Active disturbance rejection control: an application to continuous microalgae photobioreactors
Abstract BACKGROUND Mathematical modelling is a widely employed approach for investigating the growth behaviour of microalgae. As a result, the development of model‐based controllers to regulate process variables has garnered increasing attention. However, despite the significant efforts invested in...
Saved in:
Published in | Journal of chemical technology and biotechnology (1986) Vol. 98; no. 12; pp. 3004 - 3015 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
BACKGROUND
Mathematical modelling is a widely employed approach for investigating the growth behaviour of microalgae. As a result, the development of model‐based controllers to regulate process variables has garnered increasing attention. However, despite the significant efforts invested in this area, control performance can be adversely affected by unmodelled dynamics and disturbances.
RESULTS
Two active disturbance rejection controllers (ADRC) were designed to enable robust tracking of biomass concentration in continuous microalgae photobioreactors, with reduced reliance on the mathematical model of the system. The controllers were tuned to achieve a nonovershoot response and minimize settling time based on the culture's characteristics. Simulations were performed using optimal setpoints specific to each model. The results showcased a maximum output signal deviation of ±2.2%, ±7.8% and ± 7.62% for the
Dunaliella tertiolecta
,
Isochrysis affinis galbana
and
Chlorella vulgaris
models, respectively, regardless of the presence of simulated disturbances.
CONCLUSIONS
The findings of this study significantly contribute to the advancement of the field of sustainable microalgae production. By introducing less dependent model‐based controllers, this research enhances the feasibility of implementing robust control strategies. These controllers require only knowledge of the equation system's order and the control gain function, simplifying the design process. This approach effectively addresses control performance degradation arising from unmodelled dynamics and disturbances. The ability to maintain desired process variables through ADRC controllers not only ensures improved control performance, but also supports the cultivation of specific microalgal species, when an accurate model is not available, thus promoting the overall progress and viability of microalgae biomass production. © 2023 Society of Chemical Industry. |
---|---|
AbstractList | Abstract
BACKGROUND
Mathematical modelling is a widely employed approach for investigating the growth behaviour of microalgae. As a result, the development of model‐based controllers to regulate process variables has garnered increasing attention. However, despite the significant efforts invested in this area, control performance can be adversely affected by unmodelled dynamics and disturbances.
RESULTS
Two active disturbance rejection controllers (ADRC) were designed to enable robust tracking of biomass concentration in continuous microalgae photobioreactors, with reduced reliance on the mathematical model of the system. The controllers were tuned to achieve a nonovershoot response and minimize settling time based on the culture's characteristics. Simulations were performed using optimal setpoints specific to each model. The results showcased a maximum output signal deviation of ±2.2%, ±7.8% and ± 7.62% for the
Dunaliella tertiolecta
,
Isochrysis affinis galbana
and
Chlorella vulgaris
models, respectively, regardless of the presence of simulated disturbances.
CONCLUSIONS
The findings of this study significantly contribute to the advancement of the field of sustainable microalgae production. By introducing less dependent model‐based controllers, this research enhances the feasibility of implementing robust control strategies. These controllers require only knowledge of the equation system's order and the control gain function, simplifying the design process. This approach effectively addresses control performance degradation arising from unmodelled dynamics and disturbances. The ability to maintain desired process variables through ADRC controllers not only ensures improved control performance, but also supports the cultivation of specific microalgal species, when an accurate model is not available, thus promoting the overall progress and viability of microalgae biomass production. © 2023 Society of Chemical Industry. BACKGROUNDMathematical modelling is a widely employed approach for investigating the growth behaviour of microalgae. As a result, the development of model‐based controllers to regulate process variables has garnered increasing attention. However, despite the significant efforts invested in this area, control performance can be adversely affected by unmodelled dynamics and disturbances.RESULTSTwo active disturbance rejection controllers (ADRC) were designed to enable robust tracking of biomass concentration in continuous microalgae photobioreactors, with reduced reliance on the mathematical model of the system. The controllers were tuned to achieve a nonovershoot response and minimize settling time based on the culture's characteristics. Simulations were performed using optimal setpoints specific to each model. The results showcased a maximum output signal deviation of ±2.2%, ±7.8% and ± 7.62% for the Dunaliella tertiolecta, Isochrysis affinis galbana and Chlorella vulgaris models, respectively, regardless of the presence of simulated disturbances.CONCLUSIONSThe findings of this study significantly contribute to the advancement of the field of sustainable microalgae production. By introducing less dependent model‐based controllers, this research enhances the feasibility of implementing robust control strategies. These controllers require only knowledge of the equation system's order and the control gain function, simplifying the design process. This approach effectively addresses control performance degradation arising from unmodelled dynamics and disturbances. The ability to maintain desired process variables through ADRC controllers not only ensures improved control performance, but also supports the cultivation of specific microalgal species, when an accurate model is not available, thus promoting the overall progress and viability of microalgae biomass production. © 2023 Society of Chemical Industry. |
Author | Cortés‐Romero, John A. Garzón‐Castro, Claudia L. Mazzanti, Gianfranco Sangregorio‐Soto, Viyils |
Author_xml | – sequence: 1 givenname: Viyils orcidid: 0000-0002-8863-9356 surname: Sangregorio‐Soto fullname: Sangregorio‐Soto, Viyils organization: Engineering Faculty, CAPSAB Research Group Universidad de La Sabana Chía Cundinamarca Colombia – sequence: 2 givenname: Gianfranco orcidid: 0000-0002-1058-6434 surname: Mazzanti fullname: Mazzanti, Gianfranco organization: Department of Process Engineering and Applied Science Dalhousie University Halifax NS Canada – sequence: 3 givenname: John A. orcidid: 0000-0001-6991-4116 surname: Cortés‐Romero fullname: Cortés‐Romero, John A. organization: Department of Electrical and Electronic Engineering Universidad Nacional de Colombia Bogotá Colombia – sequence: 4 givenname: Claudia L. orcidid: 0000-0003-4012-3550 surname: Garzón‐Castro fullname: Garzón‐Castro, Claudia L. organization: Engineering Faculty, CAPSAB Research Group Universidad de La Sabana Chía Cundinamarca Colombia |
BookMark | eNotkMtOwzAQRS1UJNrCgj-IxIpFytiJH2FXVbykSmxgS2Q7U0iU2sF2kPh70pbVSHeO7ozOgsycd0jINYUVBWB3nU1mJTmIMzKnUMm8FAJmZA5MqJxxyS_IIsYOAIRiYk4-1ja1P5g1bUxjMNpZzAJ2OKXeZda7FHx_n2mX6WHoW6uPefLHVetGP8Zs39rgdf-pMRu-fPKm9QG1TT7ES3K-033Eq_-5JO-PD2-b53z7-vSyWW9zy6hMuWkqZctK6B2WkgmpSzRoK9OwopBYUg6NAlYoBmaCGiUtR1WBVoZzxgCKJbk59Q7Bf48YU935MbjpZM3URFZUKD5Rtydq-jfGgLt6CO1eh9-aQn3QVx_01Qd9xR-DfmZP |
Cites_doi | 10.1016/j.jtbi.2010.04.018 10.1016/j.cherd.2021.08.027 10.3390/electronics2030246 10.1016/j.biortech.2010.06.138 10.1109/TIA.2020.3014895 10.1080/10408398.2018.1455030 10.1016/j.conengprac.2019.04.002 10.1002/9781394193738.ch36 10.1016/j.compchemeng.2018.06.006 10.1016/j.biortech.2017.11.047 10.1016/j.ijbiomac.2020.10.159 10.1016/j.isatra.2021.02.011 10.1016/j.energy.2022.125955 10.1016/j.isatra.2022.05.009 10.1016/j.biortech.2018.07.121 10.3390/math9050517 10.1002/jctb.6624 10.23919/AADECA49780.2020.9301637 10.1016/j.compchemeng.2018.07.006 10.3182/20080706-5-KR-1001.02630 10.1016/j.fuel.2021.121017 10.1016/j.jprocont.2011.07.012 10.1016/j.biotechadv.2020.107609 10.1016/j.compchemeng.2018.10.004 10.1016/j.dib.2021.107194 10.1016/j.ifacol.2019.06.180 10.1016/B978-0-12-821575-3.00002-5 10.1039/9781839162473-00272 10.1109/TIE.2012.2201430 10.1016/j.conengprac.2019.02.007 10.1109/TAC.2003.820153 10.1016/j.energy.2020.116961 10.1007/s11768-018-8134-x 10.1007/s12555-019-1086-1 10.3390/pr8121551 10.1109/MED.2014.6961417 10.1002/btpr.1699 10.1007/s13762-022-04159-y 10.3390/pr4030023 10.1016/j.automatica.2019.108692 10.1021/acs.iecr.9b00270 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Society of Chemical Industry (SCI) |
Copyright_xml | – notice: Copyright © 2023 Society of Chemical Industry (SCI) |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
DOI | 10.1002/jctb.7506 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-4660 |
EndPage | 3015 |
ExternalDocumentID | 10_1002_jctb_7506 |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29K 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F D-I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TUS UAO UB1 V2E V8K W8V W99 WBFHL WBKPD WIB WIH WIK WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XV2 XXG ZXP ZZTAW ~02 ~IA ~KM ~WT 7QF 7QO 7QQ 7QR 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
ID | FETCH-LOGICAL-c217t-bd98c496afe47267a4ebec9bd2337e4150d8023820b96ad87c5e890a8b5522003 |
ISSN | 0268-2575 |
IngestDate | Thu Oct 10 18:29:48 EDT 2024 Fri Aug 23 01:34:50 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c217t-bd98c496afe47267a4ebec9bd2337e4150d8023820b96ad87c5e890a8b5522003 |
ORCID | 0000-0001-6991-4116 0000-0002-1058-6434 0000-0003-4012-3550 0000-0002-8863-9356 |
PQID | 2889091685 |
PQPubID | 2034149 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2889091685 crossref_primary_10_1002_jctb_7506 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-00 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-00 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Journal of chemical technology and biotechnology (1986) |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | Filali R (e_1_2_11_33_1) 2011 Sira‐Ramírez H (e_1_2_11_25_1) 2018 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_12_1 e_1_2_11_34_1 Gao Z (e_1_2_11_42_1) 2003 e_1_2_11_11_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 Nouals S (e_1_2_11_35_1) 2000 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_46_1 e_1_2_11_40_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_37_1 e_1_2_11_38_1 e_1_2_11_39_1 e_1_2_11_19_1 |
References_xml | – ident: e_1_2_11_11_1 doi: 10.1016/j.jtbi.2010.04.018 – ident: e_1_2_11_30_1 doi: 10.1016/j.cherd.2021.08.027 – ident: e_1_2_11_45_1 doi: 10.3390/electronics2030246 – ident: e_1_2_11_31_1 doi: 10.1016/j.biortech.2010.06.138 – ident: e_1_2_11_43_1 doi: 10.1109/TIA.2020.3014895 – volume-title: Modélisation d'un photobioréacteur pour le pilotage de microalgues year: 2000 ident: e_1_2_11_35_1 contributor: fullname: Nouals S – ident: e_1_2_11_20_1 doi: 10.1080/10408398.2018.1455030 – ident: e_1_2_11_24_1 doi: 10.1016/j.conengprac.2019.04.002 – ident: e_1_2_11_2_1 doi: 10.1002/9781394193738.ch36 – ident: e_1_2_11_26_1 doi: 10.1016/j.compchemeng.2018.06.006 – ident: e_1_2_11_19_1 doi: 10.1016/j.biortech.2017.11.047 – start-page: 10603 volume-title: IFAC Proceedings year: 2011 ident: e_1_2_11_33_1 contributor: fullname: Filali R – ident: e_1_2_11_8_1 doi: 10.1016/j.ijbiomac.2020.10.159 – start-page: 4989 volume-title: Scaling and Bandwidth‐Parameterization Based Controller Tuning year: 2003 ident: e_1_2_11_42_1 contributor: fullname: Gao Z – ident: e_1_2_11_40_1 doi: 10.1016/j.isatra.2021.02.011 – ident: e_1_2_11_3_1 doi: 10.1016/j.energy.2022.125955 – ident: e_1_2_11_39_1 doi: 10.1016/j.isatra.2022.05.009 – ident: e_1_2_11_14_1 doi: 10.1016/j.biortech.2018.07.121 – ident: e_1_2_11_41_1 doi: 10.3390/math9050517 – ident: e_1_2_11_7_1 doi: 10.1002/jctb.6624 – ident: e_1_2_11_27_1 doi: 10.23919/AADECA49780.2020.9301637 – ident: e_1_2_11_21_1 doi: 10.1016/j.compchemeng.2018.07.006 – ident: e_1_2_11_36_1 doi: 10.3182/20080706-5-KR-1001.02630 – ident: e_1_2_11_5_1 doi: 10.1016/j.fuel.2021.121017 – ident: e_1_2_11_9_1 doi: 10.1016/j.jprocont.2011.07.012 – ident: e_1_2_11_12_1 doi: 10.1016/j.biotechadv.2020.107609 – ident: e_1_2_11_13_1 doi: 10.1016/j.compchemeng.2018.10.004 – ident: e_1_2_11_16_1 doi: 10.1016/j.dib.2021.107194 – ident: e_1_2_11_34_1 doi: 10.1016/j.ifacol.2019.06.180 – ident: e_1_2_11_6_1 doi: 10.1016/B978-0-12-821575-3.00002-5 – ident: e_1_2_11_15_1 doi: 10.1039/9781839162473-00272 – ident: e_1_2_11_38_1 doi: 10.1109/TIE.2012.2201430 – ident: e_1_2_11_28_1 doi: 10.1016/j.conengprac.2019.02.007 – ident: e_1_2_11_29_1 doi: 10.1109/TAC.2003.820153 – ident: e_1_2_11_10_1 doi: 10.1016/j.energy.2020.116961 – ident: e_1_2_11_22_1 doi: 10.1007/s11768-018-8134-x – ident: e_1_2_11_44_1 doi: 10.1007/s12555-019-1086-1 – ident: e_1_2_11_32_1 doi: 10.3390/pr8121551 – ident: e_1_2_11_18_1 doi: 10.1109/MED.2014.6961417 – ident: e_1_2_11_46_1 doi: 10.1002/btpr.1699 – ident: e_1_2_11_4_1 doi: 10.1007/s13762-022-04159-y – start-page: 450 volume-title: Differentially Flat Systems year: 2018 ident: e_1_2_11_25_1 contributor: fullname: Sira‐Ramírez H – ident: e_1_2_11_17_1 doi: 10.3390/pr4030023 – ident: e_1_2_11_23_1 doi: 10.1016/j.automatica.2019.108692 – ident: e_1_2_11_37_1 doi: 10.1021/acs.iecr.9b00270 |
SSID | ssj0006826 |
Score | 2.440567 |
Snippet | Abstract
BACKGROUND
Mathematical modelling is a widely employed approach for investigating the growth behaviour of microalgae. As a result, the development of... BACKGROUNDMathematical modelling is a widely employed approach for investigating the growth behaviour of microalgae. As a result, the development of... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 3004 |
SubjectTerms | Active control Algae Aquatic microorganisms Biomass Controllers Disturbances Dunaliella tertiolecta Mathematical models Microalgae Performance degradation Photobioreactors Process variables Rejection Robust control |
Title | Active disturbance rejection control: an application to continuous microalgae photobioreactors |
URI | https://www.proquest.com/docview/2889091685 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeIEHxKcYDGQh3qKM1nESZ2-j2odQGdLWoj4R2Y4zOm3JlKYP63_Nf8DZSRxvKp8vUWW7TuX79Xxn3_0Oofc0z0dJnOk4KQ4OSiIzX8SE-jwfBTnLwQmR-hzy80l0PKOf5uF8MPjhRC2tarEr1xvzSv5HqtAGctVZsv8gWTspNMBnkC88QcLw_CsZ7xtlpS9ZYOMQJvi_Uheqqf7dBqGbbObCcy6qtbmpOxfFSse_XumQPJ3Robzr72WtaZnAkDRVeH5hucqOZKC25_LmDgK-6bRoBqhE39vYo4avi5vF5dI748W5yYxZlDbU4gxe3B-Or9cgbxNmcATozXXtD9trQn10Ln1VN5f8SzvJaXmlKjtwfMlXAH5v4h3xaq3HfgwKO3bMl3U7tj3zIMGd-JE_a1ZHi5IIQBM25Vl2VaPlh0ns06gpZNBtAwlz4U4cpa5JyRwDAVRiuHHzachsLyTgF-ywDQTfJ1_Sw9lkkk4P5tN76D4B3WgiC057xrOImQqB9ld3ZFhD8sFOfNuEum1BGLNo-hg9alGB9xtwPkEDVTxFDx2Wy2foWwNT7MAUW5jiFqZ7mBfYASmuS9yDFPcgxXdB-hzNDg-m42O_LevhS_B_a19kCZM0iXiuaEyimFOtSBKRkSCIFRiUw0yzEoJpKmBQxmIZKpYMORMhOAuwC71AW0VZqJcIjyQfZQkNpaQZzWPOVCwzMpIRF5JRKrbRu26l0uuGvSVteLpJqpcz1cu5jXa6NUzbP_cyJQxeCa4TC1_9vvs1etAjdAdt1dVKvQE7tRZvjWR_AvxCmdA |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+disturbance+rejection+control%3A+an+application+to+continuous+microalgae+photobioreactors&rft.jtitle=Journal+of+chemical+technology+and+biotechnology+%281986%29&rft.au=Viyils+Sangregorio%E2%80%90Soto&rft.au=Mazzanti%2C+Gianfranco&rft.au=John+A+Cort%C3%A9s%E2%80%90Romero&rft.au=Claudia+L+Garz%C3%B3n%E2%80%90Castro&rft.date=2023-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0268-2575&rft.eissn=1097-4660&rft.volume=98&rft.issue=12&rft.spage=3004&rft.epage=3015&rft_id=info:doi/10.1002%2Fjctb.7506&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-2575&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-2575&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-2575&client=summon |