Integrated Statistical and Engineering Process Control Based on Smooth Transition Autoregressive Model

Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic noise of the system. However, linear models sometimes are unable to model complex no...

Full description

Saved in:
Bibliographic Details
Published inTransactions of Tianjin University Vol. 19; no. 2; pp. 147 - 156
Main Author 张晓蕾 何桢
Format Journal Article
LanguageEnglish
Published Heidelberg Tianjin University 01.04.2013
School of Management and Economics, Tianjin University, Tianjin 300072, China
Subjects
Online AccessGet full text
ISSN1006-4982
1995-8196
DOI10.1007/s12209-013-1892-0

Cover

Abstract Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic noise of the system. However, linear models sometimes are unable to model complex nonlinear autocorrelation. To solve this problem, this paper presents an integrated SPC-EPC method based on smooth transition autoregressive (STAR) time series model, and builds a minimum mean squared error (MMSE) controller as well as an integrated SPC-EPC control system. The performance of this method for checking the trend and sustained shift is analyzed. The simulation results indicate that this integrated SPC-EPC control method based on STAR model is effective in controlling complex nonlinear systems.
AbstractList Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic noise of the system. However, linear models sometimes are unable to model complex nonlinear autocorrelation. To solve this problem, this paper presents an integrated SPC-EPC method based on smooth transition autoregressive (STAR) time series model, and builds a minimum mean squared error (MMSE) controller as well as an integrated SPC-EPC control system. The performance of this method for checking the trend and sustained shift is analyzed. The simulation results indicate that this integrated SPC-EPC control method based on STAR model is effective in controlling complex nonlinear systems.
Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic noise of the system. However, linear models sometimes are unable to model complex nonlinear autocorrelation. To solve this problem, this paper presents an integrated SPC-EPC method based on smooth transition autoregressive (STAR) time series model, and builds a minimum mean squared error (MMSE) controller as well as an integrated SPC-EPC control system. The performance of this method for checking the trend and sustained shift is analyzed. The simulation results indicate that this integrated SPC-EPC control method based on STAR model is effective in controlling complex nonlinear systems.
Author 张晓蕾 何桢
AuthorAffiliation School of Management and Economics, Tianjin University, Tianjin 300072, China
AuthorAffiliation_xml – name: School of Management and Economics, Tianjin University, Tianjin 300072, China
Author_xml – sequence: 1
  fullname: 张晓蕾 何桢
BookMark eNp9kMtOBCEQRYnRxOcHuMO9rRTQ3bDUia9Eo4m6JtDQLZMRFPD19zIZozs3RYXcUzc522g9xOAQ2gdyBIT0xxkoJbIhwBoQkjZkDW2BlG0jQHbrdSeka7gUdBNt5zwnhEvSwxYar0JxU9LFWXxfdPG5-EEvsA4Wn4XJB-eSDxO-S3FwOeNZDCXFBT7VuRIx4PvnGMsTfkg6ZF98_Tl5KzHVmzXu3x2-idYtdtHGqBfZ7f28O-jx_Oxhdtlc315czU6um4GCgMZ22ggBIAy0dhB9T_p-4C1YQ9uu1XokHePSMsbGjlrOOsMpc0Ya3nIjjGA76HB190OHUYdJzeNbCrVRFa_D3H5-GuVotUTqgBqHVXxIMefkRvWS_LNOXwqIWnpVK6-qEmrpVZHK0BWTX5ZmXPrr-A86-Cl6imF6rdxvE28p5Z2U7BvG74iU
Cites_doi 10.1080/00224065.1994.11979508
10.2307/1270035
10.1002/qre.831
10.1080/07408170490507828
10.1080/00224065.1997.11979767
10.1080/00224065.2002.11980171
10.2307/1270028
10.1080/00224065.1999.11979926
10.1007/b97702
ContentType Journal Article
Copyright Tianjin University and Springer-Verlag Berlin Heidelberg 2013
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Tianjin University and Springer-Verlag Berlin Heidelberg 2013
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s12209-013-1892-0
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
DocumentTitleAlternate Integrated Statistical and Engineering Process Control Based on Smooth Transition Autoregressive Model
EISSN 1995-8196
EndPage 156
ExternalDocumentID tianjdxxb_e201302011
10_1007_s12209_013_1892_0
45224699
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: (70931004)
GroupedDBID -03
-0C
-5B
-5G
-BR
-EM
-SC
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
29Q
29~
2B.
2C-
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
408
40D
40E
5VR
5VS
6NX
8TC
92D
92I
92L
92M
93E
93N
95-
95.
95~
96X
9D9
9DC
AAAVM
AABHQ
AAFGU
AAHNG
AAHTB
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABPEJ
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
CAJEC
CAJUS
CCEZO
CEKLB
CHBEP
COF
CQIGP
CS3
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9P
PF0
PT4
Q--
Q-2
QOS
R-C
R89
R9I
RIG
ROL
RPX
RSV
RT3
S16
S1Z
S27
S3B
SAP
SCL
SDH
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T8S
TCJ
TGH
TSG
TSV
TUC
U1F
U1G
U2A
U5C
U5M
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z7R
ZMTXR
~A9
~WA
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AIGIU
H13
SJYHP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
4A8
PSX
ID FETCH-LOGICAL-c2181-d6ab88118b15dc877077c451db2565aaf06349d333f62d436b423eb9b454b8b83
IEDL.DBID AGYKE
ISSN 1006-4982
IngestDate Thu May 29 04:11:18 EDT 2025
Tue Jul 01 02:15:54 EDT 2025
Fri Feb 21 02:33:39 EST 2025
Wed Feb 14 10:43:06 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords time series
engineering process control
STAR model
statistical process control
autocorrelation
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2181-d6ab88118b15dc877077c451db2565aaf06349d333f62d436b423eb9b454b8b83
Notes statistical process control; engineering process control; time series; STAR model; autocorrelation
Zhang Xiaolei , He Zhen (School of Management and Economics, Tianjin University, Tianjin 300072, China)
12-1248/T
Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic noise of the system. However, linear models sometimes are unable to model complex nonlinear autocorrelation. To solve this problem, this paper presents an integrated SPC-EPC method based on smooth transition autoregressive (STAR) time series model, and builds a minimum mean squared error (MMSE) controller as well as an integrated SPC-EPC control system. The performance of this method for checking the trend and sustained shift is analyzed. The simulation results indicate that this integrated SPC-EPC control method based on STAR model is effective in controlling complex nonlinear systems.
PageCount 10
ParticipantIDs wanfang_journals_tianjdxxb_e201302011
crossref_primary_10_1007_s12209_013_1892_0
springer_journals_10_1007_s12209_013_1892_0
chongqing_primary_45224699
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130400
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 4
  year: 2013
  text: 20130400
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Transactions of Tianjin University
PublicationTitleAbbrev Trans. Tianjin Univ
PublicationTitleAlternate Transactions of Tianjin University
PublicationTitle_FL Transactions of Tianjin University
PublicationYear 2013
Publisher Tianjin University
School of Management and Economics, Tianjin University, Tianjin 300072, China
Publisher_xml – name: Tianjin University
– name: School of Management and Economics, Tianjin University, Tianjin 300072, China
References WielS VTuckerWFaltinFAlgorithmic statistical process control: Concepts and an application[J]Technometrics199234328629710.2307/1270035
CuiJ WXieL YLiuX XStudy on a process control approach integrating SPC with EPC[J]Journal of Northeastern University (Natural Science)200728913171320
JiangWA joint monitoring scheme for automatically controlled processes[J]IIE Transactions200436121201121010.1080/07408170490507828
YuJ LZhangZ WTime series prediction and application for integrated SPC/EPC process disturbance[J]Journal of Zhongyuan University of Technology20092041115
BoxG E PLucenoAStatistical Control by Monitoring and Feedback Adjustment[M]1997USAJohn Wiley
TsungFShiJ JWuC F JJoint monitoring of PI-Dcontrolled processes[J]Journal of Quality Technology1999313275286
MacGregorJ FOn-line statistical process control[J]Chemical Engineering Progress198884102131
FanJ QYanQ WNonlinear Time Series: Nonparametric and Parametric Methods[M]2003USASpringer
MontgomeryD CKeatsJ BRungerG CIntegrating statistical process control and engineering process control[J]Journal of Quality Technology19942627987
SunQ XGaoQ SZhaoJ LEconomic design of integrating SPC with EPC based on quality feature constraints[J]Chinese Journal of Engineering Design2009166411414
MessinaW SStrategies for the Integration of Statistical and Engineering Process Control[D]1992USAArizona State University
ZhangX LHeZNieBAn integrated SPC-EPC study for checking assignable causes resulting in sustained shift based on threshold autoregressive model[J]Chinese Journal of Engineering Design2012194255262
JiangWTsuiK LSPC monitoring of MMSE- and PI-controlled processes[J]Journal of Quality Technology2002344384389
BoxG E PJenkinsG MReinselG CTime Series Analysis: Forecasting and Control[M]1994USAPrentice-Hall
ChuWSunS DYuX YStudy on the integration of SPC/EPC and its key technologies[J]Journal of Computer Applications2007271228230
ZivotEWangJ HModeling Financial Time Series with SPLUS[ M]2006USASpringer
NembhardH BChenS HCuscore control charts for generalized feedback-control systems[J]Quality and Reli ability Engineering International200723448350210.1002/qre.831
BoxGKramerTStatistical process monitoring and feedback adjustment: A discussion[J]Technometrics1992343251267118320910.2307/1270028
ZhangX LHeZNieBAn integrated SPC-EPC study for checking assignable causes resulting in trend based on TAR model[J]Journal of Management Science20122522432
TsungFApleyD WThe dynamic T2 chart for monitoring feedback-controlled processes[J]IIE Transactions2002341210431053
del CastilloEnriqueStatistical Process Adjustment for Quality Control[M]2002USAJohn Wiley
MontgomeryD CStatistical Quality Control: A Modern Introduction[M]2009USAJohn Wiley
YuLSunX JLiuFQuality loss analysis for autocorrelation process based on feedback adjustment[J]Control Engineering of China2008153273275
BoxGLucenoADiscrete proportional-integral adjustment and statistical process control[J]Journal of Quality Technology1997293248261
ShiR ZLiuFIntegrated process control approach in 2ndorder dynamic processes[J]Computer Engineering and Applications2010462227229
LiuFShiR ZAnalysis and design of low order EPC controller in statistical process monitoring[J]Control Engineering of China20101712427
R Z Shi (1892_CR21) 2010; 46
G Box (1892_CR5) 1992; 34
W Jiang (1892_CR9) 2002; 34
H B Nembhard (1892_CR11) 2007; 23
F Tsung (1892_CR14) 2002; 34
J Q Fan (1892_CR22) 2003
J W Cui (1892_CR16) 2007; 28
J F MacGregor (1892_CR3) 1988; 84
G E P Box (1892_CR24) 1994
S V Wiel (1892_CR4) 1992; 34
J L Yu (1892_CR19) 2009; 20
D C Montgomery (1892_CR1) 2009
G E P Box (1892_CR8) 1997
L Yu (1892_CR17) 2008; 15
W S Messina (1892_CR6) 1992
G Box (1892_CR12) 1997; 29
X L Zhang (1892_CR26) 2012; 19
W Chu (1892_CR15) 2007; 27
D C Montgomery (1892_CR7) 1994; 26
Enrique Castillo del (1892_CR2) 2002
E Zivot (1892_CR23) 2006
F Tsung (1892_CR13) 1999; 31
Q X Sun (1892_CR18) 2009; 16
X L Zhang (1892_CR25) 2012; 25
F Liu (1892_CR20) 2010; 17
W Jiang (1892_CR10) 2004; 36
References_xml – reference: ZivotEWangJ HModeling Financial Time Series with SPLUS[ M]2006USASpringer
– reference: YuJ LZhangZ WTime series prediction and application for integrated SPC/EPC process disturbance[J]Journal of Zhongyuan University of Technology20092041115
– reference: JiangWTsuiK LSPC monitoring of MMSE- and PI-controlled processes[J]Journal of Quality Technology2002344384389
– reference: JiangWA joint monitoring scheme for automatically controlled processes[J]IIE Transactions200436121201121010.1080/07408170490507828
– reference: BoxGLucenoADiscrete proportional-integral adjustment and statistical process control[J]Journal of Quality Technology1997293248261
– reference: WielS VTuckerWFaltinFAlgorithmic statistical process control: Concepts and an application[J]Technometrics199234328629710.2307/1270035
– reference: MacGregorJ FOn-line statistical process control[J]Chemical Engineering Progress198884102131
– reference: TsungFShiJ JWuC F JJoint monitoring of PI-Dcontrolled processes[J]Journal of Quality Technology1999313275286
– reference: ZhangX LHeZNieBAn integrated SPC-EPC study for checking assignable causes resulting in sustained shift based on threshold autoregressive model[J]Chinese Journal of Engineering Design2012194255262
– reference: MessinaW SStrategies for the Integration of Statistical and Engineering Process Control[D]1992USAArizona State University
– reference: NembhardH BChenS HCuscore control charts for generalized feedback-control systems[J]Quality and Reli ability Engineering International200723448350210.1002/qre.831
– reference: TsungFApleyD WThe dynamic T2 chart for monitoring feedback-controlled processes[J]IIE Transactions2002341210431053
– reference: FanJ QYanQ WNonlinear Time Series: Nonparametric and Parametric Methods[M]2003USASpringer
– reference: MontgomeryD CKeatsJ BRungerG CIntegrating statistical process control and engineering process control[J]Journal of Quality Technology19942627987
– reference: MontgomeryD CStatistical Quality Control: A Modern Introduction[M]2009USAJohn Wiley
– reference: CuiJ WXieL YLiuX XStudy on a process control approach integrating SPC with EPC[J]Journal of Northeastern University (Natural Science)200728913171320
– reference: ZhangX LHeZNieBAn integrated SPC-EPC study for checking assignable causes resulting in trend based on TAR model[J]Journal of Management Science20122522432
– reference: LiuFShiR ZAnalysis and design of low order EPC controller in statistical process monitoring[J]Control Engineering of China20101712427
– reference: del CastilloEnriqueStatistical Process Adjustment for Quality Control[M]2002USAJohn Wiley
– reference: YuLSunX JLiuFQuality loss analysis for autocorrelation process based on feedback adjustment[J]Control Engineering of China2008153273275
– reference: SunQ XGaoQ SZhaoJ LEconomic design of integrating SPC with EPC based on quality feature constraints[J]Chinese Journal of Engineering Design2009166411414
– reference: BoxG E PJenkinsG MReinselG CTime Series Analysis: Forecasting and Control[M]1994USAPrentice-Hall
– reference: BoxGKramerTStatistical process monitoring and feedback adjustment: A discussion[J]Technometrics1992343251267118320910.2307/1270028
– reference: BoxG E PLucenoAStatistical Control by Monitoring and Feedback Adjustment[M]1997USAJohn Wiley
– reference: ChuWSunS DYuX YStudy on the integration of SPC/EPC and its key technologies[J]Journal of Computer Applications2007271228230
– reference: ShiR ZLiuFIntegrated process control approach in 2ndorder dynamic processes[J]Computer Engineering and Applications2010462227229
– volume: 26
  start-page: 79
  issue: 2
  year: 1994
  ident: 1892_CR7
  publication-title: Journal of Quality Technology
  doi: 10.1080/00224065.1994.11979508
– volume-title: Statistical Process Adjustment for Quality Control[M]
  year: 2002
  ident: 1892_CR2
– volume-title: Time Series Analysis: Forecasting and Control[M]
  year: 1994
  ident: 1892_CR24
– volume: 20
  start-page: 11
  issue: 4
  year: 2009
  ident: 1892_CR19
  publication-title: Journal of Zhongyuan University of Technology
– volume: 34
  start-page: 1043
  issue: 12
  year: 2002
  ident: 1892_CR14
  publication-title: IIE Transactions
– volume-title: Statistical Quality Control: A Modern Introduction[M]
  year: 2009
  ident: 1892_CR1
– volume: 34
  start-page: 286
  issue: 3
  year: 1992
  ident: 1892_CR4
  publication-title: Technometrics
  doi: 10.2307/1270035
– volume: 16
  start-page: 411
  issue: 6
  year: 2009
  ident: 1892_CR18
  publication-title: Chinese Journal of Engineering Design
– volume: 25
  start-page: 24
  issue: 2
  year: 2012
  ident: 1892_CR25
  publication-title: Journal of Management Science
– volume: 23
  start-page: 483
  issue: 4
  year: 2007
  ident: 1892_CR11
  publication-title: Quality and Reli ability Engineering International
  doi: 10.1002/qre.831
– volume: 36
  start-page: 1201
  issue: 12
  year: 2004
  ident: 1892_CR10
  publication-title: IIE Transactions
  doi: 10.1080/07408170490507828
– volume-title: Strategies for the Integration of Statistical and Engineering Process Control[D]
  year: 1992
  ident: 1892_CR6
– volume: 29
  start-page: 248
  issue: 3
  year: 1997
  ident: 1892_CR12
  publication-title: Journal of Quality Technology
  doi: 10.1080/00224065.1997.11979767
– volume-title: Statistical Control by Monitoring and Feedback Adjustment[M]
  year: 1997
  ident: 1892_CR8
– volume: 17
  start-page: 24
  issue: 1
  year: 2010
  ident: 1892_CR20
  publication-title: Control Engineering of China
– volume: 34
  start-page: 384
  issue: 4
  year: 2002
  ident: 1892_CR9
  publication-title: Journal of Quality Technology
  doi: 10.1080/00224065.2002.11980171
– volume: 34
  start-page: 251
  issue: 3
  year: 1992
  ident: 1892_CR5
  publication-title: Technometrics
  doi: 10.2307/1270028
– volume: 19
  start-page: 255
  issue: 4
  year: 2012
  ident: 1892_CR26
  publication-title: Chinese Journal of Engineering Design
– volume: 31
  start-page: 275
  issue: 3
  year: 1999
  ident: 1892_CR13
  publication-title: Journal of Quality Technology
  doi: 10.1080/00224065.1999.11979926
– volume: 28
  start-page: 1317
  issue: 9
  year: 2007
  ident: 1892_CR16
  publication-title: Journal of Northeastern University (Natural Science)
– volume-title: Modeling Financial Time Series with SPLUS[ M]
  year: 2006
  ident: 1892_CR23
– volume: 84
  start-page: 21
  issue: 10
  year: 1988
  ident: 1892_CR3
  publication-title: Chemical Engineering Progress
– volume-title: Nonlinear Time Series: Nonparametric and Parametric Methods[M]
  year: 2003
  ident: 1892_CR22
  doi: 10.1007/b97702
– volume: 46
  start-page: 227
  issue: 2
  year: 2010
  ident: 1892_CR21
  publication-title: Computer Engineering and Applications
– volume: 27
  start-page: 228
  issue: 1
  year: 2007
  ident: 1892_CR15
  publication-title: Journal of Computer Applications
– volume: 15
  start-page: 273
  issue: 3
  year: 2008
  ident: 1892_CR17
  publication-title: Control Engineering of China
SSID ssj0049071
Score 1.8610735
Snippet Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving...
Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving...
SourceID wanfang
crossref
springer
chongqing
SourceType Aggregation Database
Index Database
Publisher
StartPage 147
SubjectTerms Engineering
Humanities and Social Sciences
Mechanical Engineering
multidisciplinary
Science
基础
工程过程控制
平滑过渡
时间序列模型
综合控制系统
综合统计
自回归模型
非线性系统
Title Integrated Statistical and Engineering Process Control Based on Smooth Transition Autoregressive Model
URI http://lib.cqvip.com/qk/85460X/201302/45224699.html
https://link.springer.com/article/10.1007/s12209-013-1892-0
https://d.wanfangdata.com.cn/periodical/tianjdxxb-e201302011
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50vejBt7i-yEHBB5U-kjQ9LuIbPbmgp5I0qaLYVXcF8dc7ySauigjeCk2TNJnMfENmvgHYlGgVYqPriEvOI4ruV1Sw3EQ6oUblTEnuuPQuLvlJl55ds2ufx90P0e7hStJp6lGyW5q62J4sSoQNmRyHCYZPogUTneOb88OggO2Azs-yzjItRBouM3_rxFIq3PWa22cc8LtpCpNw2TxNLZvbL4bnaAauwpSH8SYP-68DtV-9_2Bz_Oc_zcK0B6KkM5ScORgzzTxMfaEnnIc5f_D7ZNuzU-8sQH0aCCY0sdlIjugZO5KNJmb0NXkaZiAQHwtPrLnUpNeQ_mMPpYMMrJF08WJEWh4F4xx_1L3EFedZhO7R4dXBSeSLNUSVRQmR5lIJge6KSpiuRJ7HeV5RlmiFoIpJWSMWooXOsqzmqaYZVwjkjCoUZVQJJbIlaDW9xiwDkRJBNE-00JYpKIsVQ-mJTcp0oioqdRtWPvesfBqScpSWGR5d_aINu2ETP9-NqJntcpe43KVd7jJuw17Yl9Kf3f5frbe8JIwaWzV8r9_eVGlSdwmM-nLlX72uwmTqSmzYaKA1aA1eXs06Ap2B2vCCvQHj3bTzAZTf9SI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50PagH8Ym7vnJQ8EGhjyRNjyLKqrueXPBWkk26ItiudoX9-U6y7XYFETw3nZR8zTyYmW8ATiVaBd_ozOOSc49i-OUlLDaeDqhRMVOSOy69_hPvDujDC3up-rjLutq9Tkk6Td00u4Whq-2JvEDYksllWEFfQNixBYPwula_djsXZdlQmSYirFOZv4mwhAqvRT76wO1-Gqb6E1wvT57JfLRgdu42YaPyF8n1DOAtWDL5NqwvsAhuw1Z1P0tyXpFIX-xAdl_zQGhim4YcHzMKkrkmpnmbjGeNAqQqWSfWqmlS5KR8LxBEMrG2zJV1EWnpDoyLz1FFEjdDZxcGd7fPN12vmqngDa0x9zSXSgiMKlTA9FDEsR_HQ8oCrdD3YVJm6LLQREdRlPFQ04grPGOjEkUZVUKJaA9aeZGbfSBSoq_LAy20JfSJfMUQZN-ETAdqSKVuQ2d-uOl4xp2RWgJ3jMiTNlzWpz1_1jAoW5hShCm1MKV-G65qPNLqipV_rT6rIGsWW235pqdTlZrQ5WpRrXX-JfUEVrvP_V7au396PIC10E3FsAU8h9CafH6ZI_RNJurY_YvfvlPaWQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEB60guiDeGI986DgwdI9kuzuY1GLNz5Y8G1JmqwimFZbwZ_vTLprFUTwebOTkC-Zg8x8A7Cn0CqE1pSBVFIGHMOvIBepDUzErU6FVtJz6d3cyvMuv3wQD1Wf02Gd7V4_SY5rGoilyY1aA1O2JoVvcezzfJIgyih9chpmUBtHdNC7cbtWxTS1j7gobOZ5FtfPmr-JIHKFp757fMWpfxqpejm-rseVyj1-M0GdRViofEfWHoO9BFPWLcP8N0bBZViq7uqQHVSE0ocrUF7UnBCGUQGR52ZGQcoZZid_s8G4aIBV6euMLJxhfceGL30ElI3IrvkUL6aI-sD6WB3VJfP9dFah2zm7PzkPqv4KQY8Me2Ck0lmGEYaOhOllaRqmaY-LyGj0g4RSJbovPDdJkpQyNjyRGn0vq3PNBdeZzpI1aLi-s-vAlEK_V0YmM0Tuk4RaIOChjYWJdI8r04SNr80tBmMejYLI3DE6z5twVO_217cJmzLBVCBMBcFUhE04rvEoqus2_Gv0fgXZZDBpzmfz8aELG_t3W1RxG_-Suguzd6ed4vri9moT5mLfIINyebagMXp7t9vopoz0jj-Kn21M3pU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+statistical+and+engineering+process+control+based+on+smooth+transition+autoregressive+model&rft.jtitle=Transactions+of+Tianjin+University&rft.au=Zhang%2C+Xiaolei&rft.au=He%2C+Zhen&rft.date=2013-04-01&rft.issn=1006-4982&rft.eissn=1995-8196&rft.volume=19&rft.issue=2&rft.spage=147&rft.epage=156&rft_id=info:doi/10.1007%2Fs12209-013-1892-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12209_013_1892_0
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85460X%2F85460X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Ftianjdxxb-e%2Ftianjdxxb-e.jpg