A Unified Study on Sequentiality in Universal Classification With Empirically Observed Statistics
In the binary hypothesis testing problem, it is well known that sequentiality in taking samples eradicates the trade-off between two error exponents, yet implementing the optimal test requires the knowledge of the underlying distributions, say <inline-formula> <tex-math notation="LaTeX...
Saved in:
Published in | IEEE transactions on information theory Vol. 71; no. 3; pp. 1546 - 1569 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the binary hypothesis testing problem, it is well known that sequentiality in taking samples eradicates the trade-off between two error exponents, yet implementing the optimal test requires the knowledge of the underlying distributions, say <inline-formula> <tex-math notation="LaTeX">P_{0} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">P_{1} </tex-math></inline-formula>. In the scenario where the knowledge of distributions is replaced by empirically observed statistics from the respective distributions, the gain of sequentiality is less understood when subject to universality constraints over all possible <inline-formula> <tex-math notation="LaTeX">P_{0},P_{1} </tex-math></inline-formula>. In this work, the gap is mended by a unified study on sequentiality in the universal binary classification problem, where the universality constraints are set on the expected stopping time as well as the type-I error exponent. The type-I error exponent is required to achieve a pre-set distribution-dependent constraint <inline-formula> <tex-math notation="LaTeX">\lambda (P_{0},P_{1}) </tex-math></inline-formula> for all <inline-formula> <tex-math notation="LaTeX">P_{0},P_{1} </tex-math></inline-formula>. Under the proposed framework, different sequential setups are investigated so that fair comparisons can be made with the fixed-length counterpart. By viewing these sequential classification problems as special cases of a general sequential composite hypothesis testing problem, the optimal type-II error exponents are characterized. Specifically, in the general sequential composite hypothesis testing problem subject to universality constraints, upper and lower bounds on the type-II error exponent are proved, and a sufficient condition for which the bounds coincide is given. The results for sequential classification problems are then obtained accordingly. With the characterization of the optimal error exponents, the benefit of sequentiality is shown both analytically and numerically by comparing the sequential and the fixed-length cases in representative examples of type-I exponent constraint <inline-formula> <tex-math notation="LaTeX">\lambda </tex-math></inline-formula>. |
---|---|
AbstractList | In the binary hypothesis testing problem, it is well known that sequentiality in taking samples eradicates the trade-off between two error exponents, yet implementing the optimal test requires the knowledge of the underlying distributions, say <inline-formula> <tex-math notation="LaTeX">P_{0} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">P_{1} </tex-math></inline-formula>. In the scenario where the knowledge of distributions is replaced by empirically observed statistics from the respective distributions, the gain of sequentiality is less understood when subject to universality constraints over all possible <inline-formula> <tex-math notation="LaTeX">P_{0},P_{1} </tex-math></inline-formula>. In this work, the gap is mended by a unified study on sequentiality in the universal binary classification problem, where the universality constraints are set on the expected stopping time as well as the type-I error exponent. The type-I error exponent is required to achieve a pre-set distribution-dependent constraint <inline-formula> <tex-math notation="LaTeX">\lambda (P_{0},P_{1}) </tex-math></inline-formula> for all <inline-formula> <tex-math notation="LaTeX">P_{0},P_{1} </tex-math></inline-formula>. Under the proposed framework, different sequential setups are investigated so that fair comparisons can be made with the fixed-length counterpart. By viewing these sequential classification problems as special cases of a general sequential composite hypothesis testing problem, the optimal type-II error exponents are characterized. Specifically, in the general sequential composite hypothesis testing problem subject to universality constraints, upper and lower bounds on the type-II error exponent are proved, and a sufficient condition for which the bounds coincide is given. The results for sequential classification problems are then obtained accordingly. With the characterization of the optimal error exponents, the benefit of sequentiality is shown both analytically and numerically by comparing the sequential and the fixed-length cases in representative examples of type-I exponent constraint <inline-formula> <tex-math notation="LaTeX">\lambda </tex-math></inline-formula>. |
Author | Li, Ching-Fang Wang, I-Hsiang |
Author_xml | – sequence: 1 givenname: Ching-Fang orcidid: 0009-0009-4005-9203 surname: Li fullname: Li, Ching-Fang email: cfli@stanford.edu organization: Graduate Institute of Electrical Engineering, National Taiwan University, Taipei, Taiwan – sequence: 2 givenname: I-Hsiang orcidid: 0000-0003-0695-5724 surname: Wang fullname: Wang, I-Hsiang email: ihwang@ntu.edu.tw organization: Department of Electrical Engineering and the Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan |
BookMark | eNpNkMFKAzEQhoNUsK3ePXjIC2xNsplNciylaqHQQ1c8Ltk0wch2W5O0sG9vqj14Gmb4_n_gm6BRf-gtQo-UzCgl6rle1TNGGJ-VwIBQdoPGFEAUqgI-QmNCqCwU5_IOTWL8yisHysZIz_F77523O7xNp92ADz3e2u-T7ZPXnU8D9v2FONsQdYcXnY4x40Ynn8kPnz7xcn_0IV-6bsCbNtpw_i3LREzexHt063QX7cN1TlH9sqwXb8V687pazNeFYVSkAirhnFEgHAFpWkNN6VrFFZREUCGsrhSVtC0NgJaVdAYEOEIqxbjlsiqniPzVmnCIMVjXHIPf6zA0lDQXQ0021FwMNVdDOfL0F_HW2n-4ZCR_KH8AWmxkzw |
CODEN | IETTAW |
Cites_doi | 10.1214/aoms/1177731118 10.1109/ISIT50566.2022.9834418 10.1109/18.2636 10.1109/ISIT57864.2024.10619272 10.1214/aoms/1177730197 10.1109/TIT.2002.800478 10.1109/TIT.2024.3412107 10.1109/TIT.1974.1055254 10.1109/ITW54588.2022.9965913 10.1109/18.32134 10.1080/07474946.2017.1360086 10.1109/TSP.2017.2733472 10.1109/TIT.2023.3268207 10.1109/TIT.2021.3059272 10.1109/18.796383 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TIT.2024.3525012 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1557-9654 |
EndPage | 1569 |
ExternalDocumentID | 10_1109_TIT_2024_3525012 10820868 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science and Technology Council (NSTC) of Taiwan grantid: 111-2628-E-002-005-MY2; 113-2628-E-002-022-MY4 funderid: 10.13039/501100020950 – fundername: National Taiwan University (NTU) grantid: 113L7764; 113L891404; 113L900902 funderid: 10.13039/501100006477 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYOK AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c217t-567ffc957f058cbc1c3fb9495307177ea69181b3c55a868fc575f006924e4863 |
IEDL.DBID | RIE |
ISSN | 0018-9448 |
IngestDate | Tue Jul 01 05:40:14 EDT 2025 Wed Aug 27 01:52:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c217t-567ffc957f058cbc1c3fb9495307177ea69181b3c55a868fc575f006924e4863 |
ORCID | 0000-0003-0695-5724 0009-0009-4005-9203 |
PageCount | 24 |
ParticipantIDs | crossref_primary_10_1109_TIT_2024_3525012 ieee_primary_10820868 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on information theory |
PublicationTitleAbbrev | TIT |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 Gerber (ref17) ref10 ref2 ref1 ref16 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Li (ref11) |
References_xml | – ident: ref2 doi: 10.1214/aoms/1177731118 – ident: ref9 doi: 10.1109/ISIT50566.2022.9834418 – ident: ref5 doi: 10.1109/18.2636 – ident: ref12 doi: 10.1109/ISIT57864.2024.10619272 – ident: ref3 doi: 10.1214/aoms/1177730197 – start-page: 119 volume-title: Proc. Int. Zurich Seminar Inf. Commun. ident: ref11 article-title: On the error exponent benefit of sequentiality in universal binary classification – ident: ref7 doi: 10.1109/TIT.2002.800478 – start-page: 15680 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref17 article-title: Kernel-based tests for likelihood-free hypothesis testing – ident: ref13 doi: 10.1109/TIT.2024.3412107 – ident: ref1 doi: 10.1109/TIT.1974.1055254 – ident: ref10 doi: 10.1109/ITW54588.2022.9965913 – ident: ref6 doi: 10.1109/18.32134 – ident: ref14 doi: 10.1080/07474946.2017.1360086 – ident: ref15 doi: 10.1109/TSP.2017.2733472 – ident: ref16 doi: 10.1109/TIT.2023.3268207 – ident: ref8 doi: 10.1109/TIT.2021.3059272 – ident: ref4 doi: 10.1109/18.796383 |
SSID | ssj0014512 |
Score | 2.470737 |
Snippet | In the binary hypothesis testing problem, it is well known that sequentiality in taking samples eradicates the trade-off between two error exponents, yet... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 1546 |
SubjectTerms | Bayes methods Electrical engineering error exponents Error probability Hands Indexes Lower bound Reliability Seminars sequential composite hypothesis testing Testing Training Universal classification |
Title | A Unified Study on Sequentiality in Universal Classification With Empirically Observed Statistics |
URI | https://ieeexplore.ieee.org/document/10820868 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJz04nRPnL3Lw4qG1TZOsPQ6ZTMF5sOJupUkTHGo3pDvMv9730k6mIHgrpYQ0LyHfl3zve4RcqCgE5qOtFxodeVyKwotzxtEJU1pEtKbAbOT7iRw_8bupmDbJ6i4XxhjjxGfGx0d3l1_M9RKPymCFw34Vy7hFWsDc6mSt7ysDLsLaGjyEFQykY30nGSRX6W0KTJBxH70_g5D92IM2iqq4PeWmQybr3tRSkld_WSlff_4yavx3d_fIboMu6bCeDvtky5Rd0llXbqDNQu6SnQ0bwgOSDylATwtglKKscEXnJX10EmtY_gjT6aykjYIDWnd1NFFh5IJKn2fVCx29L2bObORtRR8UnvS6xjB1An2geyS9GaXXY68pveBp4CiVJ-TAWp2IgQ1ErJUOdWRVglpU5H8Dk8sEoIGKtBA5_KHVgPosuh4zbngso0PSLuelOSJUJQFMkryIpC64ZUwxK1hhWRyHwKRs3CeX61hki9pgI3PEJEgyiFuGccuauPVJD0d547t6gI__eH9CthmW63WSsVPSrj6W5gwwRKXO3dz5AjWFw4o |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1BGYCBQgHxjQcWhpTEidNkrBCohVIGgugWxY4tKiBFKB3Kr-fOSVFBQmKLoshyfLbvnf3uHcCZ9D2MfJRxPK18JwhF7kQZD0gJMzSEaHVO2ch3w7D3GNyMxKhOVre5MFprSz7TbXq0d_n5RE3pqAxXOPqrKIyWYQUdv_CqdK3vS4NAeJU4uIdrGMOO-a2kG18k_QRjQR60Sf3T9fgPL7RQVsV6lesmDOf9qcgkL-1pKdvq85dU4787vAkbNb5k3WpCbMGSLlrQnNduYPVSbsH6ghDhNmRdhuDTIBxlRCycsUnBHizJGjcAAupsXLCaw4Gt20qaxDGyZmVP4_KZXb29j63cyOuM3Us667WNUfIEKUHvQHJ9lVz2nLr4gqMwSikdEXaMUbHoGFdESipP-UbGxEalCLCjszBGcCB9JUSGf2gU4j5Dusc80EEU-rvQKCaF3gMmYxenSZb7ocoDw7nkRvDc8CjyMJYy0T6cz22RvlcSG6kNTdw4RbulZLe0tts-7NAoL3xXDfDBH-9PYbWX3A3SQX94ewhrnIr3WgLZETTKj6k-RkRRyhM7j74AljXG0w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Unified+Study+on+Sequentiality+in+Universal+Classification+With+Empirically+Observed+Statistics&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Li%2C+Ching-Fang&rft.au=Wang%2C+I-Hsiang&rft.date=2025-03-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=71&rft.issue=3&rft.spage=1546&rft.epage=1569&rft_id=info:doi/10.1109%2FTIT.2024.3525012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2024_3525012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |