Design Optimization of a Direct-Drive Wind Generator With a Reluctance Rotor and a Flux Intensifying Stator Using Different PM Types
This paper presents a large-scale multi-objective design optimization for a direct-drive wind turbine generator concept that is based upon an experimentally validated computational model for a small-scale prototype motor of the same type. By integrating an outer reluctance-type rotor and a segmented...
Saved in:
Published in | IEEE transactions on industry applications Vol. 60; no. 4; pp. 6113 - 6123 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a large-scale multi-objective design optimization for a direct-drive wind turbine generator concept that is based upon an experimentally validated computational model for a small-scale prototype motor of the same type. By integrating an outer reluctance-type rotor and a segmented stator with toroidally wound single-coil modules containing spoke-type PMs, the design optimization aims to minimize losses, active mass, and torque ripple while adhering to a power factor constraint. The AC windings and PMs are positioned in the stator and this concept enhances flux concentration, enabling the use of more affordable high energy non-rare-earth (special type) magnets. The exterior rotor follows a simplified reluctance-type configuration, eliminating active electromagnetic components. The operational principle, described in detail, guides design studies using electromagnetic 2D finite element analysis (FEA), showcasing the potential of this configuration to match rare-earth PM performance, with special type PMs, thus addressing cost and supply challenges. Furthermore, alternative materials including the substitution of aluminum wire for copper wire, have also been investigated in this study. The proposed multi-objective design optimization uses the response surface method (RSM) to initiate the optimization and the results on a 3MW, 15 rpm generator, highlight the benefits of this topology, achieving competitive metrics like goodness, specific thrust, and efficiency without rare-earth permanent magnets. |
---|---|
AbstractList | This paper presents a large-scale multi-objective design optimization for a direct-drive wind turbine generator concept that is based upon an experimentally validated computational model for a small-scale prototype motor of the same type. By integrating an outer reluctance-type rotor and a segmented stator with toroidally wound single-coil modules containing spoke-type PMs, the design optimization aims to minimize losses, active mass, and torque ripple while adhering to a power factor constraint. The AC windings and PMs are positioned in the stator and this concept enhances flux concentration, enabling the use of more affordable high energy non-rare-earth (special type) magnets. The exterior rotor follows a simplified reluctance-type configuration, eliminating active electromagnetic components. The operational principle, described in detail, guides design studies using electromagnetic 2D finite element analysis (FEA), showcasing the potential of this configuration to match rare-earth PM performance, with special type PMs, thus addressing cost and supply challenges. Furthermore, alternative materials including the substitution of aluminum wire for copper wire, have also been investigated in this study. The proposed multi-objective design optimization uses the response surface method (RSM) to initiate the optimization and the results on a 3MW, 15 rpm generator, highlight the benefits of this topology, achieving competitive metrics like goodness, specific thrust, and efficiency without rare-earth permanent magnets. |
Author | Chulaee, Yaser Lewis, Donovin D. Manjrekar, Madhav D. Mohammadi, Ali Badewa, Oluwaseun A. Ionel, Dan M. Essakiappan, Somasundaram |
Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0002-0413-7026 surname: Mohammadi fullname: Mohammadi, Ali email: ali.mohammadi@uky.edu organization: SPARK Laboratory, Stanley and Karen Pigman College of Engineering, University of Kentucky, Lexington, KY, USA – sequence: 2 givenname: Oluwaseun A. orcidid: 0009-0001-6419-1366 surname: Badewa fullname: Badewa, Oluwaseun A. organization: SPARK Laboratory, Stanley and Karen Pigman College of Engineering, University of Kentucky, Lexington, KY, USA – sequence: 3 givenname: Yaser orcidid: 0000-0001-6189-3218 surname: Chulaee fullname: Chulaee, Yaser organization: SPARK Laboratory, Stanley and Karen Pigman College of Engineering, University of Kentucky, Lexington, KY, USA – sequence: 4 givenname: Donovin D. orcidid: 0000-0001-8435-4030 surname: Lewis fullname: Lewis, Donovin D. organization: SPARK Laboratory, Stanley and Karen Pigman College of Engineering, University of Kentucky, Lexington, KY, USA – sequence: 5 givenname: Somasundaram orcidid: 0000-0002-7959-4387 surname: Essakiappan fullname: Essakiappan, Somasundaram organization: QM Power, Inc., Kansas City, MO, USA – sequence: 6 givenname: Madhav D. orcidid: 0000-0002-6110-3113 surname: Manjrekar fullname: Manjrekar, Madhav D. organization: QM Power, Inc., Kansas City, MO, USA – sequence: 7 givenname: Dan M. orcidid: 0000-0002-7550-1972 surname: Ionel fullname: Ionel, Dan M. organization: SPARK Laboratory, Stanley and Karen Pigman College of Engineering, University of Kentucky, Lexington, KY, USA |
BookMark | eNpNkE1PAjEQhhuDiYDePXjoH1js13a3RwKCJBgMQjxuussUa6BL2mLEsz_cXfHgafJOnneSeXqo42oHCN1SMqCUqPvVbDhghIkB50pmil2gLlVcJYrLrIO6hCieKKXEFeqF8E4IFSkVXfQ9hmC3Di8O0e7tl462drg2WOOx9VDFZOztB-BX6zZ4Cg68jrVvYnxrkCXsjlXUrgK8rNu9biiNJ7vjJ565CC5Yc7Jui1_ib20d2jC2xoAHF_HzE16dDhCu0aXRuwA3f7OP1pOH1egxmS-ms9FwnlSMZjFheUlyJQxJq1JxIrlMm7eyjDOdGsVZyajYMEmZ4CmRZcpynnGpeL6RQhKjeR-R893K1yF4MMXB2732p4KSorVYNBaL1mLxZ7Gp3J0rFgD-4SkjOZX8B9lRbvY |
CODEN | ITIACR |
Cites_doi | 10.1109/TEC.2023.3285150 10.1109/TIA.2005.858261 10.1109/MIAS.2020.2982731 10.1016/j.egypro.2013.07.158 10.1109/ECCE47101.2021.9595129 10.1109/ITEC55900.2023.10187109 10.2172/897434 10.1109/icem49940.2020.9270672 10.1109/TIA.2018.2848979 10.1088/1742-6596/1104/1/012003 10.1002/we.1887 10.1109/Ee59906.2023.10346129 10.1109/IEMDC47953.2021.9449556 10.1201/9781315367392 10.1109/TIA.2020.2979111 10.1023/A:1008202821328 10.1109/TIA.2019.2949545 10.1109/TIA.2020.3034558 10.1109/TIA.2015.2394444 10.1109/TIA.2022.3174180 10.1002/9781119103462 10.1109/tec.2023.3272520 10.1109/ITEC55900.2023.10186958 10.1109/TEC.2006.875476 10.1109/TIA.2019.2935931 10.1109/acemp-optim44294.2019.9007106 10.1109/ICRERA55966.2022.9922808 10.1109/IEMDC55163.2023.10238962 10.1109/icit.2018.8352208 10.1049/iet-rpg.2010.0191 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TIA.2024.3396792 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-9367 |
EndPage | 6123 |
ExternalDocumentID | 10_1109_TIA_2024_3396792 10520816 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AASAJ ABQJQ ACGFO ACGFS ACIWK ACNCT AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RIG RNS TAE TN5 VH1 VJK AAYXX AGSQL CITATION |
ID | FETCH-LOGICAL-c217t-28b0894f05cb93063650097732a5f932b214d261243506b5283736938d6460fa3 |
IEDL.DBID | RIE |
ISSN | 0093-9994 |
IngestDate | Fri Dec 06 09:04:06 EST 2024 Wed Jul 24 06:48:44 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c217t-28b0894f05cb93063650097732a5f932b214d261243506b5283736938d6460fa3 |
ORCID | 0000-0001-6189-3218 0000-0002-6110-3113 0000-0001-8435-4030 0000-0002-7959-4387 0000-0002-0413-7026 0000-0002-7550-1972 0009-0001-6419-1366 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TIA_2024_3396792 ieee_primary_10520816 |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on industry applications |
PublicationTitleAbbrev | TIA |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref2 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 Magnetics (ref32) 2023 ref22 ref21 ref28 ref27 ref29 ref8 (ref1) 2022 ref7 ref9 ref4 (ref3) 2020; 19 ref6 ref5 |
References_xml | – ident: ref24 doi: 10.1109/TEC.2023.3285150 – ident: ref31 publication-title: Maxwell, version 23.1, 2023, ANSYS Inc – ident: ref18 doi: 10.1109/TIA.2005.858261 – volume: 19 start-page: 10 volume-title: Global Offshore Wind Report 2020 year: 2020 ident: ref3 – ident: ref17 doi: 10.1109/MIAS.2020.2982731 – ident: ref11 doi: 10.1016/j.egypro.2013.07.158 – ident: ref25 doi: 10.1109/ECCE47101.2021.9595129 – year: 2023 ident: ref32 article-title: Niron magnetics: Magnets rare earth vs. clean earth contributor: fullname: Magnetics – ident: ref14 doi: 10.1109/ITEC55900.2023.10187109 – ident: ref33 doi: 10.2172/897434 – ident: ref20 doi: 10.1109/icem49940.2020.9270672 – ident: ref22 doi: 10.1109/TIA.2018.2848979 – ident: ref5 doi: 10.1088/1742-6596/1104/1/012003 – ident: ref8 doi: 10.1002/we.1887 – ident: ref21 doi: 10.1109/Ee59906.2023.10346129 – ident: ref28 doi: 10.1109/IEMDC47953.2021.9449556 – year: 2022 ident: ref1 article-title: Renewables 2022: Analysis and forecast to 2027 – ident: ref2 doi: 10.1201/9781315367392 – ident: ref9 doi: 10.1109/TIA.2020.2979111 – ident: ref29 doi: 10.1023/A:1008202821328 – ident: ref10 doi: 10.1109/TIA.2019.2949545 – ident: ref34 doi: 10.1109/TIA.2020.3034558 – ident: ref27 doi: 10.1109/TIA.2015.2394444 – ident: ref16 doi: 10.1109/TIA.2022.3174180 – ident: ref30 doi: 10.1002/9781119103462 – ident: ref23 doi: 10.1109/tec.2023.3272520 – ident: ref26 doi: 10.1109/ITEC55900.2023.10186958 – ident: ref4 doi: 10.1109/TEC.2006.875476 – ident: ref13 doi: 10.1109/TIA.2019.2935931 – ident: ref19 doi: 10.1109/acemp-optim44294.2019.9007106 – ident: ref6 doi: 10.1109/ICRERA55966.2022.9922808 – ident: ref7 doi: 10.1109/IEMDC55163.2023.10238962 – ident: ref15 doi: 10.1109/icit.2018.8352208 – ident: ref12 doi: 10.1049/iet-rpg.2010.0191 |
SSID | ssj0014514 |
Score | 2.491003 |
Snippet | This paper presents a large-scale multi-objective design optimization for a direct-drive wind turbine generator concept that is based upon an experimentally... |
SourceID | crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 6113 |
SubjectTerms | design optimization Direct-drive generator double-salient flux-intensifying topology flux-reversal flux-switching Generators Prototypes Rotors spoke permanent magnets Stator windings synchronous machine Topology toroidal winding wind turbine Wind turbines Windings |
Title | Design Optimization of a Direct-Drive Wind Generator With a Reluctance Rotor and a Flux Intensifying Stator Using Different PM Types |
URI | https://ieeexplore.ieee.org/document/10520816 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJz34c-L8RQ5ePGRmado0x-EcU9iUseFupUlTBOcmswXx7B_uS9LJFARvbZq2IS9Nvq9573sIXWRMhIYxRdJYCcJNOyOSRinJAWpLCfxBGRsoPBhG_Qm_m4bTKljdxcIYY5zzmWnZQ7eXny10aX-VwRceMpsoooZqQkY-WOt7y4BXQt5A0Qm8hq_2JKm8Gt92gAky3goCGQnJfqxBa0lV3JrS20HDVWu8K8lzqyxUS3_8Emr8d3N30XaFLnHHD4c9tGHm-2hrTXPwAH12nc8Gvoe54qUKwsSLHKfYz36ku4QJED8CV8dekxpYOZwWT1BlZGalLuxAwaOFLU-hVop7s_IdV87wLm4KWwwLl51DAjzYJ2Ep8MMAW-L71kCT3s34uk-qVAxEA2cpCIsVjSXPaaiVBJYRALCjAB0DloY5QEDF2jyzamSAvmikrGKMCCIZxFnEI5qnwSGqzxdzc4Sw1kIbLcNQtHMuBE21AthoVByYOGPaNNHlyjjJq1fcSBxToTIBQybWkEllyCZq2G5fq-d7_PiP8hO0aW_37ranqF4sS3MGoKJQ524wfQHOlMfE |
link.rule.ids | 314,780,784,796,27924,27925,54758 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8MgFCc6D-rBb-P85ODFA5MB_eBo1GV-bJpli96aQmlM1NVomxjP_uE-oDPTxMRbSwklPAq_X3nv9xA6zFgUGMYUSWMVEWHaGZE0TEkOUFtK4A_K2EDhXj_sjsTlfXBfB6u7WBhjjHM-My176c7ys0JX9lcZfOEBs4kiZtFcIADo-nCt70MDUUt5A0kn8CIxOZWk8nh4cQJckIkW5zKMJPuxC02lVXG7SmcZ9Sf98c4kj62qVC398Uuq8d8dXkFLNb7EJ35CrKIZM15Di1Oqg-vo88x5beAbWC2e6zBMXOQ4xX79I2evsATiO2Dr2KtSAy-H2_IBqgzMU6VLO1XwoLDlKdRKceepese1O7yLnMIWxcJj55IADfs0LCW-7WFLfd820KhzPjztkjoZA9HAWkrCYkVjKXIaaCWBZ3CAdhTAI2dpkAMIVKwtMqtHBviLhspqxkQ8lDzOQhHSPOWbqDEuxmYLYa0jbbQMgqidiyiiqVYAHI2KuYkzpk0THU2Mk7x4zY3EcRUqEzBkYg2Z1IZsog077FP1_Ihv_1F-gOa7w951cn3Rv9pBC7Yp73y7ixrla2X2AGKUat9NrC-Ab8sX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+Optimization+of+a+Direct-Drive+Wind+Generator+With+a+Reluctance+Rotor+and+a+Flux+Intensifying+Stator+Using+Different+PM+Types&rft.jtitle=IEEE+transactions+on+industry+applications&rft.au=Mohammadi%2C+Ali&rft.au=Badewa%2C+Oluwaseun+A.&rft.au=Chulaee%2C+Yaser&rft.au=Lewis%2C+Donovin+D.&rft.date=2024-07-01&rft.pub=IEEE&rft.issn=0093-9994&rft.eissn=1939-9367&rft.volume=60&rft.issue=4&rft.spage=6113&rft.epage=6123&rft_id=info:doi/10.1109%2FTIA.2024.3396792&rft.externalDocID=10520816 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-9994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-9994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-9994&client=summon |