Class-Wise Contrastive Prototype Learning for Semi-Supervised Classification Under Intersectional Class Mismatch
Traditional Semi-Supervised Learning (SSL) classification methods focus on leveraging unlabeled data to improve the model performance under the setting where labeled set and unlabeled set share the same classes. Nevertheless, the above-mentioned setting is often inconsistent with many real-world cir...
Saved in:
Published in | IEEE transactions on multimedia Vol. 26; pp. 8145 - 8156 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1520-9210 1941-0077 |
DOI | 10.1109/TMM.2024.3377123 |
Cover
Loading…
Abstract | Traditional Semi-Supervised Learning (SSL) classification methods focus on leveraging unlabeled data to improve the model performance under the setting where labeled set and unlabeled set share the same classes. Nevertheless, the above-mentioned setting is often inconsistent with many real-world circumstances. Practically, both the labeled set and unlabeled set often hold some individual classes, leading to an intersectional class-mismatch setting for SSL. Under this setting, existing SSL methods are often subject to performance degradation attributed to these individual classes. To solve the problem, we propose a Class-wise Contrastive Prototype Learning (CCPL) framework, which can properly utilize the unlabeled data to improve the SSL classification performance. Specifically, we employ a supervised prototype learning strategy and a class-wise contrastive separation strategy to construct a prototype for each known class. To reduce the influence of the individual classes in unlabeled set (i.e., out-of-distribution classes), each unlabeled example can be weighted reasonably based on the prototypes during classifier training, which helps to weaken the negative influence caused by out-of-distribution classes. To reduce the influence of the individual classes in labeled set (i.e., private classes), we present a private assignment suppression strategy to suppress the improper assignments of unlabeled examples to the private classes with the help of the prototypes. Experimental results on four benchmarks and one real-world dataset show that our CCPL has a clear advantage over fourteen representative SSL methods as well as two supervised learning methods under the intersectional class-mismatch setting. |
---|---|
AbstractList | Traditional Semi-Supervised Learning (SSL) classification methods focus on leveraging unlabeled data to improve the model performance under the setting where labeled set and unlabeled set share the same classes. Nevertheless, the above-mentioned setting is often inconsistent with many real-world circumstances. Practically, both the labeled set and unlabeled set often hold some individual classes, leading to an intersectional class-mismatch setting for SSL. Under this setting, existing SSL methods are often subject to performance degradation attributed to these individual classes. To solve the problem, we propose a Class-wise Contrastive Prototype Learning (CCPL) framework, which can properly utilize the unlabeled data to improve the SSL classification performance. Specifically, we employ a supervised prototype learning strategy and a class-wise contrastive separation strategy to construct a prototype for each known class. To reduce the influence of the individual classes in unlabeled set (i.e., out-of-distribution classes), each unlabeled example can be weighted reasonably based on the prototypes during classifier training, which helps to weaken the negative influence caused by out-of-distribution classes. To reduce the influence of the individual classes in labeled set (i.e., private classes), we present a private assignment suppression strategy to suppress the improper assignments of unlabeled examples to the private classes with the help of the prototypes. Experimental results on four benchmarks and one real-world dataset show that our CCPL has a clear advantage over fourteen representative SSL methods as well as two supervised learning methods under the intersectional class-mismatch setting. |
Author | Liu, Tongliang Zhao, Jiajia Zhou, Tao Liang, Xinkai Gong, Chen Li, Mingyu Han, Bo |
Author_xml | – sequence: 1 givenname: Mingyu orcidid: 0000-0002-1375-1992 surname: Li fullname: Li, Mingyu organization: PCA Laboratory, Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 2 givenname: Tao orcidid: 0000-0002-3733-7286 surname: Zhou fullname: Zhou, Tao email: taozhou.dreams@gmail.com organization: PCA Laboratory, Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 3 givenname: Bo orcidid: 0000-0002-6338-0958 surname: Han fullname: Han, Bo email: bhanml@comp.hkbu.edu.hk organization: School of Computer Science, Hong Kong Baptist University, Hong Kong, SAR, China – sequence: 4 givenname: Tongliang orcidid: 0000-0002-9640-6472 surname: Liu fullname: Liu, Tongliang email: tongliang.liu@sydney.edu.au organization: School of Computer Science, The University of Sydney, Camperdown, NSW, Australia – sequence: 5 givenname: Xinkai surname: Liang fullname: Liang, Xinkai email: lxk820@126.com organization: Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory, Beijing, China – sequence: 6 givenname: Jiajia surname: Zhao fullname: Zhao, Jiajia email: zhaojiajia1982@gmail.com organization: Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory, Beijing, China – sequence: 7 givenname: Chen orcidid: 0000-0002-4092-9856 surname: Gong fullname: Gong, Chen email: chen.gong@njust.edu.cn organization: PCA Laboratory, Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China |
BookMark | eNpNkE1PAjEURRuDiYDuXbjoHxh8bae8maUhfpBANAHjclI6b7QGOpO2kvDvHYSFq3fzcs9dnBEb-NYTY7cCJkJAeb9eLicSZD5RClFIdcGGosxFBoA46LOWkJVSwBUbxfgNIHINOGTdbGtizD5cJD5rfQomJrcn_hba1KZDR3xBJnjnP3nTBr6inctWPx2FfU_U_I92jbMmudbzd19T4HOfKESyx5fZnjp86eLOJPt1zS4bs410c75jtn56XM9essXr83z2sMisFJgyRNNsQFoqp2iLaaFNaYzO9QZ0oaxS00Y0GkVdIhUWldQWJBVYWsLabrQaMzjN2tDGGKipuuB2JhwqAdVRWNULq47CqrOwHrk7IY6I_tVzlIBa_QIP72tV |
CODEN | ITMUF8 |
Cites_doi | 10.1109/ICCV48922.2021.00820 10.1145/3412846 10.1609/aaai.v35i8.16852 10.1007/s11263-024-02117-4 10.1109/CVPR52729.2023.01514 10.1109/ICCV48922.2021.00934 10.1109/CVPR52688.2022.00956 10.1109/CVPR52688.2022.01418 10.1109/TMM.2022.3179895 10.1109/CVPR.2019.00521 10.1007/978-3-031-16449-1_65 10.1145/3572916 10.1145/3474085.3475649 10.1109/CVPR52729.2023.02284 10.1609/aaai.v34i04.5763 10.1609/aaai.v36i6.20644 10.1109/5.726791 10.1007/978-3-030-58610-2_26 10.1145/3506711 10.1109/TPAMI.2018.2858821 10.1109/CVPR.2015.7298640 10.1109/TMM.2022.3158069 10.1109/CVPR52729.2023.00729 10.1109/TMM.2020.2997185 10.1145/3503161.3548026 10.1109/CVPR52729.2023.01120 10.5555/3524938.3525087 10.1007/s10115-013-0706-y 10.1145/1553374.1553380 10.1109/CVPR52688.2022.01402 10.5244/C.30.87 10.1109/TIP.2016.2563981 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TMM.2024.3377123 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0077 |
EndPage | 8156 |
ExternalDocumentID | 10_1109_TMM_2024_3377123 10472075 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 30920032202; 30921013114 funderid: 10.13039/501100012226 – fundername: NSF for Distinguished Young Scholar of Jiangsu Province grantid: BK20220080 – fundername: National Natural Science Foundation of China; NSF of China grantid: 62336003; 12371510; 62172228; 62376235 funderid: 10.13039/501100001809 – fundername: NSF of Jiangsu Province grantid: BZ2021013 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 VH1 ZY4 AAYXX CITATION |
ID | FETCH-LOGICAL-c217t-77afb02ce967c8685a9aa545b0583c336f1f571d97e8c7325c02e879ce7dcb53 |
IEDL.DBID | RIE |
ISSN | 1520-9210 |
IngestDate | Tue Jul 01 01:54:43 EDT 2025 Wed Aug 27 02:34:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c217t-77afb02ce967c8685a9aa545b0583c336f1f571d97e8c7325c02e879ce7dcb53 |
ORCID | 0000-0002-4092-9856 0000-0002-1375-1992 0000-0002-6338-0958 0000-0002-9640-6472 0000-0002-3733-7286 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TMM_2024_3377123 ieee_primary_10472075 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on multimedia |
PublicationTitleAbbrev | TMM |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref57 ref12 ref15 Berthelot (ref10) 2019 ref53 ref11 Lee (ref32) 2013 Netzer (ref50) 2011 ref17 ref16 ref19 Chrabaszcz (ref52) 2017 Tarvainen (ref36) 2017 Cao (ref24) 2022 Rizve (ref33) 2021 Amodei (ref27) 2016 ref46 Han (ref55) 2020 ref48 ref42 ref41 ref44 ref49 ref8 ref7 ref4 Berthelot (ref37) 2019 ref3 ref6 Guo (ref25) 2022 ref5 ref35 Saito (ref21) 2021 ref34 ref31 ref30 ref2 Zhang (ref40) 2021 ref38 Laine (ref29) 2016 Huang (ref47) 2021 Xie (ref39) 2020 Khosla (ref43) 2020 ref23 Guo (ref18) 2020 ref26 ref20 Sohn (ref9) 2020 ref22 Krizhevsky (ref51) 2009 Maaten (ref56) 2008; 9 ref28 Paszke (ref54) 2019 Oliver (ref14) 2018 Grandvalet (ref1) 2005 Liu (ref45) 2020 |
References_xml | – ident: ref20 doi: 10.1109/ICCV48922.2021.00820 – ident: ref7 doi: 10.1145/3412846 – ident: ref30 doi: 10.1609/aaai.v35i8.16852 – start-page: 3305 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. year: 2022 ident: ref25 article-title: Robust semi-supervised learning when not all classes have labels – ident: ref15 doi: 10.1007/s11263-024-02117-4 – ident: ref11 doi: 10.1109/CVPR52729.2023.01514 – ident: ref38 doi: 10.1109/ICCV48922.2021.00934 – start-page: 5050 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. year: 2019 ident: ref37 article-title: MixMatch: A holistic approach to semi-supervised learning – year: 2009 ident: ref51 article-title: Learning multiple layers of features from tiny images – year: 2016 ident: ref27 article-title: Concrete problems in AI safety – start-page: 26714 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. year: 2021 ident: ref47 article-title: Universal semi-supervised learning – ident: ref28 doi: 10.1109/CVPR52688.2022.00956 – ident: ref44 doi: 10.1109/CVPR52688.2022.01418 – start-page: 21464 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. year: 2020 ident: ref45 article-title: Energy-based out-of-distribution detection – start-page: 8026 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. year: 2019 ident: ref54 article-title: PyTorch: An imperative style, high-performance deep learning library – ident: ref16 doi: 10.1109/TMM.2022.3179895 – ident: ref31 doi: 10.1109/CVPR.2019.00521 – ident: ref53 doi: 10.1007/978-3-031-16449-1_65 – ident: ref3 doi: 10.1145/3572916 – ident: ref5 doi: 10.1145/3474085.3475649 – volume-title: Proc. Int. Conf. Learn. Representations year: 2022 ident: ref24 article-title: Open-world semi-supervised learning – start-page: 7 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. year: 2011 ident: ref50 article-title: Reading digits in natural images with unsupervised feature learning – ident: ref46 doi: 10.1109/CVPR52729.2023.02284 – start-page: 896 volume-title: Proc. Int. Conf. Mach. Learn. year: 2013 ident: ref32 article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks – ident: ref17 doi: 10.1609/aaai.v34i04.5763 – ident: ref19 doi: 10.1609/aaai.v36i6.20644 – ident: ref49 doi: 10.1109/5.726791 – ident: ref23 doi: 10.1007/978-3-030-58610-2_26 – volume-title: Proc. Int. Conf. Learn. Representations year: 2019 ident: ref10 article-title: Remixmatch: Semi-supervised learning with distribution alignment and augmentation anchoring – start-page: 281 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. year: 2005 ident: ref1 article-title: Semi-supervised learning by entropy minimization – start-page: 3897 volume-title: Proc. Int. Conf. Mach. Learn. year: 2020 ident: ref18 article-title: Safe deep semi-supervised learning for unseen-class unlabeled data – volume-title: Proc. Int. Conf. Learn. Representations year: 2021 ident: ref33 article-title: In defense of pseudo-labeling: An uncertainty-aware pseudo-label selection framework for semi-supervised learning – ident: ref6 doi: 10.1145/3506711 – ident: ref35 doi: 10.1109/TPAMI.2018.2858821 – volume-title: Proc. Int. Conf. Learn. Representations year: 2016 ident: ref29 article-title: Temporal ensembling for semi-supervised learning – start-page: 18408 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. year: 2021 ident: ref40 article-title: FlexMatch: Boosting semi-supervised learning with curriculum pseudo labeling – start-page: 3239 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. year: 2018 ident: ref14 article-title: Realistic evaluation of deep semi-supervised learning algorithms – ident: ref26 doi: 10.1109/CVPR.2015.7298640 – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: ref56 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref4 doi: 10.1109/TMM.2022.3158069 – ident: ref13 doi: 10.1109/CVPR52729.2023.00729 – ident: ref8 doi: 10.1109/TMM.2020.2997185 – volume-title: Proc. Int. Conf. Learn. Representations year: 2017 ident: ref36 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results – ident: ref2 doi: 10.1145/3503161.3548026 – ident: ref12 doi: 10.1109/CVPR52729.2023.01120 – ident: ref48 doi: 10.5555/3524938.3525087 – start-page: 18661 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. year: 2020 ident: ref43 article-title: Supervised contrastive learning – start-page: 596 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. year: 2020 ident: ref9 article-title: Fixmatch: Simplifying semi-supervised learning with consistency and confidence – start-page: 25956 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. year: 2021 ident: ref21 article-title: Openmatch: Open-set consistency regularization for semi-supervised learning with outliers – ident: ref34 doi: 10.1007/s10115-013-0706-y – year: 2017 ident: ref52 article-title: A downsampled variant of imagenet as an alternative to the cifar datasets – start-page: 6256 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. year: 2020 ident: ref39 article-title: Unsupervised data augmentation for consistency training – ident: ref41 doi: 10.1145/1553374.1553380 – start-page: 9972 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. year: 2020 ident: ref55 article-title: Unsupervised semantic aggregation and deformable template matching for semi-supervised learning – ident: ref22 doi: 10.1109/CVPR52688.2022.01402 – ident: ref57 doi: 10.5244/C.30.87 – ident: ref42 doi: 10.1109/TIP.2016.2563981 |
SSID | ssj0014507 |
Score | 2.406968 |
Snippet | Traditional Semi-Supervised Learning (SSL) classification methods focus on leveraging unlabeled data to improve the model performance under the setting where... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 8145 |
SubjectTerms | Computer science Contrastive learning Dogs Entropy intersectional class mismatch Perturbation methods private assignment suppression prototype learning Prototypes semi-supervised learning Semisupervised learning Training |
Title | Class-Wise Contrastive Prototype Learning for Semi-Supervised Classification Under Intersectional Class Mismatch |
URI | https://ieeexplore.ieee.org/document/10472075 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJz04nRPnFzl48ZCta5omOYo4hrAhbOJuJUlfdYjbWNuLf71J2skUBG-lJPDIe8n7vW-EbihXGRUsJpGhEYmY0UQpkxLJVKjAAnzm67jHk3j0HD3O2bwuVve1MADgk8-g5z59LD9dmdK5yvqurUBodVwDNazlVhVrfYcMIuZro60-Coi0hsw2JhnI_mw8tpZgGPUo5XwQ0h86aGeoitcpwxaabKmpUknee2Whe-bzV6PGf5N7hA5rdInvKnE4RnuwbKPWdnIDri9yGx3stCE8QWs_GZO8LHLArlvVRuXuEcRPm1Wxcj5aXHdhfcUW4uIpfCzItFy7VyaHFPvdLuPIMxn7SUrYexpzn-flKPJr8HiRW4Bs3jpoNnyY3Y9IPYmBGGuyFBaCq0wHoQEZcyNiwZRUymIvHTBBDaVxNsgYH6SSgzCchswEIQguDfDUaEZPUXO5WsIZwlRnkRSxFQOloyCjimlrnqcMQAthQtlFt1vWJOuq30bi7ZRAJpaNiWNjUrOxizru0HfWVed9_sf_C7TvtlcOlEvULDYlXFlIUehrL0pf6UHKWw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH8a3QE4jM-J7oP5wIWDSxLHsX2cJlBhpEKiCG6R7bxANdFWTXrhr5_tpKggTdotiuzoyb8Xv-_3AE6Y0BWTPKOpZSlNuTVUa1tSxXWi0Sn4PNRx56NseJdePfCHrlg91MIgYkg-w4F_DLH8cmaX3lV25tsKJE7GbcBHJ_h53JZrvQYNUh6qo51EiqhypswqKhmps3GeO1swSQeMCREn7I0UWhurEqTKxQ6MVvS0ySR_BsvGDOzLu1aN_03wLnzq9Evys2WIPfiA033YWc1uIN2vvA_ba40ID2AeZmPS-0mNxPerWujaX4PkZjFrZt5LS7o-rI_EKbnkFp8n9HY59_dMjSUJu33OUYCZhFlKJPga65Dp5SkKa0g-qZ2KbJ8OYXxxPv41pN0sBmqd0dI4JVxXJkosqkxYmUmuldYOBBNxySxjWRVXXMSlEiitYAm3UYJSKIuitIazz9CbzqZ4BISZKlUyc4ygTRpVTHPjDPSSIxopbaL6cLqCppi3HTeKYKlEqnAwFh7GooOxD4f-0NfWtef95R_vf8DmcJxfF9eXo99fYct_qnWnfINes1jid6dgNOY4sNVfofnNpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Class-Wise+Contrastive+Prototype+Learning+for+Semi-Supervised+Classification+Under+Intersectional+Class+Mismatch&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Li%2C+Mingyu&rft.au=Zhou%2C+Tao&rft.au=Han%2C+Bo&rft.au=Liu%2C+Tongliang&rft.date=2024&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=26&rft.spage=8145&rft.epage=8156&rft_id=info:doi/10.1109%2FTMM.2024.3377123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2024_3377123 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon |