sEMG-Based Joint Angle Estimation via Hierarchical Spiking Attentional Feature Decomposition Network
Surface electromyography (sEMG) has demonstrated significant potential in simultaneous and proportional control (SPC). However, existing algorithms for predicting joint angles based on sEMG often suffer from high inference costs or are limited to specific subjects rather than multi-subject scenarios...
Saved in:
Published in | IEEE robotics and automation letters Vol. 10; no. 3; pp. 2176 - 2183 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2377-3766 2377-3766 |
DOI | 10.1109/LRA.2025.3526447 |
Cover
Abstract | Surface electromyography (sEMG) has demonstrated significant potential in simultaneous and proportional control (SPC). However, existing algorithms for predicting joint angles based on sEMG often suffer from high inference costs or are limited to specific subjects rather than multi-subject scenarios. To address these challenges, we introduced a hierarchical Spiking Attentional Feature Decomposition Network (SAFE-Net). This network initially compresses sEMG signals into neural spiking forms using a Spiking Sparse Attention Encoder (SSAE). Subsequently, the compressed features are decomposed into kinematic and biological features through a Spiking Attentional Feature Decomposition (SAFD) module. Finally, the kinematic and biological features are used to predict joint angles and identify subject identities, respectively. Our validation on two datasets and comparison with two existing methods, Informer and Spikformer, demonstrate that SSAE achieves significant power consumption savings of 39.1% and 37.5% respectively over them in terms of inference costs. Furthermore, SAFE-Net surpasses Informer and Spikformer in recognition accuracy on both datasets. This study underscores the potential of SAFE-Net to advance the field of SPC in lower limb rehabilitation exoskeleton robots. |
---|---|
AbstractList | Surface electromyography (sEMG) has demonstrated significant potential in simultaneous and proportional control (SPC). However, existing algorithms for predicting joint angles based on sEMG often suffer from high inference costs or are limited to specific subjects rather than multi-subject scenarios. To address these challenges, we introduced a hierarchical Spiking Attentional Feature Decomposition Network (SAFE-Net). This network initially compresses sEMG signals into neural spiking forms using a Spiking Sparse Attention Encoder (SSAE). Subsequently, the compressed features are decomposed into kinematic and biological features through a Spiking Attentional Feature Decomposition (SAFD) module. Finally, the kinematic and biological features are used to predict joint angles and identify subject identities, respectively. Our validation on two datasets and comparison with two existing methods, Informer and Spikformer, demonstrate that SSAE achieves significant power consumption savings of 39.1% and 37.5% respectively over them in terms of inference costs. Furthermore, SAFE-Net surpasses Informer and Spikformer in recognition accuracy on both datasets. This study underscores the potential of SAFE-Net to advance the field of SPC in lower limb rehabilitation exoskeleton robots. |
Author | Peng, Xiaojiang Zhou, Xin Lin, Chuang Wang, Can |
Author_xml | – sequence: 1 givenname: Xin orcidid: 0000-0002-9638-0102 surname: Zhou fullname: Zhou, Xin email: zhouxin@sztu.edu.cn organization: College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China – sequence: 2 givenname: Chuang orcidid: 0000-0002-4724-4657 surname: Lin fullname: Lin, Chuang email: linchuang_78@126.com organization: School of Information Science and Technology, Dalian Maritime University, Dalian, China – sequence: 3 givenname: Can orcidid: 0000-0002-0914-3994 surname: Wang fullname: Wang, Can email: can.wang@siat.ac.cn organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 4 givenname: Xiaojiang orcidid: 0000-0002-5783-321X surname: Peng fullname: Peng, Xiaojiang email: pengxiaojiang@sztu.edu.cn organization: College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China |
BookMark | eNpNkMlOwzAURS1UJErpngUL_0CKhyROlqF0ABWQGNaR67wU09aubBfE3-PQLrp6071PuucS9Yw1gNA1JSNKSXm7eK1GjLBsxDOWp6k4Q33GhUi4yPPeSX-Bht5_EUJoxgQvsz5q_ORpltxJDw1-tNoEXJnVBvDEB72VQVuDv7XEcw1OOvWpldzgt51ea7PCVQhgOkncTUGGvQN8D8pud9brf-szhB_r1lfovJUbD8NjHaCP6eR9PE8WL7OHcbVIFKMiJAyWslEg26XMREzCU6Z4042CM8lTyEmWFyXJJeWl5EUqJG8pp0W8ZiyWASKHv8pZ7x209c7FFO63pqTuQNURVN2Bqo-gouXmYNEAcCIvWJkXjP8Bt4Nmrg |
CODEN | IRALC6 |
Cites_doi | 10.1609/aaai.v36i5.20474 10.1109/ICCV51070.2023.00169 10.1109/TASE.2022.3185706 10.1109/TPAMI.2021.3114196 10.1109/ICASSP39728.2021.9413582 10.1109/TBME.2023.3258606 10.1162/neco.1997.9.8.1735 10.1109/TNSRE.2024.3364976 10.1016/j.bspc.2019.02.011 10.1109/LRA.2023.3235683 10.1109/TNSRE.2022.3216528 10.1609/aaai.v35i12.17325 10.1109/TNNLS.2023.3303308 10.1088/1742-6596/1865/4/042099 10.1016/j.robot.2020.103566 10.1109/TNSRE.2023.3253683 10.1109/TNNLS.2021.3095724 10.1016/j.neunet.2022.05.003 10.1109/LRA.2021.3097257 10.1109/JSEN.2024.3423795 10.1109/CVPR46437.2021.00757 10.1109/TNSRE.2023.3342050 10.1007/978-3-031-19800-7_40 10.1109/JBHI.2023.3304639 10.1016/j.compbiomed.2023.107327 10.1007/s12647-021-00478-6 10.1109/TNSRE.2021.3077413 10.3390/s24175828 10.1109/JBHI.2020.3009383 10.1126/sciadv.adi1480 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/LRA.2025.3526447 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2377-3766 |
EndPage | 2183 |
ExternalDocumentID | 10_1109_LRA_2025_3526447 10829682 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Top Talent of SZTU grantid: GDRC202131 – fundername: Stable Support Projects for Shenzhen Higher Education Institutions grantid: 20220718110918001 – fundername: National Natural Science Foundation of China grantid: 62176165 funderid: 10.13039/501100001809 – fundername: Special subject on Agriculture and Social Development, Key Research and Development Plan in Guangzhou grantid: 2023B03J0172 – fundername: Basic and Applied Basic Research Project of Guangdong Province grantid: 2022B1515130009 |
GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c217t-2ebadceafba57352342c3dafba732a34e60568906a139a3847a3f131832a52183 |
IEDL.DBID | RIE |
ISSN | 2377-3766 |
IngestDate | Tue Jul 01 00:21:18 EDT 2025 Wed Aug 27 01:56:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c217t-2ebadceafba57352342c3dafba732a34e60568906a139a3847a3f131832a52183 |
ORCID | 0000-0002-4724-4657 0000-0002-9638-0102 0000-0002-0914-3994 0000-0002-5783-321X |
PageCount | 8 |
ParticipantIDs | ieee_primary_10829682 crossref_primary_10_1109_LRA_2025_3526447 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IEEE robotics and automation letters |
PublicationTitleAbbrev | LRA |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 Maaten (ref34) 2008; 9 ref19 ref18 Zhou (ref15) 2022 Bai (ref31) 2018 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Yao (ref14) 2024; 36 |
References_xml | – ident: ref27 doi: 10.1609/aaai.v36i5.20474 – ident: ref16 doi: 10.1109/ICCV51070.2023.00169 – ident: ref5 doi: 10.1109/TASE.2022.3185706 – ident: ref13 doi: 10.1109/TPAMI.2021.3114196 – ident: ref25 doi: 10.1109/ICASSP39728.2021.9413582 – ident: ref33 doi: 10.1109/TBME.2023.3258606 – ident: ref32 doi: 10.1162/neco.1997.9.8.1735 – ident: ref2 doi: 10.1109/TNSRE.2024.3364976 – ident: ref3 doi: 10.1016/j.bspc.2019.02.011 – ident: ref22 doi: 10.1109/LRA.2023.3235683 – ident: ref8 doi: 10.1109/TNSRE.2022.3216528 – ident: ref30 doi: 10.1609/aaai.v35i12.17325 – ident: ref17 doi: 10.1109/TNNLS.2023.3303308 – ident: ref9 doi: 10.1088/1742-6596/1865/4/042099 – ident: ref19 doi: 10.1016/j.robot.2020.103566 – ident: ref21 doi: 10.1109/TNSRE.2023.3253683 – ident: ref12 doi: 10.1109/TNNLS.2021.3095724 – year: 2018 ident: ref31 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling – volume: 36 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2024 ident: ref14 article-title: Spike-driven transformer – ident: ref18 doi: 10.1016/j.neunet.2022.05.003 – ident: ref4 doi: 10.1109/LRA.2021.3097257 – ident: ref7 doi: 10.1109/JSEN.2024.3423795 – ident: ref28 doi: 10.1109/CVPR46437.2021.00757 – ident: ref24 doi: 10.1109/TNSRE.2023.3342050 – ident: ref29 doi: 10.1007/978-3-031-19800-7_40 – ident: ref6 doi: 10.1109/JBHI.2023.3304639 – ident: ref23 doi: 10.1016/j.compbiomed.2023.107327 – ident: ref10 doi: 10.1007/s12647-021-00478-6 – year: 2022 ident: ref15 article-title: Spikformer: When spiking neural network meets transformer – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: ref34 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref26 doi: 10.1109/TNSRE.2021.3077413 – ident: ref1 doi: 10.3390/s24175828 – ident: ref20 doi: 10.1109/JBHI.2020.3009383 – ident: ref11 doi: 10.1126/sciadv.adi1480 |
SSID | ssj0001527395 |
Score | 2.2910068 |
Snippet | Surface electromyography (sEMG) has demonstrated significant potential in simultaneous and proportional control (SPC). However, existing algorithms for... |
SourceID | crossref ieee |
SourceType | Index Database Publisher |
StartPage | 2176 |
SubjectTerms | Accuracy Biological information theory Convolution Electromyography Estimation Exoskeletons feature decomposition joint angle estimation Kinematics Membrane potentials Neurons spiking sparse attention Surface electromyography Transformers |
Title | sEMG-Based Joint Angle Estimation via Hierarchical Spiking Attentional Feature Decomposition Network |
URI | https://ieeexplore.ieee.org/document/10829682 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEww8iyiPygMLQ0Kal-MxQEpV0Q5ApW6RHV9QRZVWJWFg4Lfjy0NESEhscZRI1p3te_i77wi5YqC9cK6EwXgChhtw15Ac9JAFXDFmJQlgvmMy9Uczdzz35nWxelkLAwAl-AxMfCzv8tUqKTBVpnd4YHM_0Cfutl5nVbHWT0IFqcS411xFWvzm8SnUAaDtmcgB72IDlZbpafVSKU3JcJ9Mm0lUCJI3s8ilmXz-4mf89ywPyF7tVNKwWgWHZAuyI7Lboho8Juo9mjwYt9pmKTpeLbKchtnrEmikt3hVvUg_FoKOFliQXPZHWdLn9QIT6TTM8waYTtFlLDZA7wHB6DXii04rMHmXzIbRy93IqDssGIkORXLDBilUAiKVwmNaSo5rJ47CIXNs4biggx0_4JYvtKMoHG3JhJMOymNAeOhcnZBOtsrglFDfE75KFRKEgZsOZCA98BjYwgLhB0L2yHUj_HhdEWnEZQBi8VgrKkZFxbWieqSLYm19V0n07I_352QHf6-gYRekk28KuNS-Qi77ZHvyFfXLlfINwZC_Dg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT4MwFG_MPKgHP2ecnz148QAyoJQeUTdxbhx0S3YjhT4McWHLBA_-9bZ8RGJi4o0SQpr32r6P_t7vIXRNQXrhTHCNshg022W2FjGQQ-oyQakRx6DyHZPA8Wf2aE7mdbF6WQsDACX4DHT1WN7li2VcqFSZ3OGuyRxXnrib0vDbpCrX-kmpKDIxRprLSIPdjl88GQKaRFcs8LZqodIyPq1uKqUxGe6hoJlGhSF514s80uOvXwyN_57nPtqt3UrsVevgAG1Adoh2WmSDR0h8DCaP2p20WgKPlmmWYy97WwAeyE1e1S_iz5RjP1UlyWWHlAV-XaUqlY69PG-g6Vg5jcUa8AMoOHqN-cJBBSfvotlwML33tbrHghbLYCTXTIi4iIEnESdUSsmyzdgSakgtk1s2yHDHcZnhcOkqckvaMm4l_fIg4ES5V8eoky0zOEHYIdwRiVAUYWAn_ciNCBAKJjeAOy6PeuimEX64qqg0wjIEMVgoFRUqRYW1onqoq8Ta-q6S6Okf76_Qlj-djMPxU_B8hrbVryqg2Dnq5OsCLqTnkEeX5Xr5BmdzwSo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=sEMG-Based+Joint+Angle+Estimation+via+Hierarchical+Spiking+Attentional+Feature+Decomposition+Network&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Zhou%2C+Xin&rft.au=Lin%2C+Chuang&rft.au=Wang%2C+Can&rft.au=Peng%2C+Xiaojiang&rft.date=2025-03-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=10&rft.issue=3&rft.spage=2176&rft.epage=2183&rft_id=info:doi/10.1109%2FLRA.2025.3526447&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2025_3526447 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |