Class-Wise Contrastive Prototype Learning for Semi-Supervised Classification Under Intersectional Class Mismatch

Traditional Semi-Supervised Learning (SSL) classification methods focus on leveraging unlabeled data to improve the model performance under the setting where labeled set and unlabeled set share the same classes. Nevertheless, the above-mentioned setting is often inconsistent with many real-world cir...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on multimedia Vol. 26; pp. 8145 - 8156
Main Authors Li, Mingyu, Zhou, Tao, Han, Bo, Liu, Tongliang, Liang, Xinkai, Zhao, Jiajia, Gong, Chen
Format Journal Article
LanguageEnglish
Published IEEE 2024
Subjects
Online AccessGet full text
ISSN1520-9210
1941-0077
DOI10.1109/TMM.2024.3377123

Cover

Loading…
Abstract Traditional Semi-Supervised Learning (SSL) classification methods focus on leveraging unlabeled data to improve the model performance under the setting where labeled set and unlabeled set share the same classes. Nevertheless, the above-mentioned setting is often inconsistent with many real-world circumstances. Practically, both the labeled set and unlabeled set often hold some individual classes, leading to an intersectional class-mismatch setting for SSL. Under this setting, existing SSL methods are often subject to performance degradation attributed to these individual classes. To solve the problem, we propose a Class-wise Contrastive Prototype Learning (CCPL) framework, which can properly utilize the unlabeled data to improve the SSL classification performance. Specifically, we employ a supervised prototype learning strategy and a class-wise contrastive separation strategy to construct a prototype for each known class. To reduce the influence of the individual classes in unlabeled set (i.e., out-of-distribution classes), each unlabeled example can be weighted reasonably based on the prototypes during classifier training, which helps to weaken the negative influence caused by out-of-distribution classes. To reduce the influence of the individual classes in labeled set (i.e., private classes), we present a private assignment suppression strategy to suppress the improper assignments of unlabeled examples to the private classes with the help of the prototypes. Experimental results on four benchmarks and one real-world dataset show that our CCPL has a clear advantage over fourteen representative SSL methods as well as two supervised learning methods under the intersectional class-mismatch setting.
AbstractList Traditional Semi-Supervised Learning (SSL) classification methods focus on leveraging unlabeled data to improve the model performance under the setting where labeled set and unlabeled set share the same classes. Nevertheless, the above-mentioned setting is often inconsistent with many real-world circumstances. Practically, both the labeled set and unlabeled set often hold some individual classes, leading to an intersectional class-mismatch setting for SSL. Under this setting, existing SSL methods are often subject to performance degradation attributed to these individual classes. To solve the problem, we propose a Class-wise Contrastive Prototype Learning (CCPL) framework, which can properly utilize the unlabeled data to improve the SSL classification performance. Specifically, we employ a supervised prototype learning strategy and a class-wise contrastive separation strategy to construct a prototype for each known class. To reduce the influence of the individual classes in unlabeled set (i.e., out-of-distribution classes), each unlabeled example can be weighted reasonably based on the prototypes during classifier training, which helps to weaken the negative influence caused by out-of-distribution classes. To reduce the influence of the individual classes in labeled set (i.e., private classes), we present a private assignment suppression strategy to suppress the improper assignments of unlabeled examples to the private classes with the help of the prototypes. Experimental results on four benchmarks and one real-world dataset show that our CCPL has a clear advantage over fourteen representative SSL methods as well as two supervised learning methods under the intersectional class-mismatch setting.
Author Liu, Tongliang
Zhao, Jiajia
Zhou, Tao
Liang, Xinkai
Gong, Chen
Li, Mingyu
Han, Bo
Author_xml – sequence: 1
  givenname: Mingyu
  orcidid: 0000-0002-1375-1992
  surname: Li
  fullname: Li, Mingyu
  organization: PCA Laboratory, Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 2
  givenname: Tao
  orcidid: 0000-0002-3733-7286
  surname: Zhou
  fullname: Zhou, Tao
  email: taozhou.dreams@gmail.com
  organization: PCA Laboratory, Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 3
  givenname: Bo
  orcidid: 0000-0002-6338-0958
  surname: Han
  fullname: Han, Bo
  email: bhanml@comp.hkbu.edu.hk
  organization: School of Computer Science, Hong Kong Baptist University, Hong Kong, SAR, China
– sequence: 4
  givenname: Tongliang
  orcidid: 0000-0002-9640-6472
  surname: Liu
  fullname: Liu, Tongliang
  email: tongliang.liu@sydney.edu.au
  organization: School of Computer Science, The University of Sydney, Camperdown, NSW, Australia
– sequence: 5
  givenname: Xinkai
  surname: Liang
  fullname: Liang, Xinkai
  email: lxk820@126.com
  organization: Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory, Beijing, China
– sequence: 6
  givenname: Jiajia
  surname: Zhao
  fullname: Zhao, Jiajia
  email: zhaojiajia1982@gmail.com
  organization: Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory, Beijing, China
– sequence: 7
  givenname: Chen
  orcidid: 0000-0002-4092-9856
  surname: Gong
  fullname: Gong, Chen
  email: chen.gong@njust.edu.cn
  organization: PCA Laboratory, Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
BookMark eNpNkE1PAjEURRuDiYDuXbjoHxh8bae8maUhfpBANAHjclI6b7QGOpO2kvDvHYSFq3fzcs9dnBEb-NYTY7cCJkJAeb9eLicSZD5RClFIdcGGosxFBoA46LOWkJVSwBUbxfgNIHINOGTdbGtizD5cJD5rfQomJrcn_hba1KZDR3xBJnjnP3nTBr6inctWPx2FfU_U_I92jbMmudbzd19T4HOfKESyx5fZnjp86eLOJPt1zS4bs410c75jtn56XM9essXr83z2sMisFJgyRNNsQFoqp2iLaaFNaYzO9QZ0oaxS00Y0GkVdIhUWldQWJBVYWsLabrQaMzjN2tDGGKipuuB2JhwqAdVRWNULq47CqrOwHrk7IY6I_tVzlIBa_QIP72tV
CODEN ITMUF8
Cites_doi 10.1109/ICCV48922.2021.00820
10.1145/3412846
10.1609/aaai.v35i8.16852
10.1007/s11263-024-02117-4
10.1109/CVPR52729.2023.01514
10.1109/ICCV48922.2021.00934
10.1109/CVPR52688.2022.00956
10.1109/CVPR52688.2022.01418
10.1109/TMM.2022.3179895
10.1109/CVPR.2019.00521
10.1007/978-3-031-16449-1_65
10.1145/3572916
10.1145/3474085.3475649
10.1109/CVPR52729.2023.02284
10.1609/aaai.v34i04.5763
10.1609/aaai.v36i6.20644
10.1109/5.726791
10.1007/978-3-030-58610-2_26
10.1145/3506711
10.1109/TPAMI.2018.2858821
10.1109/CVPR.2015.7298640
10.1109/TMM.2022.3158069
10.1109/CVPR52729.2023.00729
10.1109/TMM.2020.2997185
10.1145/3503161.3548026
10.1109/CVPR52729.2023.01120
10.5555/3524938.3525087
10.1007/s10115-013-0706-y
10.1145/1553374.1553380
10.1109/CVPR52688.2022.01402
10.5244/C.30.87
10.1109/TIP.2016.2563981
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TMM.2024.3377123
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 8156
ExternalDocumentID 10_1109_TMM_2024_3377123
10472075
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 30920032202; 30921013114
  funderid: 10.13039/501100012226
– fundername: NSF for Distinguished Young Scholar of Jiangsu Province
  grantid: BK20220080
– fundername: National Natural Science Foundation of China; NSF of China
  grantid: 62336003; 12371510; 62172228; 62376235
  funderid: 10.13039/501100001809
– fundername: NSF of Jiangsu Province
  grantid: BZ2021013
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
CITATION
ID FETCH-LOGICAL-c217t-77afb02ce967c8685a9aa545b0583c336f1f571d97e8c7325c02e879ce7dcb53
IEDL.DBID RIE
ISSN 1520-9210
IngestDate Tue Jul 01 01:54:43 EDT 2025
Wed Aug 27 02:34:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c217t-77afb02ce967c8685a9aa545b0583c336f1f571d97e8c7325c02e879ce7dcb53
ORCID 0000-0002-4092-9856
0000-0002-1375-1992
0000-0002-6338-0958
0000-0002-9640-6472
0000-0002-3733-7286
PageCount 12
ParticipantIDs crossref_primary_10_1109_TMM_2024_3377123
ieee_primary_10472075
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref15
Berthelot (ref10) 2019
ref53
ref11
Lee (ref32) 2013
Netzer (ref50) 2011
ref17
ref16
ref19
Chrabaszcz (ref52) 2017
Tarvainen (ref36) 2017
Cao (ref24) 2022
Rizve (ref33) 2021
Amodei (ref27) 2016
ref46
Han (ref55) 2020
ref48
ref42
ref41
ref44
ref49
ref8
ref7
ref4
Berthelot (ref37) 2019
ref3
ref6
Guo (ref25) 2022
ref5
ref35
Saito (ref21) 2021
ref34
ref31
ref30
ref2
Zhang (ref40) 2021
ref38
Laine (ref29) 2016
Huang (ref47) 2021
Xie (ref39) 2020
Khosla (ref43) 2020
ref23
Guo (ref18) 2020
ref26
ref20
Sohn (ref9) 2020
ref22
Krizhevsky (ref51) 2009
Maaten (ref56) 2008; 9
ref28
Paszke (ref54) 2019
Oliver (ref14) 2018
Grandvalet (ref1) 2005
Liu (ref45) 2020
References_xml – ident: ref20
  doi: 10.1109/ICCV48922.2021.00820
– ident: ref7
  doi: 10.1145/3412846
– ident: ref30
  doi: 10.1609/aaai.v35i8.16852
– start-page: 3305
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2022
  ident: ref25
  article-title: Robust semi-supervised learning when not all classes have labels
– ident: ref15
  doi: 10.1007/s11263-024-02117-4
– ident: ref11
  doi: 10.1109/CVPR52729.2023.01514
– ident: ref38
  doi: 10.1109/ICCV48922.2021.00934
– start-page: 5050
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2019
  ident: ref37
  article-title: MixMatch: A holistic approach to semi-supervised learning
– year: 2009
  ident: ref51
  article-title: Learning multiple layers of features from tiny images
– year: 2016
  ident: ref27
  article-title: Concrete problems in AI safety
– start-page: 26714
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2021
  ident: ref47
  article-title: Universal semi-supervised learning
– ident: ref28
  doi: 10.1109/CVPR52688.2022.00956
– ident: ref44
  doi: 10.1109/CVPR52688.2022.01418
– start-page: 21464
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2020
  ident: ref45
  article-title: Energy-based out-of-distribution detection
– start-page: 8026
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2019
  ident: ref54
  article-title: PyTorch: An imperative style, high-performance deep learning library
– ident: ref16
  doi: 10.1109/TMM.2022.3179895
– ident: ref31
  doi: 10.1109/CVPR.2019.00521
– ident: ref53
  doi: 10.1007/978-3-031-16449-1_65
– ident: ref3
  doi: 10.1145/3572916
– ident: ref5
  doi: 10.1145/3474085.3475649
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2022
  ident: ref24
  article-title: Open-world semi-supervised learning
– start-page: 7
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2011
  ident: ref50
  article-title: Reading digits in natural images with unsupervised feature learning
– ident: ref46
  doi: 10.1109/CVPR52729.2023.02284
– start-page: 896
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2013
  ident: ref32
  article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
– ident: ref17
  doi: 10.1609/aaai.v34i04.5763
– ident: ref19
  doi: 10.1609/aaai.v36i6.20644
– ident: ref49
  doi: 10.1109/5.726791
– ident: ref23
  doi: 10.1007/978-3-030-58610-2_26
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2019
  ident: ref10
  article-title: Remixmatch: Semi-supervised learning with distribution alignment and augmentation anchoring
– start-page: 281
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2005
  ident: ref1
  article-title: Semi-supervised learning by entropy minimization
– start-page: 3897
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2020
  ident: ref18
  article-title: Safe deep semi-supervised learning for unseen-class unlabeled data
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2021
  ident: ref33
  article-title: In defense of pseudo-labeling: An uncertainty-aware pseudo-label selection framework for semi-supervised learning
– ident: ref6
  doi: 10.1145/3506711
– ident: ref35
  doi: 10.1109/TPAMI.2018.2858821
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2016
  ident: ref29
  article-title: Temporal ensembling for semi-supervised learning
– start-page: 18408
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2021
  ident: ref40
  article-title: FlexMatch: Boosting semi-supervised learning with curriculum pseudo labeling
– start-page: 3239
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2018
  ident: ref14
  article-title: Realistic evaluation of deep semi-supervised learning algorithms
– ident: ref26
  doi: 10.1109/CVPR.2015.7298640
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: ref56
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref4
  doi: 10.1109/TMM.2022.3158069
– ident: ref13
  doi: 10.1109/CVPR52729.2023.00729
– ident: ref8
  doi: 10.1109/TMM.2020.2997185
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2017
  ident: ref36
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
– ident: ref2
  doi: 10.1145/3503161.3548026
– ident: ref12
  doi: 10.1109/CVPR52729.2023.01120
– ident: ref48
  doi: 10.5555/3524938.3525087
– start-page: 18661
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2020
  ident: ref43
  article-title: Supervised contrastive learning
– start-page: 596
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2020
  ident: ref9
  article-title: Fixmatch: Simplifying semi-supervised learning with consistency and confidence
– start-page: 25956
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2021
  ident: ref21
  article-title: Openmatch: Open-set consistency regularization for semi-supervised learning with outliers
– ident: ref34
  doi: 10.1007/s10115-013-0706-y
– year: 2017
  ident: ref52
  article-title: A downsampled variant of imagenet as an alternative to the cifar datasets
– start-page: 6256
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2020
  ident: ref39
  article-title: Unsupervised data augmentation for consistency training
– ident: ref41
  doi: 10.1145/1553374.1553380
– start-page: 9972
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2020
  ident: ref55
  article-title: Unsupervised semantic aggregation and deformable template matching for semi-supervised learning
– ident: ref22
  doi: 10.1109/CVPR52688.2022.01402
– ident: ref57
  doi: 10.5244/C.30.87
– ident: ref42
  doi: 10.1109/TIP.2016.2563981
SSID ssj0014507
Score 2.406968
Snippet Traditional Semi-Supervised Learning (SSL) classification methods focus on leveraging unlabeled data to improve the model performance under the setting where...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 8145
SubjectTerms Computer science
Contrastive learning
Dogs
Entropy
intersectional class mismatch
Perturbation methods
private assignment suppression
prototype learning
Prototypes
semi-supervised learning
Semisupervised learning
Training
Title Class-Wise Contrastive Prototype Learning for Semi-Supervised Classification Under Intersectional Class Mismatch
URI https://ieeexplore.ieee.org/document/10472075
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJz04nRPnFzl48ZCta5omOYo4hrAhbOJuJUlfdYjbWNuLf71J2skUBG-lJPDIe8n7vW-EbihXGRUsJpGhEYmY0UQpkxLJVKjAAnzm67jHk3j0HD3O2bwuVve1MADgk8-g5z59LD9dmdK5yvqurUBodVwDNazlVhVrfYcMIuZro60-Coi0hsw2JhnI_mw8tpZgGPUo5XwQ0h86aGeoitcpwxaabKmpUknee2Whe-bzV6PGf5N7hA5rdInvKnE4RnuwbKPWdnIDri9yGx3stCE8QWs_GZO8LHLArlvVRuXuEcRPm1Wxcj5aXHdhfcUW4uIpfCzItFy7VyaHFPvdLuPIMxn7SUrYexpzn-flKPJr8HiRW4Bs3jpoNnyY3Y9IPYmBGGuyFBaCq0wHoQEZcyNiwZRUymIvHTBBDaVxNsgYH6SSgzCchswEIQguDfDUaEZPUXO5WsIZwlRnkRSxFQOloyCjimlrnqcMQAthQtlFt1vWJOuq30bi7ZRAJpaNiWNjUrOxizru0HfWVed9_sf_C7TvtlcOlEvULDYlXFlIUehrL0pf6UHKWw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH8a3QE4jM-J7oP5wIWDSxLHsX2cJlBhpEKiCG6R7bxANdFWTXrhr5_tpKggTdotiuzoyb8Xv-_3AE6Y0BWTPKOpZSlNuTVUa1tSxXWi0Sn4PNRx56NseJdePfCHrlg91MIgYkg-w4F_DLH8cmaX3lV25tsKJE7GbcBHJ_h53JZrvQYNUh6qo51EiqhypswqKhmps3GeO1swSQeMCREn7I0UWhurEqTKxQ6MVvS0ySR_BsvGDOzLu1aN_03wLnzq9Evys2WIPfiA033YWc1uIN2vvA_ba40ID2AeZmPS-0mNxPerWujaX4PkZjFrZt5LS7o-rI_EKbnkFp8n9HY59_dMjSUJu33OUYCZhFlKJPga65Dp5SkKa0g-qZ2KbJ8OYXxxPv41pN0sBmqd0dI4JVxXJkosqkxYmUmuldYOBBNxySxjWRVXXMSlEiitYAm3UYJSKIuitIazz9CbzqZ4BISZKlUyc4ygTRpVTHPjDPSSIxopbaL6cLqCppi3HTeKYKlEqnAwFh7GooOxD4f-0NfWtef95R_vf8DmcJxfF9eXo99fYct_qnWnfINes1jid6dgNOY4sNVfofnNpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Class-Wise+Contrastive+Prototype+Learning+for+Semi-Supervised+Classification+Under+Intersectional+Class+Mismatch&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Li%2C+Mingyu&rft.au=Zhou%2C+Tao&rft.au=Han%2C+Bo&rft.au=Liu%2C+Tongliang&rft.date=2024&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=26&rft.spage=8145&rft.epage=8156&rft_id=info:doi/10.1109%2FTMM.2024.3377123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2024_3377123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon