sEMG-Based Joint Angle Estimation via Hierarchical Spiking Attentional Feature Decomposition Network

Surface electromyography (sEMG) has demonstrated significant potential in simultaneous and proportional control (SPC). However, existing algorithms for predicting joint angles based on sEMG often suffer from high inference costs or are limited to specific subjects rather than multi-subject scenarios...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 10; no. 3; pp. 2176 - 2183
Main Authors Zhou, Xin, Lin, Chuang, Wang, Can, Peng, Xiaojiang
Format Journal Article
LanguageEnglish
Published IEEE 01.03.2025
Subjects
Online AccessGet full text
ISSN2377-3766
2377-3766
DOI10.1109/LRA.2025.3526447

Cover

Abstract Surface electromyography (sEMG) has demonstrated significant potential in simultaneous and proportional control (SPC). However, existing algorithms for predicting joint angles based on sEMG often suffer from high inference costs or are limited to specific subjects rather than multi-subject scenarios. To address these challenges, we introduced a hierarchical Spiking Attentional Feature Decomposition Network (SAFE-Net). This network initially compresses sEMG signals into neural spiking forms using a Spiking Sparse Attention Encoder (SSAE). Subsequently, the compressed features are decomposed into kinematic and biological features through a Spiking Attentional Feature Decomposition (SAFD) module. Finally, the kinematic and biological features are used to predict joint angles and identify subject identities, respectively. Our validation on two datasets and comparison with two existing methods, Informer and Spikformer, demonstrate that SSAE achieves significant power consumption savings of 39.1% and 37.5% respectively over them in terms of inference costs. Furthermore, SAFE-Net surpasses Informer and Spikformer in recognition accuracy on both datasets. This study underscores the potential of SAFE-Net to advance the field of SPC in lower limb rehabilitation exoskeleton robots.
AbstractList Surface electromyography (sEMG) has demonstrated significant potential in simultaneous and proportional control (SPC). However, existing algorithms for predicting joint angles based on sEMG often suffer from high inference costs or are limited to specific subjects rather than multi-subject scenarios. To address these challenges, we introduced a hierarchical Spiking Attentional Feature Decomposition Network (SAFE-Net). This network initially compresses sEMG signals into neural spiking forms using a Spiking Sparse Attention Encoder (SSAE). Subsequently, the compressed features are decomposed into kinematic and biological features through a Spiking Attentional Feature Decomposition (SAFD) module. Finally, the kinematic and biological features are used to predict joint angles and identify subject identities, respectively. Our validation on two datasets and comparison with two existing methods, Informer and Spikformer, demonstrate that SSAE achieves significant power consumption savings of 39.1% and 37.5% respectively over them in terms of inference costs. Furthermore, SAFE-Net surpasses Informer and Spikformer in recognition accuracy on both datasets. This study underscores the potential of SAFE-Net to advance the field of SPC in lower limb rehabilitation exoskeleton robots.
Author Peng, Xiaojiang
Zhou, Xin
Lin, Chuang
Wang, Can
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0002-9638-0102
  surname: Zhou
  fullname: Zhou, Xin
  email: zhouxin@sztu.edu.cn
  organization: College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
– sequence: 2
  givenname: Chuang
  orcidid: 0000-0002-4724-4657
  surname: Lin
  fullname: Lin, Chuang
  email: linchuang_78@126.com
  organization: School of Information Science and Technology, Dalian Maritime University, Dalian, China
– sequence: 3
  givenname: Can
  orcidid: 0000-0002-0914-3994
  surname: Wang
  fullname: Wang, Can
  email: can.wang@siat.ac.cn
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 4
  givenname: Xiaojiang
  orcidid: 0000-0002-5783-321X
  surname: Peng
  fullname: Peng, Xiaojiang
  email: pengxiaojiang@sztu.edu.cn
  organization: College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
BookMark eNpNkMlOwzAURS1UJErpngUL_0CKhyROlqF0ABWQGNaR67wU09aubBfE3-PQLrp6071PuucS9Yw1gNA1JSNKSXm7eK1GjLBsxDOWp6k4Q33GhUi4yPPeSX-Bht5_EUJoxgQvsz5q_ORpltxJDw1-tNoEXJnVBvDEB72VQVuDv7XEcw1OOvWpldzgt51ea7PCVQhgOkncTUGGvQN8D8pud9brf-szhB_r1lfovJUbD8NjHaCP6eR9PE8WL7OHcbVIFKMiJAyWslEg26XMREzCU6Z4042CM8lTyEmWFyXJJeWl5EUqJG8pp0W8ZiyWASKHv8pZ7x209c7FFO63pqTuQNURVN2Bqo-gouXmYNEAcCIvWJkXjP8Bt4Nmrg
CODEN IRALC6
Cites_doi 10.1609/aaai.v36i5.20474
10.1109/ICCV51070.2023.00169
10.1109/TASE.2022.3185706
10.1109/TPAMI.2021.3114196
10.1109/ICASSP39728.2021.9413582
10.1109/TBME.2023.3258606
10.1162/neco.1997.9.8.1735
10.1109/TNSRE.2024.3364976
10.1016/j.bspc.2019.02.011
10.1109/LRA.2023.3235683
10.1109/TNSRE.2022.3216528
10.1609/aaai.v35i12.17325
10.1109/TNNLS.2023.3303308
10.1088/1742-6596/1865/4/042099
10.1016/j.robot.2020.103566
10.1109/TNSRE.2023.3253683
10.1109/TNNLS.2021.3095724
10.1016/j.neunet.2022.05.003
10.1109/LRA.2021.3097257
10.1109/JSEN.2024.3423795
10.1109/CVPR46437.2021.00757
10.1109/TNSRE.2023.3342050
10.1007/978-3-031-19800-7_40
10.1109/JBHI.2023.3304639
10.1016/j.compbiomed.2023.107327
10.1007/s12647-021-00478-6
10.1109/TNSRE.2021.3077413
10.3390/s24175828
10.1109/JBHI.2020.3009383
10.1126/sciadv.adi1480
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LRA.2025.3526447
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 2183
ExternalDocumentID 10_1109_LRA_2025_3526447
10829682
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Top Talent of SZTU
  grantid: GDRC202131
– fundername: Stable Support Projects for Shenzhen Higher Education Institutions
  grantid: 20220718110918001
– fundername: National Natural Science Foundation of China
  grantid: 62176165
  funderid: 10.13039/501100001809
– fundername: Special subject on Agriculture and Social Development, Key Research and Development Plan in Guangzhou
  grantid: 2023B03J0172
– fundername: Basic and Applied Basic Research Project of Guangdong Province
  grantid: 2022B1515130009
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c217t-2ebadceafba57352342c3dafba732a34e60568906a139a3847a3f131832a52183
IEDL.DBID RIE
ISSN 2377-3766
IngestDate Tue Jul 01 00:21:18 EDT 2025
Wed Aug 27 01:56:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c217t-2ebadceafba57352342c3dafba732a34e60568906a139a3847a3f131832a52183
ORCID 0000-0002-4724-4657
0000-0002-9638-0102
0000-0002-0914-3994
0000-0002-5783-321X
PageCount 8
ParticipantIDs ieee_primary_10829682
crossref_primary_10_1109_LRA_2025_3526447
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
Maaten (ref34) 2008; 9
ref19
ref18
Zhou (ref15) 2022
Bai (ref31) 2018
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Yao (ref14) 2024; 36
References_xml – ident: ref27
  doi: 10.1609/aaai.v36i5.20474
– ident: ref16
  doi: 10.1109/ICCV51070.2023.00169
– ident: ref5
  doi: 10.1109/TASE.2022.3185706
– ident: ref13
  doi: 10.1109/TPAMI.2021.3114196
– ident: ref25
  doi: 10.1109/ICASSP39728.2021.9413582
– ident: ref33
  doi: 10.1109/TBME.2023.3258606
– ident: ref32
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref2
  doi: 10.1109/TNSRE.2024.3364976
– ident: ref3
  doi: 10.1016/j.bspc.2019.02.011
– ident: ref22
  doi: 10.1109/LRA.2023.3235683
– ident: ref8
  doi: 10.1109/TNSRE.2022.3216528
– ident: ref30
  doi: 10.1609/aaai.v35i12.17325
– ident: ref17
  doi: 10.1109/TNNLS.2023.3303308
– ident: ref9
  doi: 10.1088/1742-6596/1865/4/042099
– ident: ref19
  doi: 10.1016/j.robot.2020.103566
– ident: ref21
  doi: 10.1109/TNSRE.2023.3253683
– ident: ref12
  doi: 10.1109/TNNLS.2021.3095724
– year: 2018
  ident: ref31
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
– volume: 36
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2024
  ident: ref14
  article-title: Spike-driven transformer
– ident: ref18
  doi: 10.1016/j.neunet.2022.05.003
– ident: ref4
  doi: 10.1109/LRA.2021.3097257
– ident: ref7
  doi: 10.1109/JSEN.2024.3423795
– ident: ref28
  doi: 10.1109/CVPR46437.2021.00757
– ident: ref24
  doi: 10.1109/TNSRE.2023.3342050
– ident: ref29
  doi: 10.1007/978-3-031-19800-7_40
– ident: ref6
  doi: 10.1109/JBHI.2023.3304639
– ident: ref23
  doi: 10.1016/j.compbiomed.2023.107327
– ident: ref10
  doi: 10.1007/s12647-021-00478-6
– year: 2022
  ident: ref15
  article-title: Spikformer: When spiking neural network meets transformer
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: ref34
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref26
  doi: 10.1109/TNSRE.2021.3077413
– ident: ref1
  doi: 10.3390/s24175828
– ident: ref20
  doi: 10.1109/JBHI.2020.3009383
– ident: ref11
  doi: 10.1126/sciadv.adi1480
SSID ssj0001527395
Score 2.2910068
Snippet Surface electromyography (sEMG) has demonstrated significant potential in simultaneous and proportional control (SPC). However, existing algorithms for...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 2176
SubjectTerms Accuracy
Biological information theory
Convolution
Electromyography
Estimation
Exoskeletons
feature decomposition
joint angle estimation
Kinematics
Membrane potentials
Neurons
spiking sparse attention
Surface electromyography
Transformers
Title sEMG-Based Joint Angle Estimation via Hierarchical Spiking Attentional Feature Decomposition Network
URI https://ieeexplore.ieee.org/document/10829682
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEww8iyiPygMLQ0Kal-MxQEpV0Q5ApW6RHV9QRZVWJWFg4Lfjy0NESEhscZRI1p3te_i77wi5YqC9cK6EwXgChhtw15Ac9JAFXDFmJQlgvmMy9Uczdzz35nWxelkLAwAl-AxMfCzv8tUqKTBVpnd4YHM_0Cfutl5nVbHWT0IFqcS411xFWvzm8SnUAaDtmcgB72IDlZbpafVSKU3JcJ9Mm0lUCJI3s8ilmXz-4mf89ywPyF7tVNKwWgWHZAuyI7Lboho8Juo9mjwYt9pmKTpeLbKchtnrEmikt3hVvUg_FoKOFliQXPZHWdLn9QIT6TTM8waYTtFlLDZA7wHB6DXii04rMHmXzIbRy93IqDssGIkORXLDBilUAiKVwmNaSo5rJ47CIXNs4biggx0_4JYvtKMoHG3JhJMOymNAeOhcnZBOtsrglFDfE75KFRKEgZsOZCA98BjYwgLhB0L2yHUj_HhdEWnEZQBi8VgrKkZFxbWieqSLYm19V0n07I_352QHf6-gYRekk28KuNS-Qi77ZHvyFfXLlfINwZC_Dg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT4MwFG_MPKgHP2ecnz148QAyoJQeUTdxbhx0S3YjhT4McWHLBA_-9bZ8RGJi4o0SQpr32r6P_t7vIXRNQXrhTHCNshg022W2FjGQQ-oyQakRx6DyHZPA8Wf2aE7mdbF6WQsDACX4DHT1WN7li2VcqFSZ3OGuyRxXnrib0vDbpCrX-kmpKDIxRprLSIPdjl88GQKaRFcs8LZqodIyPq1uKqUxGe6hoJlGhSF514s80uOvXwyN_57nPtqt3UrsVevgAG1Adoh2WmSDR0h8DCaP2p20WgKPlmmWYy97WwAeyE1e1S_iz5RjP1UlyWWHlAV-XaUqlY69PG-g6Vg5jcUa8AMoOHqN-cJBBSfvotlwML33tbrHghbLYCTXTIi4iIEnESdUSsmyzdgSakgtk1s2yHDHcZnhcOkqckvaMm4l_fIg4ES5V8eoky0zOEHYIdwRiVAUYWAn_ciNCBAKJjeAOy6PeuimEX64qqg0wjIEMVgoFRUqRYW1onqoq8Ta-q6S6Okf76_Qlj-djMPxU_B8hrbVryqg2Dnq5OsCLqTnkEeX5Xr5BmdzwSo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=sEMG-Based+Joint+Angle+Estimation+via+Hierarchical+Spiking+Attentional+Feature+Decomposition+Network&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Zhou%2C+Xin&rft.au=Lin%2C+Chuang&rft.au=Wang%2C+Can&rft.au=Peng%2C+Xiaojiang&rft.date=2025-03-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=10&rft.issue=3&rft.spage=2176&rft.epage=2183&rft_id=info:doi/10.1109%2FLRA.2025.3526447&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2025_3526447
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon