Electrogastrogram-based detection of cybersickness with the application of wavelet transformation and machine learning: A case study
Introduction/purpose: The application of virtual reality (VR) and simulation technologies in military training offers cost-effective and versatile approach to training enhancement. However, prevalence of cybersickness (CS), characterized by symptoms such as nausea, limits their widespread use. Metho...
Saved in:
Published in | Vojnotehnički glasnik Vol. 73; no. 1; pp. 79 - 114 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
University of Defence in Belgrade
2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0042-8469 2217-4753 |
DOI | 10.5937/vojtehg73-51577 |
Cover
Loading…
Abstract | Introduction/purpose: The application of virtual reality (VR) and simulation technologies in military training offers cost-effective and versatile approach to training enhancement. However, prevalence of cybersickness (CS), characterized by symptoms such as nausea, limits their widespread use. Methods: This study introduces objective parameters for the detection of CS using three-channel electrogastrogram (EGG) recording from one specific subject and assesses the independence and linear correlation for appropriate channel selection. The paper employs a 3-level discrete wavelet transformation (DWT) on the chosen channel to identify key parameters indicative of gastric disturbances. Furthermore, the paper investigates recovery from CS following VR and examines the application of unsupervised machine learning (ML) for segmenting EGG into baseline and CS, utilizing significant features previously identified. Results and discussion: The analysis reveals no significant differences across EGG channels and moderate to low linear correlation between channel pairs. The feature selection demonstrates that the root mean square of the amplitude as well as the maximum and mean values of the power spectral density (PSD) calculated on all DWT coefficients, are effective for CS detection while the dominant EGG scale could not indicate CS for any level of decomposition. Furthermore, recovery signs appear approximately 8 minutes after the first VR experience supporting the idea of conducting multiple sessions the same day i.e., intensive VR-based training. Conclusions: The unsupervised ML shows potential in identifying CSaffected EGG signal segments with feature extraction based on DWT, offering a novel approach for enhancing the prevention of CS occurrence in VR-based military training and other VR-related environments. |
---|---|
AbstractList | Introduction/purpose: The application of virtual reality (VR) and simulation technologies in military training offers cost-effective and versatile approach to training enhancement. However, prevalence of cybersickness (CS), characterized by symptoms such as nausea, limits their widespread use. Methods: This study introduces objective parameters for the detection of CS using three-channel electrogastrogram (EGG) recording from one specific subject and assesses the independence and linear correlation for appropriate channel selection. The paper employs a 3-level discrete wavelet transformation (DWT) on the chosen channel to identify key parameters indicative of gastric disturbances. Furthermore, the paper investigates recovery from CS following VR and examines the application of unsupervised machine learning (ML) for segmenting EGG into baseline and CS, utilizing significant features previously identified. Results and discussion: The analysis reveals no significant differences across EGG channels and moderate to low linear correlation between channel pairs. The feature selection demonstrates that the root mean square of the amplitude as well as the maximum and mean values of the power spectral density (PSD) calculated on all DWT coefficients, are effective for CS detection while the dominant EGG scale could not indicate CS for any level of decomposition. Furthermore, recovery signs appear approximately 8 minutes after the first VR experience supporting the idea of conducting multiple sessions the same day i.e., intensive VR-based training. Conclusions: The unsupervised ML shows potential in identifying CSaffected EGG signal segments with feature extraction based on DWT, offering a novel approach for enhancing the prevention of CS occurrence in VR-based military training and other VR-related environments. |
Author | Tanasković, Ilija Popović, Nenad Sodnik, Jaka Tomažič, Sašo Miljković, Nadica |
Author_xml | – sequence: 1 givenname: Ilija orcidid: 0000-0002-6488-4074 surname: Tanasković fullname: Tanasković, Ilija – sequence: 2 givenname: Nenad orcidid: 0000-0002-5221-1446 surname: Popović fullname: Popović, Nenad – sequence: 3 givenname: Jaka orcidid: 0000-0002-8915-9493 surname: Sodnik fullname: Sodnik, Jaka – sequence: 4 givenname: Sašo orcidid: 0000-0002-2968-8879 surname: Tomažič fullname: Tomažič, Sašo – sequence: 5 givenname: Nadica orcidid: 0000-0002-3933-6076 surname: Miljković fullname: Miljković, Nadica |
BookMark | eNo9kUFPGzEQhS1EpaaUc6_-Awtej73e9IYQtEhIXNrzamyPE8PGjmwXlHt_eBdSuMxI742-0dP7wk5TTsTYt15c6DWYy-f82Gi7MdDpXhtzwlZS9qZTRsMpWwmhZDeqYf2ZndcarVDKDMqoccX-3szkWskbrK-z4K6zWMlzT20xYk48B-4OlkqN7ilRrfwlti1vW-K438_R4fvVCz7TTI23gqmGXHZHB5PnO3TbmIjPhCXFtPnOr7hb_vDa_vjDV_Yp4Fzp_P8-Y79vb35d_-zuH37cXV_dd24JYzqtxmAFBAAbeotg5ZJLC2PtIgXS3mpyfTBGKBhJIoxmJAFODwL7tXRwxu6OXJ_xcdqXuMNymDLG6U3IZTNhadHNNAE6UEEGIddOOfA4WOlhVE57I8cBFtblkeVKrrVQ-OD1YnrtZProZHrrBP4BcG6F_A |
Cites_doi | 10.1002/0470011815.b2a15177 10.1016/j.displa.2016.07.002 10.1111/j.1469-8986.2005.00349.x 10.1007/s10916-007-9069-9 10.1046/j.1365-2982.2003.00396.x 10.1038/s41592-020-0772-5 10.1145/333329.333344 10.1109/TASSP.1980.1163349 10.1109/2.391039 10.1007/978-3-319-61264-5_14 10.1109/TVCG.2024.3372066 10.1186/s40708-022-00172-6 10.1016/j.ijpsycho.2022.03.006 10.3390/s21020550 10.3390/s22228616 10.1109/VRW58643.2023.00068 10.1109/RBME.2018.2867555 10.16910/jemr.12.3.4 10.1515/bmt-2017-0218 10.1109/MCSE.2007.55 10.25080/Majora-92bf1922-00a 10.1117/12.2519085 10.1080/10739140500222907 10.1177/0018720811403736 10.1016/j.displa.2014.01.003 10.3390/s19143175 10.1016/0016-5085(87)90843-2 10.25080/Majora-92bf1922-011 10.1038/s41586-020-2649-2 10.1152/ajpgi.00125.2010 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.5937/vojtehg73-51577 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Military & Naval Science |
EISSN | 2217-4753 |
EndPage | 114 |
ExternalDocumentID | oai_doaj_org_article_3ac34f2f029c4c3da6b2d384c5d72863 10_5937_vojtehg73_51577 |
GroupedDBID | 2WC 5VS AAYXX ABDBF ACUHS ALMA_UNASSIGNED_HOLDINGS CITATION EIS EMI EOJEC ESX GROUPED_DOAJ IPNFZ KQ8 OBODZ OK1 RIG |
ID | FETCH-LOGICAL-c2177-548fb03f33bf1ba3b2042507bbf33fe5db5ec1f770438e2a3878e03c560a192c3 |
IEDL.DBID | DOA |
ISSN | 0042-8469 |
IngestDate | Wed Aug 27 01:16:11 EDT 2025 Tue Jul 01 03:32:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://creativecommons.org/licenses/BY/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2177-548fb03f33bf1ba3b2042507bbf33fe5db5ec1f770438e2a3878e03c560a192c3 |
ORCID | 0000-0002-2968-8879 0000-0002-3933-6076 0000-0002-5221-1446 0000-0002-8915-9493 0000-0002-6488-4074 |
OpenAccessLink | https://doaj.org/article/3ac34f2f029c4c3da6b2d384c5d72863 |
PageCount | 36 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3ac34f2f029c4c3da6b2d384c5d72863 crossref_primary_10_5937_vojtehg73_51577 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationTitle | Vojnotehnički glasnik |
PublicationYear | 2025 |
Publisher | University of Defence in Belgrade |
Publisher_xml | – name: University of Defence in Belgrade |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref48 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref47 doi: 10.1002/0470011815.b2a15177 – ident: ref1 – ident: ref39 – ident: ref3 – ident: ref5 doi: 10.1016/j.displa.2016.07.002 – ident: ref7 – ident: ref16 doi: 10.1111/j.1469-8986.2005.00349.x – ident: ref42 doi: 10.1007/s10916-007-9069-9 – ident: ref43 – ident: ref31 doi: 10.1046/j.1365-2982.2003.00396.x – ident: ref45 doi: 10.1038/s41592-020-0772-5 – ident: ref18 doi: 10.1145/333329.333344 – ident: ref24 – ident: ref22 – ident: ref25 – ident: ref12 doi: 10.1109/TASSP.1980.1163349 – ident: ref27 – ident: ref17 doi: 10.1109/2.391039 – ident: ref2 doi: 10.1007/978-3-319-61264-5_14 – ident: ref19 – ident: ref32 – ident: ref41 doi: 10.1109/TVCG.2024.3372066 – ident: ref48 doi: 10.1186/s40708-022-00172-6 – ident: ref15 doi: 10.1016/j.ijpsycho.2022.03.006 – ident: ref34 – ident: ref6 doi: 10.3390/s21020550 – ident: ref11 doi: 10.3390/s22228616 – ident: ref30 – ident: ref40 doi: 10.1109/VRW58643.2023.00068 – ident: ref28 doi: 10.1109/RBME.2018.2867555 – ident: ref46 doi: 10.16910/jemr.12.3.4 – ident: ref44 – ident: ref35 doi: 10.1515/bmt-2017-0218 – ident: ref9 doi: 10.1109/MCSE.2007.55 – ident: ref20 doi: 10.25080/Majora-92bf1922-00a – ident: ref4 doi: 10.1117/12.2519085 – ident: ref13 doi: 10.1080/10739140500222907 – ident: ref14 doi: 10.1177/0018720811403736 – ident: ref21 – ident: ref23 – ident: ref26 – ident: ref10 doi: 10.1016/j.displa.2014.01.003 – ident: ref36 doi: 10.3390/s19143175 – ident: ref38 doi: 10.1016/0016-5085(87)90843-2 – ident: ref37 doi: 10.25080/Majora-92bf1922-011 – ident: ref8 doi: 10.1038/s41586-020-2649-2 – ident: ref29 doi: 10.1152/ajpgi.00125.2010 – ident: ref33 |
SSID | ssib044764748 ssib053238873 ssib038075083 ssj0001586583 |
Score | 2.2786646 |
Snippet | Introduction/purpose: The application of virtual reality (VR) and simulation technologies in military training offers cost-effective and versatile approach to... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 79 |
SubjectTerms | cybersickness discrete wavelet transform electrogastrography (egg) feature selection machine learning military training power spectral density virtual reality |
Title | Electrogastrogram-based detection of cybersickness with the application of wavelet transformation and machine learning: A case study |
URI | https://doaj.org/article/3ac34f2f029c4c3da6b2d384c5d72863 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbEUy0v3YAQS9Q0duKEraBWFVI7Ualb5GcRiBSVAOrCxA_n7KQlTCwsGRwrUc7nfN_Z5-8IuehJLTIrRSCspQETHP-DTIuAmkxGYYYkwesWjCfJaMruZvGsUerL5YRV8sCV4bpUKMpsZMMoU0xRLRIZaZoyFWsepYnX-UTMawRT6ElORb2pc84YTxj_If4xRaRKa-CuzhOnCMV0fV4FQTmrdIBihO_u--KxNA9zTgNEf85_QVhD6d9D0nCX7NRcEvrVN-yRLVPsk_bY624vV3AJE4F-BPX0PSBfg6rmzVy8llVaVuBATIM2pc_IKmBhQa2kW0NTT-4nCG6dFpAkQmOn2_X6EK5iRQllg_jiHVFoePb5mQbqghTza-iDwveAl7I9JNPh4P52FNRVGAKF4QoPMKSxaFFLqbQ9KSgOIc7zkEuJTdbEWsZG9Sznbk_RRIKmPDUhVUilBNJHRY9Iq1gUpk1A9JDQcS5DF5FrawRPEwx3UmmRJjCpO-Rqbdj8pRLbyDFIcWOQb8Yg92PQITfO8JtuTiXbN6Dv5LXv5H_5zvF_POSEbEeuJrBfljklrXL5Zs6QqJTy3PskXsefg2-QZ-RE |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrogastrogram-based+detection+of+cybersickness+with+the+application+of+wavelet+transformation+and+machine+learning%3A+A+case+study&rft.jtitle=Vojnotehni%C4%8Dki+glasnik&rft.au=Tanaskovi%C4%87%2C+Ilija&rft.au=Popovi%C4%87%2C+Nenad&rft.au=Sodnik%2C+Jaka&rft.au=Toma%C5%BEi%C4%8D%2C+Sa%C5%A1o&rft.date=2025&rft.issn=0042-8469&rft.eissn=2217-4753&rft.volume=73&rft.issue=1&rft.spage=79&rft.epage=114&rft_id=info:doi/10.5937%2Fvojtehg73-51577&rft.externalDBID=n%2Fa&rft.externalDocID=10_5937_vojtehg73_51577 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0042-8469&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0042-8469&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0042-8469&client=summon |