A Unified Study on Sequentiality in Universal Classification With Empirically Observed Statistics

In the binary hypothesis testing problem, it is well known that sequentiality in taking samples eradicates the trade-off between two error exponents, yet implementing the optimal test requires the knowledge of the underlying distributions, say <inline-formula> <tex-math notation="LaTeX...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 71; no. 3; pp. 1546 - 1569
Main Authors Li, Ching-Fang, Wang, I-Hsiang
Format Journal Article
LanguageEnglish
Published IEEE 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the binary hypothesis testing problem, it is well known that sequentiality in taking samples eradicates the trade-off between two error exponents, yet implementing the optimal test requires the knowledge of the underlying distributions, say <inline-formula> <tex-math notation="LaTeX">P_{0} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">P_{1} </tex-math></inline-formula>. In the scenario where the knowledge of distributions is replaced by empirically observed statistics from the respective distributions, the gain of sequentiality is less understood when subject to universality constraints over all possible <inline-formula> <tex-math notation="LaTeX">P_{0},P_{1} </tex-math></inline-formula>. In this work, the gap is mended by a unified study on sequentiality in the universal binary classification problem, where the universality constraints are set on the expected stopping time as well as the type-I error exponent. The type-I error exponent is required to achieve a pre-set distribution-dependent constraint <inline-formula> <tex-math notation="LaTeX">\lambda (P_{0},P_{1}) </tex-math></inline-formula> for all <inline-formula> <tex-math notation="LaTeX">P_{0},P_{1} </tex-math></inline-formula>. Under the proposed framework, different sequential setups are investigated so that fair comparisons can be made with the fixed-length counterpart. By viewing these sequential classification problems as special cases of a general sequential composite hypothesis testing problem, the optimal type-II error exponents are characterized. Specifically, in the general sequential composite hypothesis testing problem subject to universality constraints, upper and lower bounds on the type-II error exponent are proved, and a sufficient condition for which the bounds coincide is given. The results for sequential classification problems are then obtained accordingly. With the characterization of the optimal error exponents, the benefit of sequentiality is shown both analytically and numerically by comparing the sequential and the fixed-length cases in representative examples of type-I exponent constraint <inline-formula> <tex-math notation="LaTeX">\lambda </tex-math></inline-formula>.
AbstractList In the binary hypothesis testing problem, it is well known that sequentiality in taking samples eradicates the trade-off between two error exponents, yet implementing the optimal test requires the knowledge of the underlying distributions, say <inline-formula> <tex-math notation="LaTeX">P_{0} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">P_{1} </tex-math></inline-formula>. In the scenario where the knowledge of distributions is replaced by empirically observed statistics from the respective distributions, the gain of sequentiality is less understood when subject to universality constraints over all possible <inline-formula> <tex-math notation="LaTeX">P_{0},P_{1} </tex-math></inline-formula>. In this work, the gap is mended by a unified study on sequentiality in the universal binary classification problem, where the universality constraints are set on the expected stopping time as well as the type-I error exponent. The type-I error exponent is required to achieve a pre-set distribution-dependent constraint <inline-formula> <tex-math notation="LaTeX">\lambda (P_{0},P_{1}) </tex-math></inline-formula> for all <inline-formula> <tex-math notation="LaTeX">P_{0},P_{1} </tex-math></inline-formula>. Under the proposed framework, different sequential setups are investigated so that fair comparisons can be made with the fixed-length counterpart. By viewing these sequential classification problems as special cases of a general sequential composite hypothesis testing problem, the optimal type-II error exponents are characterized. Specifically, in the general sequential composite hypothesis testing problem subject to universality constraints, upper and lower bounds on the type-II error exponent are proved, and a sufficient condition for which the bounds coincide is given. The results for sequential classification problems are then obtained accordingly. With the characterization of the optimal error exponents, the benefit of sequentiality is shown both analytically and numerically by comparing the sequential and the fixed-length cases in representative examples of type-I exponent constraint <inline-formula> <tex-math notation="LaTeX">\lambda </tex-math></inline-formula>.
Author Li, Ching-Fang
Wang, I-Hsiang
Author_xml – sequence: 1
  givenname: Ching-Fang
  orcidid: 0009-0009-4005-9203
  surname: Li
  fullname: Li, Ching-Fang
  email: cfli@stanford.edu
  organization: Graduate Institute of Electrical Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 2
  givenname: I-Hsiang
  orcidid: 0000-0003-0695-5724
  surname: Wang
  fullname: Wang, I-Hsiang
  email: ihwang@ntu.edu.tw
  organization: Department of Electrical Engineering and the Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan
BookMark eNpNkMFKAzEQhoNUsK3ePXjIC2xNsplNciylaqHQQ1c8Ltk0wch2W5O0sG9vqj14Gmb4_n_gm6BRf-gtQo-UzCgl6rle1TNGGJ-VwIBQdoPGFEAUqgI-QmNCqCwU5_IOTWL8yisHysZIz_F77523O7xNp92ADz3e2u-T7ZPXnU8D9v2FONsQdYcXnY4x40Ynn8kPnz7xcn_0IV-6bsCbNtpw_i3LREzexHt063QX7cN1TlH9sqwXb8V687pazNeFYVSkAirhnFEgHAFpWkNN6VrFFZREUCGsrhSVtC0NgJaVdAYEOEIqxbjlsiqniPzVmnCIMVjXHIPf6zA0lDQXQ0021FwMNVdDOfL0F_HW2n-4ZCR_KH8AWmxkzw
CODEN IETTAW
Cites_doi 10.1214/aoms/1177731118
10.1109/ISIT50566.2022.9834418
10.1109/18.2636
10.1109/ISIT57864.2024.10619272
10.1214/aoms/1177730197
10.1109/TIT.2002.800478
10.1109/TIT.2024.3412107
10.1109/TIT.1974.1055254
10.1109/ITW54588.2022.9965913
10.1109/18.32134
10.1080/07474946.2017.1360086
10.1109/TSP.2017.2733472
10.1109/TIT.2023.3268207
10.1109/TIT.2021.3059272
10.1109/18.796383
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TIT.2024.3525012
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 1569
ExternalDocumentID 10_1109_TIT_2024_3525012
10820868
Genre orig-research
GrantInformation_xml – fundername: National Science and Technology Council (NSTC) of Taiwan
  grantid: 111-2628-E-002-005-MY2; 113-2628-E-002-022-MY4
  funderid: 10.13039/501100020950
– fundername: National Taiwan University (NTU)
  grantid: 113L7764; 113L891404; 113L900902
  funderid: 10.13039/501100006477
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c217t-567ffc957f058cbc1c3fb9495307177ea69181b3c55a868fc575f006924e4863
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Tue Jul 01 05:40:14 EDT 2025
Wed Aug 27 01:52:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c217t-567ffc957f058cbc1c3fb9495307177ea69181b3c55a868fc575f006924e4863
ORCID 0000-0003-0695-5724
0009-0009-4005-9203
PageCount 24
ParticipantIDs crossref_primary_10_1109_TIT_2024_3525012
ieee_primary_10820868
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
Gerber (ref17)
ref10
ref2
ref1
ref16
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Li (ref11)
References_xml – ident: ref2
  doi: 10.1214/aoms/1177731118
– ident: ref9
  doi: 10.1109/ISIT50566.2022.9834418
– ident: ref5
  doi: 10.1109/18.2636
– ident: ref12
  doi: 10.1109/ISIT57864.2024.10619272
– ident: ref3
  doi: 10.1214/aoms/1177730197
– start-page: 119
  volume-title: Proc. Int. Zurich Seminar Inf. Commun.
  ident: ref11
  article-title: On the error exponent benefit of sequentiality in universal binary classification
– ident: ref7
  doi: 10.1109/TIT.2002.800478
– start-page: 15680
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref17
  article-title: Kernel-based tests for likelihood-free hypothesis testing
– ident: ref13
  doi: 10.1109/TIT.2024.3412107
– ident: ref1
  doi: 10.1109/TIT.1974.1055254
– ident: ref10
  doi: 10.1109/ITW54588.2022.9965913
– ident: ref6
  doi: 10.1109/18.32134
– ident: ref14
  doi: 10.1080/07474946.2017.1360086
– ident: ref15
  doi: 10.1109/TSP.2017.2733472
– ident: ref16
  doi: 10.1109/TIT.2023.3268207
– ident: ref8
  doi: 10.1109/TIT.2021.3059272
– ident: ref4
  doi: 10.1109/18.796383
SSID ssj0014512
Score 2.470737
Snippet In the binary hypothesis testing problem, it is well known that sequentiality in taking samples eradicates the trade-off between two error exponents, yet...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1546
SubjectTerms Bayes methods
Electrical engineering
error exponents
Error probability
Hands
Indexes
Lower bound
Reliability
Seminars
sequential composite hypothesis testing
Testing
Training
Universal classification
Title A Unified Study on Sequentiality in Universal Classification With Empirically Observed Statistics
URI https://ieeexplore.ieee.org/document/10820868
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJz04nRPnL3Lw4qG1TZOsPQ6ZTMF5sOJupUkTHGo3pDvMv9730k6mIHgrpYQ0LyHfl3zve4RcqCgE5qOtFxodeVyKwotzxtEJU1pEtKbAbOT7iRw_8bupmDbJ6i4XxhjjxGfGx0d3l1_M9RKPymCFw34Vy7hFWsDc6mSt7ysDLsLaGjyEFQykY30nGSRX6W0KTJBxH70_g5D92IM2iqq4PeWmQybr3tRSkld_WSlff_4yavx3d_fIboMu6bCeDvtky5Rd0llXbqDNQu6SnQ0bwgOSDylATwtglKKscEXnJX10EmtY_gjT6aykjYIDWnd1NFFh5IJKn2fVCx29L2bObORtRR8UnvS6xjB1An2geyS9GaXXY68pveBp4CiVJ-TAWp2IgQ1ErJUOdWRVglpU5H8Dk8sEoIGKtBA5_KHVgPosuh4zbngso0PSLuelOSJUJQFMkryIpC64ZUwxK1hhWRyHwKRs3CeX61hki9pgI3PEJEgyiFuGccuauPVJD0d547t6gI__eH9CthmW63WSsVPSrj6W5gwwRKXO3dz5AjWFw4o
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1BGYCBQgHxjQcWhpTEidNkrBCohVIGgugWxY4tKiBFKB3Kr-fOSVFBQmKLoshyfLbvnf3uHcCZ9D2MfJRxPK18JwhF7kQZD0gJMzSEaHVO2ch3w7D3GNyMxKhOVre5MFprSz7TbXq0d_n5RE3pqAxXOPqrKIyWYQUdv_CqdK3vS4NAeJU4uIdrGMOO-a2kG18k_QRjQR60Sf3T9fgPL7RQVsV6lesmDOf9qcgkL-1pKdvq85dU4787vAkbNb5k3WpCbMGSLlrQnNduYPVSbsH6ghDhNmRdhuDTIBxlRCycsUnBHizJGjcAAupsXLCaw4Gt20qaxDGyZmVP4_KZXb29j63cyOuM3Us667WNUfIEKUHvQHJ9lVz2nLr4gqMwSikdEXaMUbHoGFdESipP-UbGxEalCLCjszBGcCB9JUSGf2gU4j5Dusc80EEU-rvQKCaF3gMmYxenSZb7ocoDw7nkRvDc8CjyMJYy0T6cz22RvlcSG6kNTdw4RbulZLe0tts-7NAoL3xXDfDBH-9PYbWX3A3SQX94ewhrnIr3WgLZETTKj6k-RkRRyhM7j74AljXG0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Unified+Study+on+Sequentiality+in+Universal+Classification+With+Empirically+Observed+Statistics&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Li%2C+Ching-Fang&rft.au=Wang%2C+I-Hsiang&rft.date=2025-03-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=71&rft.issue=3&rft.spage=1546&rft.epage=1569&rft_id=info:doi/10.1109%2FTIT.2024.3525012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2024_3525012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon