuqi Wei, Pengju Sun, Xiong Du, “ Research on Topology of the High Step-Up Boost Converter With Coupled Inductor”, IEEE Transactions on Power Electronics, Volume: 34, Issue: 11, 2019.
– volume: 26
  year: April 2011
  ident: b0005
  article-title: “A novel high step-up DC DC converter for a micro grid system”
  publication-title: IEEE Trans. Power Electron.
– reference: Xiangjun Zhangr, Lei Sun, Yueshi Guan, Shouheng Han, Hongye Cai, Yijie Wang, Dianguo Xu, “Novel High Step-Up Soft-Switching DC–DC Converter Based on Switched Capacitor and Coupled Inductor”, IEEE Transactions on Power Electronics, Volume: 35, Issue: 9, 2020.
– reference: Yifei Zheng;Benjamin Brown;Wenhao Xie;Shouxiang Li;Keyue Smedley, “High Step-Up DC–DC Converter With Zero Voltage Switching and Low Input Current Ripple”, IEEE Transactions on Power Electronics, Volume: 35, Issue: 9, 2020.
– reference: Joseph Alexander Carr
– reference: Daniel Hotz, Juan Carlos Balda
– reference: Yuanmao Ye, Shikai Chen, Yong Yi, “Switched-Capacitor and Coupled-Inductor-Based High Step-Up Converter with Improved Voltage Gain”, IEEE Journal of Emerging and Selected Topics in Power Electronics, Volume: 9, Issue: 1, 2021.
– reference: Lenon Schmitz, Denizar C. Martins, Roberto F. Coelho, “Comprehensive Conception of High Step-Up DC–DC Converters With Coupled Inductor and Voltage Multipliers Techniques”, IEEE Transactions on Circuits and Systems, Volume: 67, Issue: 6, 2020.
– reference: Hossein Ardi, Ali Ajami, Mehran Sabahi, “A Novel High Step-Up DC–DC Converter With Continuous Input Current Integrating Coupled Inductor for Renewable Energy Applications”, IEEE Transactions on Industrial Electronics, Volume: 65, Issue: 2, 2018.
– reference: C. J. Cass, R. Burgos, F.Wang, and D. Boroyevich, “Three-phase ac buck rectifier using normally-on SiC JFETs at 150 kHz switching frequency,” in
– reference: O
– reference: semiconductor material”, Journal of Semiconductors, September, 2018.
– reference: Shanshan Gao, Yijie Wang, Yining Liu, Yueshi Guan, “A Novel DCM Soft-Switched SEPIC-Based High-Frequency Converter With High Step-Up Capacity”, IEEE Transactions on Power Electronics, Volume: 35, Issue: 10, 2020.
– reference: Reza Moradpour, Hossein Ardi, Abdolreza Tavakoli, “Design and Implementation of a New SEPIC-Based High Step-Up DC/DC Converter for Renewable Energy Applications”, IEEE Transactions on Industrial Electronics, Volume: 65, Issue: 2, 2018.
– reference: “Assessing the Impact of SiC MOSFETs on Converter Interfaces for Distributed Energy Resources”, IEEE Transactions On Power Electronics, Vol. 24, No. 1, January 2009.
– reference: , pp. 54–60.
– reference: H. Alan Mantooth
– ident: 10.1016/j.matpr.2022.10.262_b0100
  doi: 10.1109/TPEL.2020.2975130
– ident: 10.1016/j.matpr.2022.10.262_b0130
  doi: 10.1109/PESC.2007.4342342
– ident: 10.1016/j.matpr.2022.10.262_b0060
  doi: 10.1109/TPEL.2020.2972583
– volume: 60
  start-page: 3775
  issue: 9
  year: 2013
  ident: 10.1016/j.matpr.2022.10.262_b0015
  article-title: A novel scheme suitable for high-voltage and large-capacity photovoltaic power stations
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2208438
– volume: 04
  issue: 2
  year: 2016
  ident: 10.1016/j.matpr.2022.10.262_b0030
  article-title: A single-switch converter with high step-up gain and low diode voltage stress suitable for green power-source conversion
  publication-title: IEEE J. Emerg. Selected Topics Power Electron.
– volume: 26
  issue: 4
  year: 2011
  ident: 10.1016/j.matpr.2022.10.262_b0005
  article-title: “A novel high step-up DC DC converter for a micro grid system”
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2010.2096826
– volume: 29
  issue: 7
  year: 2014
  ident: 10.1016/j.matpr.2022.10.262_b0010
  article-title: “Isolated high step-up DC–DC converter with low voltage stress”
  publication-title: IEEE Trans. Power Electron.
– ident: 10.1016/j.matpr.2022.10.262_b0125
  doi: 10.1109/APEX.2007.357537
– volume: 29
  issue: 6
  year: 2014
  ident: 10.1016/j.matpr.2022.10.262_b0035
  article-title: “High step-up converter based on coupling inductor and bootstrap capacitors with active clamping”
  publication-title: EEE Trans. Power Electron.
– volume: 55
  issue: 4
  year: 2008
  ident: 10.1016/j.matpr.2022.10.262_b0020
  article-title: “A family of single-switch PWM converters with high step-up conversion ratio”
  publication-title: IEEE Trans. Circuits Syst.-I: Regular Pap.
  doi: 10.1109/TCSI.2008.916427
– ident: 10.1016/j.matpr.2022.10.262_b0080
  doi: 10.1109/TPEL.2017.2787907
– ident: 10.1016/j.matpr.2022.10.262_b0105
  doi: 10.1109/TCSI.2016.2603782
– ident: 10.1016/j.matpr.2022.10.262_b0065
  doi: 10.1109/TIE.2017.2733476
– ident: 10.1016/j.matpr.2022.10.262_b0070
  doi: 10.1109/TCSI.2020.2973154
– ident: 10.1016/j.matpr.2022.10.262_b0090
  doi: 10.1109/TIE.2017.2733421
– ident: 10.1016/j.matpr.2022.10.262_b0075
  doi: 10.1109/TPEL.2020.2968613
– ident: 10.1016/j.matpr.2022.10.262_b0085
  doi: 10.1109/TPEL.2020.2995911
– volume: 30
  issue: 2
  year: 2015
  ident: 10.1016/j.matpr.2022.10.262_b0025
  article-title: “High step-up converter with three-winding coupled inductor for fuel cell energy source applications”
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2014.2309793
– ident: 10.1016/j.matpr.2022.10.262_b0050
  doi: 10.1109/TPEL.2020.2965030
– ident: 10.1016/j.matpr.2022.10.262_b0135
  doi: 10.1109/PESC.2007.4341961
– ident: 10.1016/j.matpr.2022.10.262_b0115
  doi: 10.1109/TPEL.2008.2005500
– ident: 10.1016/j.matpr.2022.10.262_b0055
  doi: 10.1109/TPEL.2019.2897871
– ident: 10.1016/j.matpr.2022.10.262_b0110
  doi: 10.1088/1674-4926/40/1/011802
– ident: 10.1016/j.matpr.2022.10.262_b0045
  doi: 10.1109/JESTPE.2020.2971525
– volume: 30
  issue: 8
  year: 2015
  ident: 10.1016/j.matpr.2022.10.262_b0040
  article-title: A novel high step-up DC/DC converter based on integrating coupled inductor and switched-capacitor techniques for renewable energy applications
  publication-title: IEEE Trans. Power Electron. Year
– ident: 10.1016/j.matpr.2022.10.262_b0095
  doi: 10.1109/JESTPE.2018.2830650
– volume: 20
  start-page: 679
  issue: 3
  year: 2005
  ident: 10.1016/j.matpr.2022.10.262_b0120
  article-title: Integrated Cool MOSFET/SiC-diode module for high performance power switching
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2005.846547
SSID ssj0001560816
Score 2.2065086
Snippet Resonant controlled step up coupled inductor fed DC-DC converter has received a lot of consideration in gridconnected generation systems using fuel cells or...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 414
SubjectTerms High step-up parallel to parallel converters
Photovoltaic
Proportional integral (PI)
PWM
Sliding mode controller (SMC)
Title Sliding Mode Resonant Controlled Step up Coupled Inductor fed DC-DC converter with Gallium Oxide Semiconductor Material
URI https://dx.doi.org/10.1016/j.matpr.2022.10.262
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DL15EUXH-GDl4NNuapm12lM45lc3DHOxW0jSBSp1FNvTk3-57aesPkB08JuSV8hLee3l8-T5CLqyUvhgYj6WeHTCs0ZmSImM6DLMMCmjrKXycPJmG47m4WwSLFombtzAIq6xjfxXTXbSuZ3q1N3tlnvdmHCV2INtwZCCX7qG5EBHy53c_vO8-C6R06RRQcT1Dg4Z8yMG8oC4skReU8y7CokP-d4L6kXRGe2S3rhbpVfVD-6RllgfkbVbkmHEo6phR7L8jmIXGFei8MBlF6BZdlzC1LnGM-hzYnKcWBsOYDWPq0OYI56TYiaU3qijy9TN9eM_hmzNEzL80RhO1csf0kMxH14_xmNX6CUxD4l4xT0U800GktLU6hd0SWmZWm8j4qfJkBqWMFWYQ-UHfCCl830c2PSuUw8aIzD8iW8uXpTkmVEIVBRdHzeHeKvpgpAaBUkLoIFA-D9I24Y3TEl2Ti6PGRZE0KLKnxHk6QU_jJHi6TS6_jMqKW2Pz8rDZjeTXEUkg-m8yPPmv4SnZQXX5quNyRrZWr2tzDjXIKu24Q9Yh21e39-PpJyh53Cc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGWBBIECUpwdG3BLbSdwRBUp5tAxtJbbIcWwpKJQItYKJ385dHjwk1IExVr4oOp_uzqfP9xFy6pQSsmc9lniux7BGZ1rJlJkgSFMooJ2n8XLycBQMpvL20X9cIVFzFwZplXXsr2J6Ga3rlW5tzW6RZd0xR4kdyDYcJ5ArvGi-Kn0Romt3PrzvRgvkdFVKoCKAIaKZPlTyvKAwLHAwKOcd5EUH_O8M9SPr9DfJRl0u0ovqj7bIip1tk7dxnmHKoShkRrEBj2wWGlWs89ymFLlbdFHA0qLAZxTowO48dfBwGbHLiJZ0c-RzUmzF0mud59nimT68Z_DNMVLmXxrQUM9LP90h0_7VJBqwWkCBGcjcc-bpkKfGD7VxziSwXdKo1BkbWpFoT6VQyzhpe6Hwz61UUgiB4_Sc1CU5RqZil7RmLzO7R6iCMgpOjobDwVWeA0j3fK2lNL6vBfeTNuGN0WJTTxdHkYs8bmhkT3Fp6RgtjYtg6TY5-wIV1XCN5a8HzW7Ev3wkhvC_DLj_X-AJWRtMhvfx_c3o7oCso9R81X45JK3568IeQUEyT45Lh_sEYj7dvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sliding+Mode+Resonant+Controlled+Step+up+Coupled+Inductor+fed+DC-DC+converter+with+Gallium+Oxide+Semiconductor+Material&rft.jtitle=Materials+today+%3A+proceedings&rft.au=Suganya%2C+R.&rft.au=Naveenkumar%2C+P.&rft.au=Balaji%2C+B.&rft.au=Gayathri%2C+D.&rft.date=2023&rft.pub=Elsevier+Ltd&rft.issn=2214-7853&rft.eissn=2214-7853&rft.volume=77&rft.spage=414&rft.epage=423&rft_id=info:doi/10.1016%2Fj.matpr.2022.10.262&rft.externalDocID=S2214785322067815
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7853&client=summon