Enhancing the Applicability of Sign Language Translation
This paper addresses a significant problem in American Sign Language (ASL) translation systems that has been overlooked. Current designs collect excessive sensing data for each word and treat every sentence as new, requiring the collection of sensing data from scratch. This approach is time-consumin...
Saved in:
Published in | IEEE transactions on mobile computing Vol. 23; no. 9; pp. 8634 - 8648 |
---|---|
Main Authors | , , , , |
Format | Magazine Article |
Language | English |
Published |
IEEE
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper addresses a significant problem in American Sign Language (ASL) translation systems that has been overlooked. Current designs collect excessive sensing data for each word and treat every sentence as new, requiring the collection of sensing data from scratch. This approach is time-consuming, taking hours to half a day to complete the data collection process for each user. As a result, it creates an unnecessary burden on end-users and hinders the widespread adoption of ASL systems. In this study, we identify the root cause of this issue and propose GASLA -a wearable sensor-based solution that automatically generates sentence-level sensing data from word-level data. An acceleration approach is further proposed to optimize the data generation speed. Moreover, due to the gap between the generated sentence data and directly collected sentence data, a template strategy is proposed to make the generated sentences more similar to the collected sentence. The generated data can be used to train ASL systems effectively while reducing overhead costs significantly. GASLA offers several benefits over current approaches: it reduces initial setup time and future new-sentence addition overhead; it requires only two samples per sentence compared to around ten samples in current systems; and it improves overall performance significantly. |
---|---|
AbstractList | This paper addresses a significant problem in American Sign Language (ASL) translation systems that has been overlooked. Current designs collect excessive sensing data for each word and treat every sentence as new, requiring the collection of sensing data from scratch. This approach is time-consuming, taking hours to half a day to complete the data collection process for each user. As a result, it creates an unnecessary burden on end-users and hinders the widespread adoption of ASL systems. In this study, we identify the root cause of this issue and propose GASLA -a wearable sensor-based solution that automatically generates sentence-level sensing data from word-level data. An acceleration approach is further proposed to optimize the data generation speed. Moreover, due to the gap between the generated sentence data and directly collected sentence data, a template strategy is proposed to make the generated sentences more similar to the collected sentence. The generated data can be used to train ASL systems effectively while reducing overhead costs significantly. GASLA offers several benefits over current approaches: it reduces initial setup time and future new-sentence addition overhead; it requires only two samples per sentence compared to around ten samples in current systems; and it improves overall performance significantly. |
Author | Li, Zhenjiang Liu, Yang Li, Jiao Xu, Jiakai Xu, Weitao |
Author_xml | – sequence: 1 givenname: Jiao orcidid: 0000-0002-3918-4922 surname: Li fullname: Li, Jiao email: jli242-c@my.cityu.edu.hk organization: Department of Computer Science, City University of Hong Kong, Hong Kong, SAR, China – sequence: 2 givenname: Jiakai orcidid: 0009-0006-2074-9109 surname: Xu fullname: Xu, Jiakai email: jiakai.xu@my.cityu.edu.hk organization: Department of Computer Science, City University of Hong Kong, Hong Kong, SAR, China – sequence: 3 givenname: Yang orcidid: 0000-0002-2474-2004 surname: Liu fullname: Liu, Yang email: yl868@cam.ac.uk organization: Department of Computer Science and Technology, University of Cambridge, Cambridge, England – sequence: 4 givenname: Weitao orcidid: 0000-0001-9741-5912 surname: Xu fullname: Xu, Weitao email: weitaoxu@cityu.edu.hk organization: Department of Computer Science, City University of Hong Kong, Hong Kong, SAR, China – sequence: 5 givenname: Zhenjiang orcidid: 0000-0002-3296-3392 surname: Li fullname: Li, Zhenjiang email: zhenjiang.li@cityu.edu.hk organization: Department of Computer Science, City University of Hong Kong, Hong Kong, SAR, China |
BookMark | eNpNjzFPwzAQhS1UJNrCzsCQP5ByZzuxM1ZRoUhBDIQ5chw7NQpOFIeh_55E7cD0Tk_v3d23ISvfe0PII8IOEbLn8j3fUaB8x1gCiHhD1pgkMoY0hdUyszRGytgd2YTwDYAyy8SayIM_Ka-db6PpZKL9MHROq9p1bjpHvY0-XeujQvn2V7UmKkflQ6cm1_t7cmtVF8zDVbfk6-VQ5se4-Hh9y_dFrCmKKdaWWZ5ibcFImyRCCyEakVikWimkXHOhsebKCJASpeSsbmbfIFpo6vnfLYHLXj32IYzGVsPoftR4rhCqhbyayauFvLqSz5WnS8UZY_7F2XwAGPsDxG5WAQ |
CODEN | ITMCCJ |
Cites_doi | 10.1145/3472291 10.1109/INFOCOM.2017.8057209 10.1145/3463498 10.1109/ACCESS.2020.2967770 10.1109/JIOT.2018.2860592 10.24963/ijcai.2021/631 10.1145/3411841 10.1145/3485730.3485937 10.1007/978-3-319-95276-5_2 10.1145/3300061.3300117 10.1145/3414117 10.1109/INFOCOM48880.2022.9796819 10.1109/INFOCOM.2019.8737633 10.1145/3307334.3326109 10.1109/JIOT.2018.2856119 10.1109/INFOCOM41043.2020.9155526 10.1109/ISM46123.2019.00044 10.1145/3293318 10.1109/INFOCOM41043.2020.9155402 10.1145/3384419.3430725 10.1145/3450268.3453537 10.1109/TIFS.2020.3016819 10.1145/3191755 10.1109/INFOCOM.2017.8057208 10.1145/3241539.3241582 10.1145/2639108.2639110 10.1109/INFOCOM41043.2020.9155380 10.1145/3131672.3131693 10.1016/j.smhl.2021.100205 10.1109/BigData.2018.8622141 10.1145/3458864.3467680 10.1016/j.pmcj.2020.101289 10.1109/TMC.2019.2962760 10.1145/3301275.3302296 10.1109/TMC.2020.3038303 10.1109/INFOCOM.2018.8485958 10.1145/3596255 10.1145/2906388.2906407 10.1145/3381010 10.1109/THMS.2015.2406692 |
ContentType | Magazine Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TMC.2024.3350111 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1558-0660 |
EndPage | 8648 |
ExternalDocumentID | 10_1109_TMC_2024_3350111 10381803 |
Genre | orig-research |
GrantInformation_xml | – fundername: CityU SRG-Fd grantid: 7005658 – fundername: GRF from Research Grants Council of Hong Kong grantid: CityU 21201420; CityU 11201422 – fundername: GRF from Research Grants Council of Hong Kong grantid: CityU 11217420; CityU 11213622 |
GroupedDBID | -~X .DC 0R~ 1OL 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAYOK ABQJQ ACGFO ACGFS ACIWK AENEX AETIX AIBXA AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IEDLZ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIC RIE RIG RNI RNS RZB AAYXX CITATION |
ID | FETCH-LOGICAL-c217t-cf3f461bf0e8f557c777d75f12caa124c47c1b4ae708818843bda12e11f0db233 |
IEDL.DBID | RIE |
ISSN | 1536-1233 |
IngestDate | Wed Aug 14 12:29:55 EDT 2024 Wed Aug 14 05:40:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c217t-cf3f461bf0e8f557c777d75f12caa124c47c1b4ae708818843bda12e11f0db233 |
ORCID | 0000-0002-2474-2004 0000-0002-3296-3392 0009-0006-2074-9109 0000-0001-9741-5912 0000-0002-3918-4922 |
PageCount | 15 |
ParticipantIDs | ieee_primary_10381803 crossref_primary_10_1109_TMC_2024_3350111 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on mobile computing |
PublicationTitleAbbrev | TMC |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 Wang (ref39) 2016 ref53 ref30 ref52 ref11 ref33 ref32 ref17 ref16 ref38 ref19 ref18 Nilsson (ref29) 2017 ref51 ref50 ref24 ref46 ref23 ref45 ref26 ref48 ref25 ref47 ref20 Ramponi (ref31) 2018 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref49 ref40 |
References_xml | – ident: ref32 doi: 10.1145/3472291 – ident: ref47 doi: 10.1109/INFOCOM.2017.8057209 – ident: ref30 doi: 10.1145/3463498 – ident: ref14 doi: 10.1109/ACCESS.2020.2967770 – ident: ref37 doi: 10.1109/JIOT.2018.2860592 – start-page: 189 volume-title: Proc. ACM Asia Conf. Comput. Commun. Secur. year: 2016 ident: ref39 article-title: Friend or foe? your wearable devices reveal your personal pin contributor: fullname: Wang – ident: ref45 doi: 10.24963/ijcai.2021/631 – ident: ref20 doi: 10.1145/3411841 – ident: ref48 doi: 10.1145/3485730.3485937 – ident: ref12 doi: 10.1007/978-3-319-95276-5_2 – ident: ref18 doi: 10.1145/3300061.3300117 – ident: ref23 doi: 10.1145/3414117 – year: 2018 ident: ref31 article-title: T-CGAN: Conditional generative adversarial network for data augmentation in noisy time series with irregular sampling contributor: fullname: Ramponi – ident: ref22 doi: 10.1109/INFOCOM48880.2022.9796819 – ident: ref40 doi: 10.1109/INFOCOM.2019.8737633 – ident: ref25 doi: 10.1145/3307334.3326109 – ident: ref46 doi: 10.1109/JIOT.2018.2856119 – ident: ref51 doi: 10.1109/INFOCOM41043.2020.9155526 – year: 2017 ident: ref29 article-title: Improving the security of the android pattern lock using biometrics and machine learning contributor: fullname: Nilsson – ident: ref34 doi: 10.1109/ISM46123.2019.00044 – ident: ref42 doi: 10.1145/3293318 – ident: ref43 doi: 10.1109/INFOCOM41043.2020.9155402 – ident: ref21 doi: 10.1145/3384419.3430725 – ident: ref26 doi: 10.1145/3450268.3453537 – ident: ref53 doi: 10.1109/TIFS.2020.3016819 – ident: ref28 doi: 10.1145/3191755 – ident: ref17 doi: 10.1109/INFOCOM.2017.8057208 – ident: ref35 doi: 10.1145/3241539.3241582 – ident: ref52 doi: 10.1145/2639108.2639110 – ident: ref15 doi: 10.1109/INFOCOM41043.2020.9155380 – ident: ref16 doi: 10.1145/3131672.3131693 – ident: ref41 doi: 10.1016/j.smhl.2021.100205 – ident: ref13 doi: 10.1109/BigData.2018.8622141 – ident: ref27 doi: 10.1145/3458864.3467680 – ident: ref11 doi: 10.1016/j.pmcj.2020.101289 – ident: ref50 doi: 10.1109/TMC.2019.2962760 – ident: ref49 doi: 10.1145/3301275.3302296 – ident: ref44 doi: 10.1109/TMC.2020.3038303 – ident: ref24 doi: 10.1109/INFOCOM.2018.8485958 – ident: ref19 doi: 10.1145/3596255 – ident: ref36 doi: 10.1145/2906388.2906407 – ident: ref33 doi: 10.1145/3381010 – ident: ref38 doi: 10.1109/THMS.2015.2406692 |
SSID | ssj0018997 |
Score | 1.3878623 |
Snippet | This paper addresses a significant problem in American Sign Language (ASL) translation systems that has been overlooked. Current designs collect excessive... |
SourceID | crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 8634 |
SubjectTerms | Assistive technologies Computer science Gesture recognition Libraries Mobile computing Semantics Sensors sign language translation Urban areas wearable sensing |
Title | Enhancing the Applicability of Sign Language Translation |
URI | https://ieeexplore.ieee.org/document/10381803 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60J0_1UbG-2IMXD0mz7qabHEuxFLG92EJvYV-pIqQi6UF_vbO7iVRB8BaGBIaZ3czOfjPfANwYeeeI6DR6QIiIq9REsqS48VJuhomhWmau33k2H06X_GGVrppmdd8LY631xWc2do8eyzcbvXVXZQPqYS3H7bkv8jw0a31DBpg4iECO6gbLMNZikkk-WMzGsVMpZg5Go_RHDNoZquJjyqQL81abUEryGm9rFevPX0SN_1b3ELotWzQZhfVwBHu2OoZuO7qBNDv5BLL76tkxbVRrgidAMgowti-U_SCbkjy9rCvy2NxlEh_QQtFcD5aT-8V4GjVDFCKN2UYd6ZKVfEhVmdisTFOhhRBGpOgPLSUGd82FpopLK_B_Q7OMM2VQbiktE6PQjqfQqTaVPQPCuBDaog0lZy4vkswqlMicJ1Izyfpw25q1eAtcGYXPMZK8QBcUzgVF44I-9JzBdt4Ltjr_Q34BB-7zUN11CZ36fWuv8DhQq2u_DL4A2duwCA |
link.rule.ids | 783,787,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGWAqjyLK0wMLQ9IYO3E6VlWrAm0XWqlb5FcKQkoQSgf49ZztBBUkJLboFEWnOzvn83f3HUI3WtxZIjoFHuA8YDLWgcgJbLyY6STSRInU9jvP5slkyR5W8apuVne9MMYYV3xmQvvosHxdqo29KusRB2tZbs9dOFiniW_X-gYNIHXgnh7VjpahtEElo35vMRuGVqmQWiCNkB9RaGusiosq4zaaN_r4YpLXcFPJUH3-omr8t8IHqN3wReOBXxGHaMcUR6jdDG_A9V4-RumoeLZcG8UawxkQDzyQ7UplP3CZ46eXdYGn9W0mdiHNl8110HI8WgwnQT1GIVCQb1SBymnOEiLzyKR5HHPFOdc8Bo8oISC8K8YVkUwYDn8ckqaMSg1yQ0geaQl2PEGtoizMKcKUca4M2FAwajMjQY0EieizSCgqaBfdNmbN3jxbRuayjKifgQsy64KsdkEXdazBtt7ztjr7Q36N9iaL2TSb3s8fz9G-_ZSv9bpArep9Yy7hcFDJK7ckvgBA97NT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+Applicability+of+Sign+Language+Translation&rft.jtitle=IEEE+transactions+on+mobile+computing&rft.au=Li%2C+Jiao&rft.au=Xu%2C+Jiakai&rft.au=Liu%2C+Yang&rft.au=Xu%2C+Weitao&rft.date=2024-09-01&rft.pub=IEEE&rft.issn=1536-1233&rft.volume=23&rft.issue=9&rft.spage=8634&rft.epage=8648&rft_id=info:doi/10.1109%2FTMC.2024.3350111&rft.externalDocID=10381803 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1233&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1233&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1233&client=summon |