Active disturbance rejection control: an application to continuous microalgae photobioreactors

Abstract BACKGROUND Mathematical modelling is a widely employed approach for investigating the growth behaviour of microalgae. As a result, the development of model‐based controllers to regulate process variables has garnered increasing attention. However, despite the significant efforts invested in...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical technology and biotechnology (1986) Vol. 98; no. 12; pp. 3004 - 3015
Main Authors Sangregorio‐Soto, Viyils, Mazzanti, Gianfranco, Cortés‐Romero, John A., Garzón‐Castro, Claudia L.
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract BACKGROUND Mathematical modelling is a widely employed approach for investigating the growth behaviour of microalgae. As a result, the development of model‐based controllers to regulate process variables has garnered increasing attention. However, despite the significant efforts invested in this area, control performance can be adversely affected by unmodelled dynamics and disturbances. RESULTS Two active disturbance rejection controllers (ADRC) were designed to enable robust tracking of biomass concentration in continuous microalgae photobioreactors, with reduced reliance on the mathematical model of the system. The controllers were tuned to achieve a nonovershoot response and minimize settling time based on the culture's characteristics. Simulations were performed using optimal setpoints specific to each model. The results showcased a maximum output signal deviation of ±2.2%, ±7.8% and ± 7.62% for the Dunaliella tertiolecta , Isochrysis affinis galbana and Chlorella vulgaris models, respectively, regardless of the presence of simulated disturbances. CONCLUSIONS The findings of this study significantly contribute to the advancement of the field of sustainable microalgae production. By introducing less dependent model‐based controllers, this research enhances the feasibility of implementing robust control strategies. These controllers require only knowledge of the equation system's order and the control gain function, simplifying the design process. This approach effectively addresses control performance degradation arising from unmodelled dynamics and disturbances. The ability to maintain desired process variables through ADRC controllers not only ensures improved control performance, but also supports the cultivation of specific microalgal species, when an accurate model is not available, thus promoting the overall progress and viability of microalgae biomass production. © 2023 Society of Chemical Industry.
AbstractList Abstract BACKGROUND Mathematical modelling is a widely employed approach for investigating the growth behaviour of microalgae. As a result, the development of model‐based controllers to regulate process variables has garnered increasing attention. However, despite the significant efforts invested in this area, control performance can be adversely affected by unmodelled dynamics and disturbances. RESULTS Two active disturbance rejection controllers (ADRC) were designed to enable robust tracking of biomass concentration in continuous microalgae photobioreactors, with reduced reliance on the mathematical model of the system. The controllers were tuned to achieve a nonovershoot response and minimize settling time based on the culture's characteristics. Simulations were performed using optimal setpoints specific to each model. The results showcased a maximum output signal deviation of ±2.2%, ±7.8% and ± 7.62% for the Dunaliella tertiolecta , Isochrysis affinis galbana and Chlorella vulgaris models, respectively, regardless of the presence of simulated disturbances. CONCLUSIONS The findings of this study significantly contribute to the advancement of the field of sustainable microalgae production. By introducing less dependent model‐based controllers, this research enhances the feasibility of implementing robust control strategies. These controllers require only knowledge of the equation system's order and the control gain function, simplifying the design process. This approach effectively addresses control performance degradation arising from unmodelled dynamics and disturbances. The ability to maintain desired process variables through ADRC controllers not only ensures improved control performance, but also supports the cultivation of specific microalgal species, when an accurate model is not available, thus promoting the overall progress and viability of microalgae biomass production. © 2023 Society of Chemical Industry.
BACKGROUNDMathematical modelling is a widely employed approach for investigating the growth behaviour of microalgae. As a result, the development of model‐based controllers to regulate process variables has garnered increasing attention. However, despite the significant efforts invested in this area, control performance can be adversely affected by unmodelled dynamics and disturbances.RESULTSTwo active disturbance rejection controllers (ADRC) were designed to enable robust tracking of biomass concentration in continuous microalgae photobioreactors, with reduced reliance on the mathematical model of the system. The controllers were tuned to achieve a nonovershoot response and minimize settling time based on the culture's characteristics. Simulations were performed using optimal setpoints specific to each model. The results showcased a maximum output signal deviation of ±2.2%, ±7.8% and ± 7.62% for the Dunaliella tertiolecta, Isochrysis affinis galbana and Chlorella vulgaris models, respectively, regardless of the presence of simulated disturbances.CONCLUSIONSThe findings of this study significantly contribute to the advancement of the field of sustainable microalgae production. By introducing less dependent model‐based controllers, this research enhances the feasibility of implementing robust control strategies. These controllers require only knowledge of the equation system's order and the control gain function, simplifying the design process. This approach effectively addresses control performance degradation arising from unmodelled dynamics and disturbances. The ability to maintain desired process variables through ADRC controllers not only ensures improved control performance, but also supports the cultivation of specific microalgal species, when an accurate model is not available, thus promoting the overall progress and viability of microalgae biomass production. © 2023 Society of Chemical Industry.
Author Cortés‐Romero, John A.
Garzón‐Castro, Claudia L.
Mazzanti, Gianfranco
Sangregorio‐Soto, Viyils
Author_xml – sequence: 1
  givenname: Viyils
  orcidid: 0000-0002-8863-9356
  surname: Sangregorio‐Soto
  fullname: Sangregorio‐Soto, Viyils
  organization: Engineering Faculty, CAPSAB Research Group Universidad de La Sabana Chía Cundinamarca Colombia
– sequence: 2
  givenname: Gianfranco
  orcidid: 0000-0002-1058-6434
  surname: Mazzanti
  fullname: Mazzanti, Gianfranco
  organization: Department of Process Engineering and Applied Science Dalhousie University Halifax NS Canada
– sequence: 3
  givenname: John A.
  orcidid: 0000-0001-6991-4116
  surname: Cortés‐Romero
  fullname: Cortés‐Romero, John A.
  organization: Department of Electrical and Electronic Engineering Universidad Nacional de Colombia Bogotá Colombia
– sequence: 4
  givenname: Claudia L.
  orcidid: 0000-0003-4012-3550
  surname: Garzón‐Castro
  fullname: Garzón‐Castro, Claudia L.
  organization: Engineering Faculty, CAPSAB Research Group Universidad de La Sabana Chía Cundinamarca Colombia
BookMark eNotkMtOwzAQRS1UJNrCgj-IxIpFytiJH2FXVbykSmxgS2Q7U0iU2sF2kPh70pbVSHeO7ozOgsycd0jINYUVBWB3nU1mJTmIMzKnUMm8FAJmZA5MqJxxyS_IIsYOAIRiYk4-1ja1P5g1bUxjMNpZzAJ2OKXeZda7FHx_n2mX6WHoW6uPefLHVetGP8Zs39rgdf-pMRu-fPKm9QG1TT7ES3K-033Eq_-5JO-PD2-b53z7-vSyWW9zy6hMuWkqZctK6B2WkgmpSzRoK9OwopBYUg6NAlYoBmaCGiUtR1WBVoZzxgCKJbk59Q7Bf48YU935MbjpZM3URFZUKD5Rtydq-jfGgLt6CO1eh9-aQn3QVx_01Qd9xR-DfmZP
Cites_doi 10.1016/j.jtbi.2010.04.018
10.1016/j.cherd.2021.08.027
10.3390/electronics2030246
10.1016/j.biortech.2010.06.138
10.1109/TIA.2020.3014895
10.1080/10408398.2018.1455030
10.1016/j.conengprac.2019.04.002
10.1002/9781394193738.ch36
10.1016/j.compchemeng.2018.06.006
10.1016/j.biortech.2017.11.047
10.1016/j.ijbiomac.2020.10.159
10.1016/j.isatra.2021.02.011
10.1016/j.energy.2022.125955
10.1016/j.isatra.2022.05.009
10.1016/j.biortech.2018.07.121
10.3390/math9050517
10.1002/jctb.6624
10.23919/AADECA49780.2020.9301637
10.1016/j.compchemeng.2018.07.006
10.3182/20080706-5-KR-1001.02630
10.1016/j.fuel.2021.121017
10.1016/j.jprocont.2011.07.012
10.1016/j.biotechadv.2020.107609
10.1016/j.compchemeng.2018.10.004
10.1016/j.dib.2021.107194
10.1016/j.ifacol.2019.06.180
10.1016/B978-0-12-821575-3.00002-5
10.1039/9781839162473-00272
10.1109/TIE.2012.2201430
10.1016/j.conengprac.2019.02.007
10.1109/TAC.2003.820153
10.1016/j.energy.2020.116961
10.1007/s11768-018-8134-x
10.1007/s12555-019-1086-1
10.3390/pr8121551
10.1109/MED.2014.6961417
10.1002/btpr.1699
10.1007/s13762-022-04159-y
10.3390/pr4030023
10.1016/j.automatica.2019.108692
10.1021/acs.iecr.9b00270
ContentType Journal Article
Copyright Copyright © 2023 Society of Chemical Industry (SCI)
Copyright_xml – notice: Copyright © 2023 Society of Chemical Industry (SCI)
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1002/jctb.7506
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-4660
EndPage 3015
ExternalDocumentID 10_1002_jctb_7506
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29K
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
D-I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UAO
UB1
V2E
V8K
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XV2
XXG
ZXP
ZZTAW
~02
~IA
~KM
~WT
7QF
7QO
7QQ
7QR
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c217t-bd98c496afe47267a4ebec9bd2337e4150d8023820b96ad87c5e890a8b5522003
ISSN 0268-2575
IngestDate Thu Oct 10 18:29:48 EDT 2024
Fri Aug 23 01:34:50 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c217t-bd98c496afe47267a4ebec9bd2337e4150d8023820b96ad87c5e890a8b5522003
ORCID 0000-0001-6991-4116
0000-0002-1058-6434
0000-0003-4012-3550
0000-0002-8863-9356
PQID 2889091685
PQPubID 2034149
PageCount 12
ParticipantIDs proquest_journals_2889091685
crossref_primary_10_1002_jctb_7506
PublicationCentury 2000
PublicationDate 2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-00
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Journal of chemical technology and biotechnology (1986)
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References Filali R (e_1_2_11_33_1) 2011
Sira‐Ramírez H (e_1_2_11_25_1) 2018
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_12_1
e_1_2_11_34_1
Gao Z (e_1_2_11_42_1) 2003
e_1_2_11_11_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
Nouals S (e_1_2_11_35_1) 2000
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_46_1
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
e_1_2_11_19_1
References_xml – ident: e_1_2_11_11_1
  doi: 10.1016/j.jtbi.2010.04.018
– ident: e_1_2_11_30_1
  doi: 10.1016/j.cherd.2021.08.027
– ident: e_1_2_11_45_1
  doi: 10.3390/electronics2030246
– ident: e_1_2_11_31_1
  doi: 10.1016/j.biortech.2010.06.138
– ident: e_1_2_11_43_1
  doi: 10.1109/TIA.2020.3014895
– volume-title: Modélisation d'un photobioréacteur pour le pilotage de microalgues
  year: 2000
  ident: e_1_2_11_35_1
  contributor:
    fullname: Nouals S
– ident: e_1_2_11_20_1
  doi: 10.1080/10408398.2018.1455030
– ident: e_1_2_11_24_1
  doi: 10.1016/j.conengprac.2019.04.002
– ident: e_1_2_11_2_1
  doi: 10.1002/9781394193738.ch36
– ident: e_1_2_11_26_1
  doi: 10.1016/j.compchemeng.2018.06.006
– ident: e_1_2_11_19_1
  doi: 10.1016/j.biortech.2017.11.047
– start-page: 10603
  volume-title: IFAC Proceedings
  year: 2011
  ident: e_1_2_11_33_1
  contributor:
    fullname: Filali R
– ident: e_1_2_11_8_1
  doi: 10.1016/j.ijbiomac.2020.10.159
– start-page: 4989
  volume-title: Scaling and Bandwidth‐Parameterization Based Controller Tuning
  year: 2003
  ident: e_1_2_11_42_1
  contributor:
    fullname: Gao Z
– ident: e_1_2_11_40_1
  doi: 10.1016/j.isatra.2021.02.011
– ident: e_1_2_11_3_1
  doi: 10.1016/j.energy.2022.125955
– ident: e_1_2_11_39_1
  doi: 10.1016/j.isatra.2022.05.009
– ident: e_1_2_11_14_1
  doi: 10.1016/j.biortech.2018.07.121
– ident: e_1_2_11_41_1
  doi: 10.3390/math9050517
– ident: e_1_2_11_7_1
  doi: 10.1002/jctb.6624
– ident: e_1_2_11_27_1
  doi: 10.23919/AADECA49780.2020.9301637
– ident: e_1_2_11_21_1
  doi: 10.1016/j.compchemeng.2018.07.006
– ident: e_1_2_11_36_1
  doi: 10.3182/20080706-5-KR-1001.02630
– ident: e_1_2_11_5_1
  doi: 10.1016/j.fuel.2021.121017
– ident: e_1_2_11_9_1
  doi: 10.1016/j.jprocont.2011.07.012
– ident: e_1_2_11_12_1
  doi: 10.1016/j.biotechadv.2020.107609
– ident: e_1_2_11_13_1
  doi: 10.1016/j.compchemeng.2018.10.004
– ident: e_1_2_11_16_1
  doi: 10.1016/j.dib.2021.107194
– ident: e_1_2_11_34_1
  doi: 10.1016/j.ifacol.2019.06.180
– ident: e_1_2_11_6_1
  doi: 10.1016/B978-0-12-821575-3.00002-5
– ident: e_1_2_11_15_1
  doi: 10.1039/9781839162473-00272
– ident: e_1_2_11_38_1
  doi: 10.1109/TIE.2012.2201430
– ident: e_1_2_11_28_1
  doi: 10.1016/j.conengprac.2019.02.007
– ident: e_1_2_11_29_1
  doi: 10.1109/TAC.2003.820153
– ident: e_1_2_11_10_1
  doi: 10.1016/j.energy.2020.116961
– ident: e_1_2_11_22_1
  doi: 10.1007/s11768-018-8134-x
– ident: e_1_2_11_44_1
  doi: 10.1007/s12555-019-1086-1
– ident: e_1_2_11_32_1
  doi: 10.3390/pr8121551
– ident: e_1_2_11_18_1
  doi: 10.1109/MED.2014.6961417
– ident: e_1_2_11_46_1
  doi: 10.1002/btpr.1699
– ident: e_1_2_11_4_1
  doi: 10.1007/s13762-022-04159-y
– start-page: 450
  volume-title: Differentially Flat Systems
  year: 2018
  ident: e_1_2_11_25_1
  contributor:
    fullname: Sira‐Ramírez H
– ident: e_1_2_11_17_1
  doi: 10.3390/pr4030023
– ident: e_1_2_11_23_1
  doi: 10.1016/j.automatica.2019.108692
– ident: e_1_2_11_37_1
  doi: 10.1021/acs.iecr.9b00270
SSID ssj0006826
Score 2.440567
Snippet Abstract BACKGROUND Mathematical modelling is a widely employed approach for investigating the growth behaviour of microalgae. As a result, the development of...
BACKGROUNDMathematical modelling is a widely employed approach for investigating the growth behaviour of microalgae. As a result, the development of...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 3004
SubjectTerms Active control
Algae
Aquatic microorganisms
Biomass
Controllers
Disturbances
Dunaliella tertiolecta
Mathematical models
Microalgae
Performance degradation
Photobioreactors
Process variables
Rejection
Robust control
Title Active disturbance rejection control: an application to continuous microalgae photobioreactors
URI https://www.proquest.com/docview/2889091685
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeIEHxKcYDGQh3qKM1nESZ2-j2odQGdLWoj4R2Y4zOm3JlKYP63_Nf8DZSRxvKp8vUWW7TuX79Xxn3_0Oofc0z0dJnOk4KQ4OSiIzX8SE-jwfBTnLwQmR-hzy80l0PKOf5uF8MPjhRC2tarEr1xvzSv5HqtAGctVZsv8gWTspNMBnkC88QcLw_CsZ7xtlpS9ZYOMQJvi_Uheqqf7dBqGbbObCcy6qtbmpOxfFSse_XumQPJ3Robzr72WtaZnAkDRVeH5hucqOZKC25_LmDgK-6bRoBqhE39vYo4avi5vF5dI748W5yYxZlDbU4gxe3B-Or9cgbxNmcATozXXtD9trQn10Ln1VN5f8SzvJaXmlKjtwfMlXAH5v4h3xaq3HfgwKO3bMl3U7tj3zIMGd-JE_a1ZHi5IIQBM25Vl2VaPlh0ns06gpZNBtAwlz4U4cpa5JyRwDAVRiuHHzachsLyTgF-ywDQTfJ1_Sw9lkkk4P5tN76D4B3WgiC057xrOImQqB9ld3ZFhD8sFOfNuEum1BGLNo-hg9alGB9xtwPkEDVTxFDx2Wy2foWwNT7MAUW5jiFqZ7mBfYASmuS9yDFPcgxXdB-hzNDg-m42O_LevhS_B_a19kCZM0iXiuaEyimFOtSBKRkSCIFRiUw0yzEoJpKmBQxmIZKpYMORMhOAuwC71AW0VZqJcIjyQfZQkNpaQZzWPOVCwzMpIRF5JRKrbRu26l0uuGvSVteLpJqpcz1cu5jXa6NUzbP_cyJQxeCa4TC1_9vvs1etAjdAdt1dVKvQE7tRZvjWR_AvxCmdA
link.rule.ids 315,783,787,27936,27937
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+disturbance+rejection+control%3A+an+application+to+continuous+microalgae+photobioreactors&rft.jtitle=Journal+of+chemical+technology+and+biotechnology+%281986%29&rft.au=Viyils+Sangregorio%E2%80%90Soto&rft.au=Mazzanti%2C+Gianfranco&rft.au=John+A+Cort%C3%A9s%E2%80%90Romero&rft.au=Claudia+L+Garz%C3%B3n%E2%80%90Castro&rft.date=2023-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0268-2575&rft.eissn=1097-4660&rft.volume=98&rft.issue=12&rft.spage=3004&rft.epage=3015&rft_id=info:doi/10.1002%2Fjctb.7506&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-2575&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-2575&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-2575&client=summon