Electrogastrogram-based detection of cybersickness with the application of wavelet transformation and machine learning: A case study

Introduction/purpose: The application of virtual reality (VR) and simulation technologies in military training offers cost-effective and versatile approach to training enhancement. However, prevalence of cybersickness (CS), characterized by symptoms such as nausea, limits their widespread use. Metho...

Full description

Saved in:
Bibliographic Details
Published inVojnotehnički glasnik Vol. 73; no. 1; pp. 79 - 114
Main Authors Tanasković, Ilija, Popović, Nenad, Sodnik, Jaka, Tomažič, Sašo, Miljković, Nadica
Format Journal Article
LanguageEnglish
Published University of Defence in Belgrade 2025
Subjects
Online AccessGet full text
ISSN0042-8469
2217-4753
DOI10.5937/vojtehg73-51577

Cover

Loading…
Abstract Introduction/purpose: The application of virtual reality (VR) and simulation technologies in military training offers cost-effective and versatile approach to training enhancement. However, prevalence of cybersickness (CS), characterized by symptoms such as nausea, limits their widespread use. Methods: This study introduces objective parameters for the detection of CS using three-channel electrogastrogram (EGG) recording from one specific subject and assesses the independence and linear correlation for appropriate channel selection. The paper employs a 3-level discrete wavelet transformation (DWT) on the chosen channel to identify key parameters indicative of gastric disturbances. Furthermore, the paper investigates recovery from CS following VR and examines the application of unsupervised machine learning (ML) for segmenting EGG into baseline and CS, utilizing significant features previously identified. Results and discussion: The analysis reveals no significant differences across EGG channels and moderate to low linear correlation between channel pairs. The feature selection demonstrates that the root mean square of the amplitude as well as the maximum and mean values of the power spectral density (PSD) calculated on all DWT coefficients, are effective for CS detection while the dominant EGG scale could not indicate CS for any level of decomposition. Furthermore, recovery signs appear approximately 8 minutes after the first VR experience supporting the idea of conducting multiple sessions the same day i.e., intensive VR-based training. Conclusions: The unsupervised ML shows potential in identifying CSaffected EGG signal segments with feature extraction based on DWT, offering a novel approach for enhancing the prevention of CS occurrence in VR-based military training and other VR-related environments.
AbstractList Introduction/purpose: The application of virtual reality (VR) and simulation technologies in military training offers cost-effective and versatile approach to training enhancement. However, prevalence of cybersickness (CS), characterized by symptoms such as nausea, limits their widespread use. Methods: This study introduces objective parameters for the detection of CS using three-channel electrogastrogram (EGG) recording from one specific subject and assesses the independence and linear correlation for appropriate channel selection. The paper employs a 3-level discrete wavelet transformation (DWT) on the chosen channel to identify key parameters indicative of gastric disturbances. Furthermore, the paper investigates recovery from CS following VR and examines the application of unsupervised machine learning (ML) for segmenting EGG into baseline and CS, utilizing significant features previously identified. Results and discussion: The analysis reveals no significant differences across EGG channels and moderate to low linear correlation between channel pairs. The feature selection demonstrates that the root mean square of the amplitude as well as the maximum and mean values of the power spectral density (PSD) calculated on all DWT coefficients, are effective for CS detection while the dominant EGG scale could not indicate CS for any level of decomposition. Furthermore, recovery signs appear approximately 8 minutes after the first VR experience supporting the idea of conducting multiple sessions the same day i.e., intensive VR-based training. Conclusions: The unsupervised ML shows potential in identifying CSaffected EGG signal segments with feature extraction based on DWT, offering a novel approach for enhancing the prevention of CS occurrence in VR-based military training and other VR-related environments.
Author Tanasković, Ilija
Popović, Nenad
Sodnik, Jaka
Tomažič, Sašo
Miljković, Nadica
Author_xml – sequence: 1
  givenname: Ilija
  orcidid: 0000-0002-6488-4074
  surname: Tanasković
  fullname: Tanasković, Ilija
– sequence: 2
  givenname: Nenad
  orcidid: 0000-0002-5221-1446
  surname: Popović
  fullname: Popović, Nenad
– sequence: 3
  givenname: Jaka
  orcidid: 0000-0002-8915-9493
  surname: Sodnik
  fullname: Sodnik, Jaka
– sequence: 4
  givenname: Sašo
  orcidid: 0000-0002-2968-8879
  surname: Tomažič
  fullname: Tomažič, Sašo
– sequence: 5
  givenname: Nadica
  orcidid: 0000-0002-3933-6076
  surname: Miljković
  fullname: Miljković, Nadica
BookMark eNo9kUFPGzEQhS1EpaaUc6_-Awtej73e9IYQtEhIXNrzamyPE8PGjmwXlHt_eBdSuMxI742-0dP7wk5TTsTYt15c6DWYy-f82Gi7MdDpXhtzwlZS9qZTRsMpWwmhZDeqYf2ZndcarVDKDMqoccX-3szkWskbrK-z4K6zWMlzT20xYk48B-4OlkqN7ilRrfwlti1vW-K438_R4fvVCz7TTI23gqmGXHZHB5PnO3TbmIjPhCXFtPnOr7hb_vDa_vjDV_Yp4Fzp_P8-Y79vb35d_-zuH37cXV_dd24JYzqtxmAFBAAbeotg5ZJLC2PtIgXS3mpyfTBGKBhJIoxmJAFODwL7tXRwxu6OXJ_xcdqXuMNymDLG6U3IZTNhadHNNAE6UEEGIddOOfA4WOlhVE57I8cBFtblkeVKrrVQ-OD1YnrtZProZHrrBP4BcG6F_A
Cites_doi 10.1002/0470011815.b2a15177
10.1016/j.displa.2016.07.002
10.1111/j.1469-8986.2005.00349.x
10.1007/s10916-007-9069-9
10.1046/j.1365-2982.2003.00396.x
10.1038/s41592-020-0772-5
10.1145/333329.333344
10.1109/TASSP.1980.1163349
10.1109/2.391039
10.1007/978-3-319-61264-5_14
10.1109/TVCG.2024.3372066
10.1186/s40708-022-00172-6
10.1016/j.ijpsycho.2022.03.006
10.3390/s21020550
10.3390/s22228616
10.1109/VRW58643.2023.00068
10.1109/RBME.2018.2867555
10.16910/jemr.12.3.4
10.1515/bmt-2017-0218
10.1109/MCSE.2007.55
10.25080/Majora-92bf1922-00a
10.1117/12.2519085
10.1080/10739140500222907
10.1177/0018720811403736
10.1016/j.displa.2014.01.003
10.3390/s19143175
10.1016/0016-5085(87)90843-2
10.25080/Majora-92bf1922-011
10.1038/s41586-020-2649-2
10.1152/ajpgi.00125.2010
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.5937/vojtehg73-51577
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Military & Naval Science
EISSN 2217-4753
EndPage 114
ExternalDocumentID oai_doaj_org_article_3ac34f2f029c4c3da6b2d384c5d72863
10_5937_vojtehg73_51577
GroupedDBID 2WC
5VS
AAYXX
ABDBF
ACUHS
ALMA_UNASSIGNED_HOLDINGS
CITATION
EIS
EMI
EOJEC
ESX
GROUPED_DOAJ
IPNFZ
KQ8
OBODZ
OK1
RIG
ID FETCH-LOGICAL-c2177-548fb03f33bf1ba3b2042507bbf33fe5db5ec1f770438e2a3878e03c560a192c3
IEDL.DBID DOA
ISSN 0042-8469
IngestDate Wed Aug 27 01:16:11 EDT 2025
Tue Jul 01 03:32:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/BY/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2177-548fb03f33bf1ba3b2042507bbf33fe5db5ec1f770438e2a3878e03c560a192c3
ORCID 0000-0002-2968-8879
0000-0002-3933-6076
0000-0002-5221-1446
0000-0002-8915-9493
0000-0002-6488-4074
OpenAccessLink https://doaj.org/article/3ac34f2f029c4c3da6b2d384c5d72863
PageCount 36
ParticipantIDs doaj_primary_oai_doaj_org_article_3ac34f2f029c4c3da6b2d384c5d72863
crossref_primary_10_5937_vojtehg73_51577
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle Vojnotehnički glasnik
PublicationYear 2025
Publisher University of Defence in Belgrade
Publisher_xml – name: University of Defence in Belgrade
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref48
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref47
  doi: 10.1002/0470011815.b2a15177
– ident: ref1
– ident: ref39
– ident: ref3
– ident: ref5
  doi: 10.1016/j.displa.2016.07.002
– ident: ref7
– ident: ref16
  doi: 10.1111/j.1469-8986.2005.00349.x
– ident: ref42
  doi: 10.1007/s10916-007-9069-9
– ident: ref43
– ident: ref31
  doi: 10.1046/j.1365-2982.2003.00396.x
– ident: ref45
  doi: 10.1038/s41592-020-0772-5
– ident: ref18
  doi: 10.1145/333329.333344
– ident: ref24
– ident: ref22
– ident: ref25
– ident: ref12
  doi: 10.1109/TASSP.1980.1163349
– ident: ref27
– ident: ref17
  doi: 10.1109/2.391039
– ident: ref2
  doi: 10.1007/978-3-319-61264-5_14
– ident: ref19
– ident: ref32
– ident: ref41
  doi: 10.1109/TVCG.2024.3372066
– ident: ref48
  doi: 10.1186/s40708-022-00172-6
– ident: ref15
  doi: 10.1016/j.ijpsycho.2022.03.006
– ident: ref34
– ident: ref6
  doi: 10.3390/s21020550
– ident: ref11
  doi: 10.3390/s22228616
– ident: ref30
– ident: ref40
  doi: 10.1109/VRW58643.2023.00068
– ident: ref28
  doi: 10.1109/RBME.2018.2867555
– ident: ref46
  doi: 10.16910/jemr.12.3.4
– ident: ref44
– ident: ref35
  doi: 10.1515/bmt-2017-0218
– ident: ref9
  doi: 10.1109/MCSE.2007.55
– ident: ref20
  doi: 10.25080/Majora-92bf1922-00a
– ident: ref4
  doi: 10.1117/12.2519085
– ident: ref13
  doi: 10.1080/10739140500222907
– ident: ref14
  doi: 10.1177/0018720811403736
– ident: ref21
– ident: ref23
– ident: ref26
– ident: ref10
  doi: 10.1016/j.displa.2014.01.003
– ident: ref36
  doi: 10.3390/s19143175
– ident: ref38
  doi: 10.1016/0016-5085(87)90843-2
– ident: ref37
  doi: 10.25080/Majora-92bf1922-011
– ident: ref8
  doi: 10.1038/s41586-020-2649-2
– ident: ref29
  doi: 10.1152/ajpgi.00125.2010
– ident: ref33
SSID ssib044764748
ssib053238873
ssib038075083
ssj0001586583
Score 2.2786646
Snippet Introduction/purpose: The application of virtual reality (VR) and simulation technologies in military training offers cost-effective and versatile approach to...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 79
SubjectTerms cybersickness
discrete wavelet transform
electrogastrography (egg)
feature selection
machine learning
military training
power spectral density
virtual reality
Title Electrogastrogram-based detection of cybersickness with the application of wavelet transformation and machine learning: A case study
URI https://doaj.org/article/3ac34f2f029c4c3da6b2d384c5d72863
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbEUy0v3YAQS9Q0duKEraBWFVI7Ualb5GcRiBSVAOrCxA_n7KQlTCwsGRwrUc7nfN_Z5-8IuehJLTIrRSCspQETHP-DTIuAmkxGYYYkwesWjCfJaMruZvGsUerL5YRV8sCV4bpUKMpsZMMoU0xRLRIZaZoyFWsepYnX-UTMawRT6ElORb2pc84YTxj_If4xRaRKa-CuzhOnCMV0fV4FQTmrdIBihO_u--KxNA9zTgNEf85_QVhD6d9D0nCX7NRcEvrVN-yRLVPsk_bY624vV3AJE4F-BPX0PSBfg6rmzVy8llVaVuBATIM2pc_IKmBhQa2kW0NTT-4nCG6dFpAkQmOn2_X6EK5iRQllg_jiHVFoePb5mQbqghTza-iDwveAl7I9JNPh4P52FNRVGAKF4QoPMKSxaFFLqbQ9KSgOIc7zkEuJTdbEWsZG9Sznbk_RRIKmPDUhVUilBNJHRY9Iq1gUpk1A9JDQcS5DF5FrawRPEwx3UmmRJjCpO-Rqbdj8pRLbyDFIcWOQb8Yg92PQITfO8JtuTiXbN6Dv5LXv5H_5zvF_POSEbEeuJrBfljklrXL5Zs6QqJTy3PskXsefg2-QZ-RE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrogastrogram-based+detection+of+cybersickness+with+the+application+of+wavelet+transformation+and+machine+learning%3A+A+case+study&rft.jtitle=Vojnotehni%C4%8Dki+glasnik&rft.au=Tanaskovi%C4%87%2C+Ilija&rft.au=Popovi%C4%87%2C+Nenad&rft.au=Sodnik%2C+Jaka&rft.au=Toma%C5%BEi%C4%8D%2C+Sa%C5%A1o&rft.date=2025&rft.issn=0042-8469&rft.eissn=2217-4753&rft.volume=73&rft.issue=1&rft.spage=79&rft.epage=114&rft_id=info:doi/10.5937%2Fvojtehg73-51577&rft.externalDBID=n%2Fa&rft.externalDocID=10_5937_vojtehg73_51577
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0042-8469&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0042-8469&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0042-8469&client=summon