RingSim—An agent-based approach for modeling mesoscopic magnetic nanowire networks

We describe “RingSim,” a phenomenological agent-based model that allows numerical simulation of magnetic nanowire networks with areas of hundreds of micrometers squared for durations of hundreds of seconds, a practical impossibility for general-purpose micromagnetic simulation tools. In RingSim, dom...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 137; no. 13
Main Authors Vidamour, Ian T., Venkat, Guru, Swindells, Charles, Griffin, David, Fry, Paul W., Rowan-Robinson, Richard M., Welbourne, Alexander, Maccherozzi, Francesco, Dhesi, Sarnjeet S., Stepney, Susan, Allwood, Dan A., Hayward, Thomas J.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 07.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We describe “RingSim,” a phenomenological agent-based model that allows numerical simulation of magnetic nanowire networks with areas of hundreds of micrometers squared for durations of hundreds of seconds, a practical impossibility for general-purpose micromagnetic simulation tools. In RingSim, domain walls (DWs) are instanced as mobile agents, which respond to external magnetic fields, and their stochastic interactions with pinning sites and other DWs are described via simple phenomenological rules. We first present a detailed description of the model and its algorithmic implementation for simulating the behaviors of arrays of interconnected ring-shaped nanowires, which have previously been proposed as hardware platforms for unconventional computing applications. The model is then validated against a series of experimental measurements of an array’s static and dynamic responses to rotating magnetic fields. The robust agreement between the modeled and experimental data demonstrates that agent-based modeling is a powerful tool for exploring mesoscale magnetic devices, enabling time scales and device sizes that are inaccessible to more conventional magnetic simulation techniques.
AbstractList We describe “RingSim,” a phenomenological agent-based model that allows numerical simulation of magnetic nanowire networks with areas of hundreds of micrometers squared for durations of hundreds of seconds, a practical impossibility for general-purpose micromagnetic simulation tools. In RingSim, domain walls (DWs) are instanced as mobile agents, which respond to external magnetic fields, and their stochastic interactions with pinning sites and other DWs are described via simple phenomenological rules. We first present a detailed description of the model and its algorithmic implementation for simulating the behaviors of arrays of interconnected ring-shaped nanowires, which have previously been proposed as hardware platforms for unconventional computing applications. The model is then validated against a series of experimental measurements of an array’s static and dynamic responses to rotating magnetic fields. The robust agreement between the modeled and experimental data demonstrates that agent-based modeling is a powerful tool for exploring mesoscale magnetic devices, enabling time scales and device sizes that are inaccessible to more conventional magnetic simulation techniques.
Author Maccherozzi, Francesco
Allwood, Dan A.
Vidamour, Ian T.
Venkat, Guru
Dhesi, Sarnjeet S.
Rowan-Robinson, Richard M.
Hayward, Thomas J.
Griffin, David
Fry, Paul W.
Welbourne, Alexander
Stepney, Susan
Swindells, Charles
Author_xml – sequence: 1
  givenname: Ian T.
  surname: Vidamour
  fullname: Vidamour, Ian T.
  organization: 5Diamond Light Source Ltd., Science and Technology Facilities Council UK, Didcot, Oxfordshire, United Kingdom
– sequence: 2
  givenname: Guru
  surname: Venkat
  fullname: Venkat, Guru
  organization: School of Chemical, Materials, and Biological Engineering, University of Sheffield
– sequence: 3
  givenname: Charles
  surname: Swindells
  fullname: Swindells, Charles
  organization: School of Chemical, Materials, and Biological Engineering, University of Sheffield
– sequence: 4
  givenname: David
  surname: Griffin
  fullname: Griffin, David
  organization: Department of Computer Science, University of York
– sequence: 5
  givenname: Paul W.
  surname: Fry
  fullname: Fry, Paul W.
  organization: Centre for Nanoscience and Technology, University of Sheffield
– sequence: 6
  givenname: Richard M.
  surname: Rowan-Robinson
  fullname: Rowan-Robinson, Richard M.
  organization: School of Chemical, Materials, and Biological Engineering, University of Sheffield
– sequence: 7
  givenname: Alexander
  surname: Welbourne
  fullname: Welbourne, Alexander
  organization: School of Chemical, Materials, and Biological Engineering, University of Sheffield
– sequence: 8
  givenname: Francesco
  surname: Maccherozzi
  fullname: Maccherozzi, Francesco
  organization: Diamond Light Source Ltd., Science and Technology Facilities Council UK
– sequence: 9
  givenname: Sarnjeet S.
  surname: Dhesi
  fullname: Dhesi, Sarnjeet S.
  organization: Diamond Light Source Ltd., Science and Technology Facilities Council UK
– sequence: 10
  givenname: Susan
  surname: Stepney
  fullname: Stepney, Susan
  organization: Department of Computer Science, University of York
– sequence: 11
  givenname: Dan A.
  surname: Allwood
  fullname: Allwood, Dan A.
  organization: School of Chemical, Materials, and Biological Engineering, University of Sheffield
– sequence: 12
  givenname: Thomas J.
  surname: Hayward
  fullname: Hayward, Thomas J.
  organization: School of Chemical, Materials, and Biological Engineering, University of Sheffield
BookMark eNp9kMFKAzEQhoNUsK0efIOAJ4Wtk2TTJMdSrAoFQet5ye4mdWs3WZMtxZsP4RP6JEbas6eZ-fmYGb4RGjjvDEKXBCYEpuyWT4ByMlX0BA0JSJUJzmGAhgCUZFIJdYZGMW4ACJFMDdHquXHrl6b9-fqeOazXxvVZqaOpse664HX1hq0PuPW12SYStyb6WPmuqXCr1870qXHa-X0TDE7j3of3eI5Ord5Gc3GsY_S6uFvNH7Ll0_3jfLbMKkpEnxGlLZ8KnRtlJWN1XemU05pIqClIwQQ1lgNlVAK1uswVzUsiGOXUlkYAG6Orw9706cfOxL7Y-F1w6WTBiMwlyZOIRF0fqCr4GIOxRReaVofPgkDxJ63gxVFaYm8ObKyaXveNd__AvwKNbfM
CODEN JAPIAU
Cites_doi 10.1038/s41467-022-28571-7
10.1063/1.358282
10.1063/1.4899186
10.1063/1.5093730
10.1063/1.4918902
10.1063/1.2913318
10.1109/TMAG.2011.2157114
10.1021/acs.nanolett.7b03199
10.1063/1.3685467
10.35848/1882-0786/abdcd8
10.1038/s41565-022-01091-7
10.1016/j.mcm.2008.05.011
10.1038/s42005-023-01352-4
10.1103/PhysRevLett.78.1791
10.1063/5.0048911
10.1063/1.2769779
10.1002/adfm.202008389
10.1038/s41598-021-94975-y
10.1103/PhysRevApplied.12.024052
10.1016/j.neunet.2012.05.012
10.1063/1.4812388
10.1038/nature23011
10.1038/s42254-019-0118-3
10.1088/2634-4386/ad53f9
10.1209/epl/i1997-00247-9
10.21203/rs.3.rs-2264132/v1
10.1088/1361-6528/ac87b5
10.1103/PhysRevB.93.144410
10.1016/j.ultramic.2016.08.016
ContentType Journal Article
Copyright Author(s)
2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
DBID AJDQP
AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0251692
DatabaseName AIP Open Access Journals
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 10_1063_5_0251692
jap
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/V006339/1
  funderid: 10.13039/501100000266
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/S009647/1
  funderid: 10.13039/501100000266
– fundername: Leverhulme Trust
  grantid: RPG-2018-324
  funderid: 10.13039/501100000275
– fundername: Horizon 2020 Framework Programme
  grantid: 861618
  funderid: 10.13039/100010661
– fundername: Leverhulme Trust
  grantid: RPG-2019-097
  funderid: 10.13039/501100000275
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/V006029/1
  funderid: 10.13039/501100000266
GroupedDBID -DZ
-~X
.DC
2-P
29J
4.4
5GY
5VS
85S
AAAAW
AABDS
AAIKC
AAMNW
AAPUP
AAYIH
ABFTF
ABJGX
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJDQP
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CS3
D0L
DU5
EBS
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
AAGWI
AAYXX
ADMLS
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c217t-19af567a4e9f833ddca2172d180d2087372ef50232802fab4924b173252fbe703
IEDL.DBID AJDQP
ISSN 0021-8979
IngestDate Wed Aug 13 11:28:04 EDT 2025
Wed Aug 20 07:45:13 EDT 2025
Wed Apr 02 03:54:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c217t-19af567a4e9f833ddca2172d180d2087372ef50232802fab4924b173252fbe703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9089-9712
0000-0001-6255-3151
0000-0003-4074-2319
0000-0002-4077-0005
0000-0002-3732-3095
0000-0002-6909-2711
0000-0002-3881-4064
0000-0003-3146-5401
0000-0002-9572-5930
0000-0003-4966-0002
OpenAccessLink http://dx.doi.org/10.1063/5.0251692
PQID 3184814692
PQPubID 2050677
PageCount 12
ParticipantIDs scitation_primary_10_1063_5_0251692
proquest_journals_3184814692
crossref_primary_10_1063_5_0251692
PublicationCentury 2000
PublicationDate 20250407
2025-04-07
PublicationDateYYYYMMDD 2025-04-07
PublicationDate_xml – month: 04
  year: 2025
  text: 20250407
  day: 07
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Journal of applied physics
PublicationYear 2025
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Vansteenkiste (c6) 2014
Torrejon (c1) 2017
Joyce, Laurienti, Hayasaka (c24) 2012
Vidamour (c20) 2023
Kanao (c2) 2019
Vogler, Bruckner, Suess, Dellago (c28) 2015
Negoita, Hayward, Allwood (c31) 2012
Chen (c10) 2022
Wegrowe (c34) 1997
Foerster (c37) 2016
Pivano, Dolocan (c3) 2016
Gilbert (c9) 1955
Vidamour (c19) 2022
Negoita, Hayward, Miller, Allwood (c32) 2013
Sharrock (c33) 1994
Lau, Beleggia, Zhu (c29) 2007
Leliaert, Mulkers (c11) 2019
Welbourne (c5) 2021
Hon (c17) 2021
Skjærvø, Marrows, Stamps, Heyderman (c12) 2020
Chang, Yao, Lin, Lee (c26) 2011
Sandweg (c27) 2008
Venkat (c21) 2024
Dutta, Siddiqui, Currivan-Incorvia, Ross, Baldo (c35) 2017
Wernsdorfer (c30) 1997
Ababei (c4) 2021
Gartside (c16) 2022
Zhang, Strouthos, Wang, Deisboeck (c25) 2009
Dawidek (c13) 2021
(2025040105584743200_c4) 2021; 11
(2025040105584743200_c17) 2021; 14
(2025040105584743200_c37) 2016; 171
(2025040105584743200_c26) 2011; 47
(2025040105584743200_c21) 2024; 4
(2025040105584743200_c12) 2020; 2
(2025040105584743200_c3) 2016; 93
(2025040105584743200_c19) 2022; 33
(2025040105584743200_c20) 2023; 6
(2025040105584743200_c28) 2015; 117
(2025040105584743200_c9) 1955; 100
(2025040105584743200_c13) 2021; 31
2025040105584743200_c22
2025040105584743200_c23
(2025040105584743200_c33) 1994; 76
(2025040105584743200_c35) 2017; 17
(2025040105584743200_c30) 1997; 78
(2025040105584743200_c1) 2017; 547
(2025040105584743200_c11) 2019; 125
(2025040105584743200_c25) 2009; 49
(2025040105584743200_c27) 2008; 103
(2025040105584743200_c24) 2012; 33
(2025040105584743200_c32) 2013; 114
(2025040105584743200_c16) 2022; 17
2025040105584743200_c14
(2025040105584743200_c31) 2012; 100
2025040105584743200_c36
2025040105584743200_c15
(2025040105584743200_c10) 2022; 13
(2025040105584743200_c34) 1997; 38
(2025040105584743200_c2) 2019; 12
(2025040105584743200_c6) 2014; 4
2025040105584743200_c18
(2025040105584743200_c29) 2007; 102
(2025040105584743200_c5) 2021; 118
2025040105584743200_c8
2025040105584743200_c7
References_xml – start-page: 2008389
  year: 2021
  ident: c13
  article-title: Dynamically-driven emergence in a nanomagnetic system
  publication-title: Adv. Funct. Mater.
– start-page: 2519
  year: 2011
  ident: c26
  article-title: Magnetic interaction in domain wall depinning at square notch and antinotch traps
  publication-title: IEEE Trans. Magn.
– start-page: 1016
  year: 2022
  ident: c10
  article-title: Forecasting the outcome of spintronic experiments with neural ordinary differential equations
  publication-title: Nat. Commun.
– start-page: 024018
  year: 2024
  ident: c21
  article-title: Exploring physical and digital architectures in magnetic nanoring array reservoir computers
  publication-title: Neuromorphic Comput. Eng.
– start-page: 230
  year: 2023
  ident: c20
  article-title: Reconfigurable reservoir computing in a magnetic metamaterial
  publication-title: Commun. Phys.
– start-page: 024052
  year: 2019
  ident: c2
  article-title: Reservoir computing on spin-torque oscillator array
  publication-title: Phys. Rev. Appl.
– start-page: 202402
  year: 2021
  ident: c5
  article-title: Voltage-controlled superparamagnetic ensembles for low-power reservoir computing
  publication-title: Appl. Phys. Lett.
– start-page: 1243
  year: 1955
  ident: c9
  article-title: A Lagrangian formulation of the gyromagnetic equation of the magnetization field
  publication-title: Phys. Rev.
– start-page: 1791
  year: 1997
  ident: c30
  article-title: Experimental evidence of the Néel-Brown model of magnetization reversal
  publication-title: Phys. Rev. Lett.
– start-page: 6413
  year: 1994
  ident: c33
  article-title: Time dependence of switching fields in magnetic recording media (Invited)
  publication-title: J. Appl. Phys.
– start-page: 072405
  year: 2012
  ident: c31
  article-title: Controlling domain walls velocities in ferromagnetic ring-shaped nanowires
  publication-title: Appl. Phys. Lett.
– start-page: 5869
  year: 2017
  ident: c35
  article-title: The spatial resolution limit for an individual domain wall in magnetic nanowires
  publication-title: Nano Lett.
– start-page: 329
  year: 1997
  ident: c34
  article-title: Magnetic relaxation of nanowires: Beyond the Néel-Brown activation process
  publication-title: Europhys. Lett.
– start-page: 033001
  year: 2021
  ident: c17
  article-title: Numerical simulation of artificial spin ice for reservoir computing
  publication-title: Appl. Phys. Express
– start-page: 275
  year: 2012
  ident: c24
  article-title: Complexity in a brain-inspired agent-based model
  publication-title: Neural Netw.
– start-page: 13
  year: 2020
  ident: c12
  article-title: Advances in artificial spin ice
  publication-title: Nat. Rev. Phys.
– start-page: 144410
  year: 2016
  ident: c3
  article-title: Chaotic dynamics of magnetic domain walls in nanowires
  publication-title: Phys. Rev. B
– start-page: 15587
  year: 2021
  ident: c4
  article-title: Neuromorphic computation with a single magnetic domain wall
  publication-title: Sci. Rep.
– start-page: 163907
  year: 2015
  ident: c28
  article-title: Calculating thermal stability and attempt frequency of advanced recording structures without free parameters
  publication-title: J. Appl. Phys.
– start-page: 107133
  year: 2014
  ident: c6
  article-title: The design and verification of MuMax3
  publication-title: AIP Adv.
– start-page: 307
  year: 2009
  ident: c25
  article-title: Simulating brain tumor heterogeneity with a multiscale agent-based model: Linking molecular signatures, phenotypes and expansion rate
  publication-title: Math. Comput. Model.
– start-page: 180901
  year: 2019
  ident: c11
  article-title: Tomorrow’s micromagnetic simulations
  publication-title: J. Appl. Phys.
– start-page: 428
  year: 2017
  ident: c1
  article-title: Neuromorphic computing with nanoscale spintronic oscillators
  publication-title: Nature
– start-page: 93906
  year: 2008
  ident: c27
  article-title: Direct observation of domain wall structures in curved permalloy wires containing an antinotch
  publication-title: J. Appl. Phys.
– start-page: 043906
  year: 2007
  ident: c29
  article-title: Common reversal mechanisms and correlation between transient domain states and field sweep rate in patterned permalloy structures
  publication-title: J. Appl. Phys.
– start-page: 485203
  year: 2022
  ident: c19
  article-title: Quantifying the computational capability of a nanomagnetic reservoir computing platform with emergent magnetisation dynamics
  publication-title: Nanotechnology
– start-page: 63
  year: 2016
  ident: c37
  article-title: Custom sample environments at the ALBA XPEEM
  publication-title: Ultramicroscopy
– start-page: 013904
  year: 2013
  ident: c32
  article-title: Domain walls in ring-shaped nanowires under rotating applied fields
  publication-title: J. Appl. Phys.
– start-page: 460
  year: 2022
  ident: c16
  article-title: Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 1016
  year: 2022
  ident: 2025040105584743200_c10
  article-title: Forecasting the outcome of spintronic experiments with neural ordinary differential equations
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28571-7
– ident: 2025040105584743200_c23
– volume: 76
  start-page: 6413
  year: 1994
  ident: 2025040105584743200_c33
  article-title: Time dependence of switching fields in magnetic recording media (Invited)
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.358282
– volume: 4
  start-page: 107133
  year: 2014
  ident: 2025040105584743200_c6
  article-title: The design and verification of MuMax3
  publication-title: AIP Adv.
  doi: 10.1063/1.4899186
– volume: 125
  start-page: 180901
  year: 2019
  ident: 2025040105584743200_c11
  article-title: Tomorrow’s micromagnetic simulations
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5093730
– volume: 117
  start-page: 163907
  year: 2015
  ident: 2025040105584743200_c28
  article-title: Calculating thermal stability and attempt frequency of advanced recording structures without free parameters
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4918902
– volume: 103
  start-page: 93906
  year: 2008
  ident: 2025040105584743200_c27
  article-title: Direct observation of domain wall structures in curved permalloy wires containing an antinotch
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2913318
– volume: 47
  start-page: 2519
  year: 2011
  ident: 2025040105584743200_c26
  article-title: Magnetic interaction in domain wall depinning at square notch and antinotch traps
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2011.2157114
– volume: 17
  start-page: 5869
  year: 2017
  ident: 2025040105584743200_c35
  article-title: The spatial resolution limit for an individual domain wall in magnetic nanowires
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b03199
– volume: 100
  start-page: 072405
  year: 2012
  ident: 2025040105584743200_c31
  article-title: Controlling domain walls velocities in ferromagnetic ring-shaped nanowires
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3685467
– volume: 14
  start-page: 033001
  year: 2021
  ident: 2025040105584743200_c17
  article-title: Numerical simulation of artificial spin ice for reservoir computing
  publication-title: Appl. Phys. Express
  doi: 10.35848/1882-0786/abdcd8
– volume: 17
  start-page: 460
  year: 2022
  ident: 2025040105584743200_c16
  article-title: Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01091-7
– ident: 2025040105584743200_c14
– volume: 49
  start-page: 307
  year: 2009
  ident: 2025040105584743200_c25
  article-title: Simulating brain tumor heterogeneity with a multiscale agent-based model: Linking molecular signatures, phenotypes and expansion rate
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2008.05.011
– ident: 2025040105584743200_c8
– volume: 6
  start-page: 230
  year: 2023
  ident: 2025040105584743200_c20
  article-title: Reconfigurable reservoir computing in a magnetic metamaterial
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-023-01352-4
– volume: 78
  start-page: 1791
  year: 1997
  ident: 2025040105584743200_c30
  article-title: Experimental evidence of the Néel-Brown model of magnetization reversal
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1791
– volume: 118
  start-page: 202402
  year: 2021
  ident: 2025040105584743200_c5
  article-title: Voltage-controlled superparamagnetic ensembles for low-power reservoir computing
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0048911
– ident: 2025040105584743200_c22
– volume: 102
  start-page: 043906
  year: 2007
  ident: 2025040105584743200_c29
  article-title: Common reversal mechanisms and correlation between transient domain states and field sweep rate in patterned permalloy structures
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2769779
– volume: 31
  start-page: 2008389
  year: 2021
  ident: 2025040105584743200_c13
  article-title: Dynamically-driven emergence in a nanomagnetic system
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008389
– volume: 11
  start-page: 15587
  year: 2021
  ident: 2025040105584743200_c4
  article-title: Neuromorphic computation with a single magnetic domain wall
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-94975-y
– volume: 12
  start-page: 024052
  year: 2019
  ident: 2025040105584743200_c2
  article-title: Reservoir computing on spin-torque oscillator array
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.12.024052
– volume: 33
  start-page: 275
  year: 2012
  ident: 2025040105584743200_c24
  article-title: Complexity in a brain-inspired agent-based model
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2012.05.012
– volume: 114
  start-page: 013904
  year: 2013
  ident: 2025040105584743200_c32
  article-title: Domain walls in ring-shaped nanowires under rotating applied fields
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4812388
– volume: 547
  start-page: 428
  year: 2017
  ident: 2025040105584743200_c1
  article-title: Neuromorphic computing with nanoscale spintronic oscillators
  publication-title: Nature
  doi: 10.1038/nature23011
– volume: 2
  start-page: 13
  year: 2020
  ident: 2025040105584743200_c12
  article-title: Advances in artificial spin ice
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0118-3
– volume: 4
  start-page: 024018
  year: 2024
  ident: 2025040105584743200_c21
  article-title: Exploring physical and digital architectures in magnetic nanoring array reservoir computers
  publication-title: Neuromorphic Comput. Eng.
  doi: 10.1088/2634-4386/ad53f9
– volume: 38
  start-page: 329
  year: 1997
  ident: 2025040105584743200_c34
  article-title: Magnetic relaxation of nanowires: Beyond the Néel-Brown activation process
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i1997-00247-9
– ident: 2025040105584743200_c18
  doi: 10.21203/rs.3.rs-2264132/v1
– volume: 33
  start-page: 485203
  year: 2022
  ident: 2025040105584743200_c19
  article-title: Quantifying the computational capability of a nanomagnetic reservoir computing platform with emergent magnetisation dynamics
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ac87b5
– ident: 2025040105584743200_c15
– volume: 93
  start-page: 144410
  year: 2016
  ident: 2025040105584743200_c3
  article-title: Chaotic dynamics of magnetic domain walls in nanowires
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.144410
– ident: 2025040105584743200_c36
– volume: 100
  start-page: 1243
  year: 1955
  ident: 2025040105584743200_c9
  article-title: A Lagrangian formulation of the gyromagnetic equation of the magnetization field
  publication-title: Phys. Rev.
– volume: 171
  start-page: 63
  year: 2016
  ident: 2025040105584743200_c37
  article-title: Custom sample environments at the ALBA XPEEM
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2016.08.016
– ident: 2025040105584743200_c7
SSID ssj0011839
Score 2.4746377
Snippet We describe “RingSim,” a phenomenological agent-based model that allows numerical simulation of magnetic nanowire networks with areas of hundreds of...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Agent-based models
Agents (artificial intelligence)
Arrays
Domain walls
Magnetic devices
Magnetic fields
Magnetic wire
Nanowires
Simulation
Title RingSim—An agent-based approach for modeling mesoscopic magnetic nanowire networks
URI http://dx.doi.org/10.1063/5.0251692
https://www.proquest.com/docview/3184814692
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1PT8IwHG0IxKgHo6gRRdKI1-nWtVt7JCIhRIwKJNyWdm0NB4pxePdD-An9JLZsQzyQeN26Hd7avtf9_jwArlmQIqo08nBAfQ8Thj3GnddLFFEZIiIEd8XJw8eoP8GDKZlWQHtLBD8Kb8mNk8ERs_tsDVlxTKug1hl0n5_WwQJH8nkmR-BRFrOygdDmw39p51dL7lqiyWPeG7TSOwQHhR6EnfwDHoGKMnWwv9ElsA52VlmaaXYMxi_2wmg2__786hjIXVWU52hIwrI1OLQaFK7cbexIOFfZwpWdzFI456_G1StCw83C9SeGJk8Az07ApHc_vut7hS2Cl9rzw9ILGNckijlWTNMwlDLlzmVKWrAl8qnznVGaWC5G1EeaC2yPWCKILfBIC2VX-CmomoVRZwAKQf04jZQOqcS-4oKEWGEtaEC49DlqgKsSteQt736RrKLWUZiQpIC2AZolnkmxALLEbhXY_V10t9trjLe_5Pxfoy7AHnL-uy5zJm6C6vL9Q11aUbAULTspusOHUauYHD-NxLLk
linkProvider American Institute of Physics
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4MxKAHo6gRRW3Ua3Hr2q47EpUgAvEDEm5Lu3UGI2NxcPdH-Av9JbZsAzyYeN26pXm79nnevR8PAFeeHWCuIoyIzS1EqEeQJ4zWC2M8dDCVUpji5F6ftYekM6KjPDfH1MLoSaQNMU4WQfw3kVznBkTvmnPOk1XDAeZc04YhyMzTJ3BZe-OMl0C52bl9elyGEQz8ZzkeNuKe6xWthdYf_g1IK5ZZ0RCURcPXAKe1C3Zypgib2cz2wIaKq2B7rX9gFWwu8jeDdB8MnvWFl_Hk-_OrGUNh6qWQAagQFk3DoWancKF7o0fCiUqnpiBlHMCJeI1NJSOMRTw1nYthnKWGpwdg2Lob3LRRLpiAAu1ZzJDtiYgyVxDlRdxxwjAQRn8q1MsQYosbRRoVUY3SmFs4EpJo50varl4SHEml9_4hKMXTWB0BKCW33ICpyOEhsZSQ1CGKRJLbVISWwDVwUVjNT7K-GP4ins0cn_q5aWugXtjTz7dG6utDhJj_jub25dLGf7_k-F-jzkGlPeh1_e59_-EEbGGj0mvya9w6KM0-5upUU4eZPMs_kB-l_b5P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RingSim%E2%80%94An+agent-based+approach+for+modeling+mesoscopic+magnetic+nanowire+networks&rft.jtitle=Journal+of+applied+physics&rft.au=Guru%2C+Venkat&rft.au=Swindells%2C+Charles&rft.au=Griffin%2C+David&rft.au=Fry%2C+Paul+W&rft.date=2025-04-07&rft.pub=American+Institute+of+Physics&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=137&rft.issue=13&rft_id=info:doi/10.1063%2F5.0251692&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon