Residues flanking the ARKme3T/S motif allow binding of diverse targets to the HP1 chromodomain: Insights from molecular dynamics simulations
The chromodomain (CD) of HP1 proteins is an established H3K9me3 reader that also binds H1, EHMT2 and H3K23 lysine-methylated targets. Structural experiments have provided atomistic pictures of its recognition of the conserved ARKme3S/T motif, but structural dynamics' contribution to the recogni...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1865; no. 1; p. 129771 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 1872-8006 1872-8006 |
DOI | 10.1016/j.bbagen.2020.129771 |
Cover
Loading…
Abstract | The chromodomain (CD) of HP1 proteins is an established H3K9me3 reader that also binds H1, EHMT2 and H3K23 lysine-methylated targets. Structural experiments have provided atomistic pictures of its recognition of the conserved ARKme3S/T motif, but structural dynamics' contribution to the recognition may have been masked by ensemble averaging.
We acquired ~350 μs of explicit solvent molecular dynamics (MD) simulations of the CD domain interacting with several peptides using the latest AMBER force fields.
The simulations reproduced the experimentally observed static binding patterns well but also revealed visible structural dynamics at the interfaces. While the buried K0me3 and A−2 target residues are tightly bound, several flanking sidechains sample diverse sites on the CD surface. Different amino acid positions of the targets can substitute for each other by forming mutually replaceable interactions with CD, thereby explaining the lack of strict requirement for cationic H3 target residues at the −3 position. The Q−4 residue of H3 targets further stabilizes the binding. The recognition pattern of the H3K23 ATKme3A motif, for which no structure is available, is predicted.
The CD reads a longer target segment than previously thought, ranging from positions −7 to +3. The CD anionic clamp can be neutralized not only by the −3 and −1 residues, but also by −7, −6, −5 and +3 residues.
Structural dynamics, not immediately apparent from the structural data, contribute to molecular recognition between the HP1 CD domain and its targets. Mutual replaceability of target residues increases target sequence flexibility.
•Atomistic simulations of HP1 chromodomain (CD) bound to diverse targets are reported.•The binding includes structural dynamics that is not visible from experimental data.•Residues as distant as −7 to +3 positions from Kme3 affect target binding to HP1 CD.•Amino acids in different positions can replace each other in the binding.•Recent AMBER force fields provide improved description of the CD-target binding. |
---|---|
AbstractList | The chromodomain (CD) of HP1 proteins is an established H3K9me3 reader that also binds H1, EHMT2 and H3K23 lysine-methylated targets. Structural experiments have provided atomistic pictures of its recognition of the conserved ARKme3S/T motif, but structural dynamics' contribution to the recognition may have been masked by ensemble averaging.
We acquired ~350 μs of explicit solvent molecular dynamics (MD) simulations of the CD domain interacting with several peptides using the latest AMBER force fields.
The simulations reproduced the experimentally observed static binding patterns well but also revealed visible structural dynamics at the interfaces. While the buried K0me3 and A−2 target residues are tightly bound, several flanking sidechains sample diverse sites on the CD surface. Different amino acid positions of the targets can substitute for each other by forming mutually replaceable interactions with CD, thereby explaining the lack of strict requirement for cationic H3 target residues at the −3 position. The Q−4 residue of H3 targets further stabilizes the binding. The recognition pattern of the H3K23 ATKme3A motif, for which no structure is available, is predicted.
The CD reads a longer target segment than previously thought, ranging from positions −7 to +3. The CD anionic clamp can be neutralized not only by the −3 and −1 residues, but also by −7, −6, −5 and +3 residues.
Structural dynamics, not immediately apparent from the structural data, contribute to molecular recognition between the HP1 CD domain and its targets. Mutual replaceability of target residues increases target sequence flexibility.
•Atomistic simulations of HP1 chromodomain (CD) bound to diverse targets are reported.•The binding includes structural dynamics that is not visible from experimental data.•Residues as distant as −7 to +3 positions from Kme3 affect target binding to HP1 CD.•Amino acids in different positions can replace each other in the binding.•Recent AMBER force fields provide improved description of the CD-target binding. The chromodomain (CD) of HP1 proteins is an established H3K9ᵐᵉ³ reader that also binds H1, EHMT2 and H3K23 lysine-methylated targets. Structural experiments have provided atomistic pictures of its recognition of the conserved ARKᵐᵉ³S/T motif, but structural dynamics' contribution to the recognition may have been masked by ensemble averaging.We acquired ~350 μs of explicit solvent molecular dynamics (MD) simulations of the CD domain interacting with several peptides using the latest AMBER force fields.The simulations reproduced the experimentally observed static binding patterns well but also revealed visible structural dynamics at the interfaces. While the buried K₀ᵐᵉ³ and A₋₂ target residues are tightly bound, several flanking sidechains sample diverse sites on the CD surface. Different amino acid positions of the targets can substitute for each other by forming mutually replaceable interactions with CD, thereby explaining the lack of strict requirement for cationic H3 target residues at the −3 position. The Q₋₄ residue of H3 targets further stabilizes the binding. The recognition pattern of the H3K23 ATKᵐᵉ³A motif, for which no structure is available, is predicted.The CD reads a longer target segment than previously thought, ranging from positions −7 to +3. The CD anionic clamp can be neutralized not only by the −3 and −1 residues, but also by −7, −6, −5 and +3 residues.Structural dynamics, not immediately apparent from the structural data, contribute to molecular recognition between the HP1 CD domain and its targets. Mutual replaceability of target residues increases target sequence flexibility. The chromodomain (CD) of HP1 proteins is an established H3K9me3 reader that also binds H1, EHMT2 and H3K23 lysine-methylated targets. Structural experiments have provided atomistic pictures of its recognition of the conserved ARKme3S/T motif, but structural dynamics' contribution to the recognition may have been masked by ensemble averaging.BACKGROUNDThe chromodomain (CD) of HP1 proteins is an established H3K9me3 reader that also binds H1, EHMT2 and H3K23 lysine-methylated targets. Structural experiments have provided atomistic pictures of its recognition of the conserved ARKme3S/T motif, but structural dynamics' contribution to the recognition may have been masked by ensemble averaging.We acquired ~350 μs of explicit solvent molecular dynamics (MD) simulations of the CD domain interacting with several peptides using the latest AMBER force fields.METHODSWe acquired ~350 μs of explicit solvent molecular dynamics (MD) simulations of the CD domain interacting with several peptides using the latest AMBER force fields.The simulations reproduced the experimentally observed static binding patterns well but also revealed visible structural dynamics at the interfaces. While the buried K0me3 and A-2 target residues are tightly bound, several flanking sidechains sample diverse sites on the CD surface. Different amino acid positions of the targets can substitute for each other by forming mutually replaceable interactions with CD, thereby explaining the lack of strict requirement for cationic H3 target residues at the -3 position. The Q-4 residue of H3 targets further stabilizes the binding. The recognition pattern of the H3K23 ATKme3A motif, for which no structure is available, is predicted.RESULTSThe simulations reproduced the experimentally observed static binding patterns well but also revealed visible structural dynamics at the interfaces. While the buried K0me3 and A-2 target residues are tightly bound, several flanking sidechains sample diverse sites on the CD surface. Different amino acid positions of the targets can substitute for each other by forming mutually replaceable interactions with CD, thereby explaining the lack of strict requirement for cationic H3 target residues at the -3 position. The Q-4 residue of H3 targets further stabilizes the binding. The recognition pattern of the H3K23 ATKme3A motif, for which no structure is available, is predicted.The CD reads a longer target segment than previously thought, ranging from positions -7 to +3. The CD anionic clamp can be neutralized not only by the -3 and -1 residues, but also by -7, -6, -5 and +3 residues.CONCLUSIONSThe CD reads a longer target segment than previously thought, ranging from positions -7 to +3. The CD anionic clamp can be neutralized not only by the -3 and -1 residues, but also by -7, -6, -5 and +3 residues.Structural dynamics, not immediately apparent from the structural data, contribute to molecular recognition between the HP1 CD domain and its targets. Mutual replaceability of target residues increases target sequence flexibility.GENERAL SIGNIFICANCEStructural dynamics, not immediately apparent from the structural data, contribute to molecular recognition between the HP1 CD domain and its targets. Mutual replaceability of target residues increases target sequence flexibility. |
ArticleNumber | 129771 |
Author | Krepl, Miroslav Šponer, Jiří Pokorná, Pavlína |
Author_xml | – sequence: 1 givenname: Pavlína surname: Pokorná fullname: Pokorná, Pavlína email: pokorna.pavlina@ibp.cz organization: Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic – sequence: 2 givenname: Miroslav surname: Krepl fullname: Krepl, Miroslav organization: Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic – sequence: 3 givenname: Jiří surname: Šponer fullname: Šponer, Jiří email: sponer@ncbr.muni.cz organization: Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic |
BookMark | eNqFkc9O3DAYxC0EEgvtG3DwsZcsdmI7WQ6VEGoLKlIroGfLfz7veklsanupeIc-dL2kpx6KL5ZGvxnpmzlBhyEGQOiMkiUlVJxvl1qrNYRlS9oqtau-pwdoQYe-bQZCxCFakI6whlHBj9FJzltSH1_xBfp9B9nbHWTsRhUefVjjsgF8efd1gu7h_B5PsXiH1TjGX1j7YPdEdNj6Z0gZcFFpDSXjEl99198pNpsUp2jjpHy4wDch-_WmEq6qNW0EsxtVwvYlqMmbjLOfqlB8DPkdOnJqzPD-73-Kfnz-9HB13dx--3JzdXnbmJb2tLGMsKE3ihrNrWZKMOUUB6GJ0z1lvVO6tT3TK-qEFQw6StxAFOPGCdP2XXeKPsy5Tyn-rLcXOflsYKwNQNxl2XJOV7Wfjr6NMj6QTnAuKnoxoybFnBM4aXx5Pawk5UdJidyvJbdyXkvu15LzWtXM_jE_JT-p9PKW7eNsg1rXs4cks_EQDFifwBRpo_9_wB89xrRC |
CitedBy_id | crossref_primary_10_1093_chromsci_bmae036 crossref_primary_10_1021_jacs_3c06481 crossref_primary_10_1515_biol_2022_0678 |
Cites_doi | 10.1186/s13072-017-0117-5 10.1016/j.sbi.2016.12.004 10.1021/acs.jctc.9b00591 10.1021/jp301100g 10.1007/s004120050372 10.1016/j.bbrc.2013.04.020 10.1016/j.tig.2014.01.002 10.1007/s00412-009-0252-2 10.1093/nar/gkm726 10.1093/jb/mvz004 10.1016/j.bpj.2018.03.025 10.1016/j.bpj.2009.04.061 10.1016/j.molcel.2013.04.025 10.1002/prot.21123 10.1007/s12551-020-00663-y 10.1007/s00726-009-0371-3 10.1021/acs.biochem.5b00024 10.1021/acs.jctc.9b00434 10.1038/35065132 10.1021/acs.jctc.6b00300 10.1128/MCB.24.8.3157-3167.2004 10.1021/ct5010406 10.1021/ct400341p 10.1016/j.bpj.2012.02.024 10.1093/emboj/cdg306 10.1016/j.chembiol.2020.05.007 10.1002/bip.360221211 10.1074/mcp.M900160-MCP200 10.1021/acs.jctc.0c00080 10.1371/journal.pone.0008570 10.1021/acs.jctc.8b01123 10.1038/nsmb.2436 10.1021/acs.jctc.5b00255 10.1074/jbc.M110.191411 10.1021/ja00124a002 10.1074/jbc.C500229200 10.1093/embo-reports/kvf194 10.1002/cbic.201000598 10.1038/nature06875 10.1021/acs.jctc.6b00567 10.1093/nar/gkp166 10.1021/acs.jctc.5b00444 10.1038/nature04254 10.1186/s13072-018-0251-8 10.1016/j.sbi.2017.01.006 10.1038/nmeth.4067 10.1074/jbc.M116.768374 10.1074/jbc.M111.337204 10.1002/prot.22972 10.1073/pnas.162371699 10.1093/nar/gkv1240 10.1016/j.tibs.2013.08.002 10.1063/1.445869 10.1016/0263-7855(96)00018-5 10.1016/j.str.2010.06.012 10.1021/acs.jctc.8b00955 10.1021/ct300400x 10.1038/35065138 10.1016/j.cpc.2012.09.022 10.1007/s00894-005-0028-4 10.1126/science.1078572 10.1021/jz501780a 10.1016/j.bpj.2012.03.030 10.1101/gad.1110503 10.1016/j.sbi.2016.11.018 10.1021/ct500918t 10.1016/0021-9991(77)90098-5 10.1021/ct300613v 10.1021/acs.chemrev.7b00427 10.1038/nature04219 10.1021/jacs.7b09223 10.1038/nsmb.1995 10.1016/j.bbagrm.2014.02.007 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F 10.1016/S0959-437X(00)00058-7 10.1371/journal.pone.0035376 10.1038/nature08839 10.1093/jb/mvy117 10.1016/j.str.2016.07.018 10.1038/nrm1355 10.1016/j.sbi.2018.02.002 10.1016/j.tcb.2014.01.002 10.1021/ct400314y 10.1093/nar/gkw438 10.1016/j.abb.2019.01.035 10.1016/j.cplett.2003.12.039 10.1126/science.1069473 10.1038/srep22527 10.1101/gad.269603 10.1021/ct5008108 10.1021/jp901540t |
ContentType | Journal Article |
Copyright | 2020 Copyright © 2020. Published by Elsevier B.V. |
Copyright_xml | – notice: 2020 – notice: Copyright © 2020. Published by Elsevier B.V. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2020.129771 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 10_1016_j_bbagen_2020_129771 S0304416520302828 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c2171-d40487ca1cb5db4a64afa5e6b0fb7147fab2d74b91f6d64e310f80a45cf6c2733 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Thu Jul 10 23:23:17 EDT 2025 Fri Jul 11 01:59:07 EDT 2025 Tue Jul 01 00:22:14 EDT 2025 Thu Apr 24 22:57:49 EDT 2025 Fri Feb 23 02:45:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | CD Protein-protein interaction Peptide recognition CSD Chromodomain MD MD simulations HP1 PTM |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2171-d40487ca1cb5db4a64afa5e6b0fb7147fab2d74b91f6d64e310f80a45cf6c2733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2458036556 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2551905931 proquest_miscellaneous_2458036556 crossref_citationtrail_10_1016_j_bbagen_2020_129771 crossref_primary_10_1016_j_bbagen_2020_129771 elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129771 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Meehan, Kao, Pennings (bb0110) 2003; 22 Ryckaert, Ciccotti, Berendsen (bb0315) 1977; 23 Musselman, Lalonde, Cote, Kutateladze (bb0395) 2012; 19 Jacobs, Khorasanizadeh (bb0365) 2002; 295 Shimojo, Kawaguchi, Oda, Hashiguchi, Omori, Moritsugu, Kidera, Hiragami-Hamada, Nakayama, Sato (bb0125) 2016; 6 Best, Mittal (bb0460) 2011; 79 Chin, Esteve, Pradhan, Benner, Patnaik, Carey, Pradhan (bb0065) 2007; 35 Mendez, Kim, Chruszcz, Stephens, Minor, Khorasanizadeh, Elgin (bb0090) 2011; 12 Hopkins, Le Grand, Walker, Roitberg (bb0320) 2015; 11 Dong, Liu, Lyu, Beldar, Lamb, Tempel, Li, Li, James, Qin (bb0380) 2020; 27 Ayoub, Jeyasekharan, Bernal, Venkitaraman (bb0340) 2008; 453 Maison, Almouzni (bb0100) 2004; 5 Huang, Su, Kao, Hsieh, Jhong, Cheng, Huang, Lee (bb0030) 2016; 44 Machado, Dans, Pantano (bb0165) 2010; 38 Nishibuchi, Machida, Nakagawa, Yoshimura, Hiragami-Hamada, Abe, Kurumizaka, Tagami, Nakayama (bb0385) 2019; 165 Matthes, de Groot (bb0465) 2009; 97 Steinbrecher, Latzer, Case (bb0255) 2012; 8 Allison (bb0155) 2017; 43 Horakova, Bartova, Galiova, Uhlirova, Matula, Kozubek (bb0095) 2010; 119 Fischle, Wang, Jacobs, Kim, Allis, Khorasanizadeh (bb0190) 2003; 17 Best, Zhu, Shim, Lopes, Mittal, Feig, MacKerell (bb0270) 2012; 8 Bannister, Zegerman, Partridge, Miska, Thomas, Allshire, Kouzarides (bb0050) 2001; 410 Maier, Martinez, Kasavajhala, Wickstrom, Hauser, Simmerling (bb0205) 2015; 11 Pokorna, Krepl, Bartova, Sponer (bb0200) 2019; 15 Hiragami-Hamada, Nakayama (bb0360) 2019; 165 Min, Zhang, Xu (bb0445) 2003; 17 Izadi, Anandakrishnan, Onufriev (bb0240) 2014; 5 Ruan, Ouyang, Amaya, Ravichandran, Loppnau, Min, Zang (bb0140) 2012; 7 Sanchez, Zhou (bb0400) 2011; 36 Best, Hummer (bb5005) 2009; 113 Nerenberg, Head-Gordon (bb0430) 2018; 49 Collins, Greer, Coleman, Sweatt (bb0425) 2019; 12 Bonomi, Heller, Camilloni, Vendruscolo (bb0160) 2017; 42 Wang, Marszalek (bb0450) 2020; 16 Leroy, Weston, Zee, Young, Plazas-Mayorca, Garcia (bb0035) 2009; 8 Liu, Qin, Lei, Tempel, Zhang, Loppnau, Li, Min (bb0120) 2017; 292 Fischle, Tseng, Dormann, Ueberheide, Garcia, Shabanowitz, Hunt, Funabiki, Allis (bb0175) 2005; 438 Hornak, Abel, Okur, Strockbine, Roitberg, Simmerling (bb0210) 2006; 65 Baril, Koenig, Krone, Albanese, He, Lee, Houk, Waters, Brustad (bb0440) 2017; 139 Kuhrova, Best, Bottaro, Bussi, Sponer, Otyepka, Banas (bb0250) 2016; 12 Lee, Li, Shin, Yi, Bang, Park, Han, Kwon (bb0080) 2013; 434 Cornell, Cieplak, Bayly, Gould, Merz, Ferguson, Spellmeyer, Fox, Caldwell, Kollman (bb0220) 1995; 117 Eisert, Kennedy, Waters (bb0375) 2015; 54 He, Umehara, Saito, Harada, Watanabe, Yabuki, Kigawa, Takahashi, Kuwasako, Tsuda (bb0405) 2010; 18 Cheutin, Gorski, May, Singh, Misteli (bb0130) 2004; 24 Aqvist, Wennerstrom, Nervall, Bjelic, Brandsdal (bb0310) 2004; 384 Humphrey, Dalke, Schulten (bb0330) 1996; 14 Wang, Cieplak, Kollman (bb0215) 2000; 21 Krepl, Havrila, Stadlbauer, Banas, Otyepka, Pasulka, Stefl, Sponer (bb0290) 2015; 11 Minc, Allory, Worman, Courvalin, Buendia (bb0040) 1999; 108 Cheutin, McNairn, Jenuwein, Gilbert, Singh, Misteli (bb0135) 2003; 299 Eissenberg, Elgin (bb0010) 2014; 30 Homeyer, Horn, Lanig, Sticht (bb0260) 2006; 12 Lindorff-Larsen, Piana, Palmo, Maragakis, Klepeis, Dror, Shaw (bb5000) 2010; 78 Lu, Wang (bb0390) 2013; 38 Best (bb0435) 2017; 42 Sponer, Bussi, Krepl, Banas, Bottaro, Cunha, Gil-Ley, Pinamonti, Poblete, Jurecka (bb0150) 2018; 118 Rose, Klose (bb0045) 2014; 1839 Hirota, Lipp, Toh, Peters (bb0170) 2005; 438 Krepl, Cléry, Blatter, Allain, Šponer (bb0295) 2016; 44 Eissenberg, Elgin (bb0025) 2000; 10 Liu, Galka, Mori, Liu, Lin, Wei, Pittock, Voss, Dhami, Li (bb0075) 2013; 50 Bergonzo, Cheatham (bb0355) 2015; 11 Papamokos, Tziatzos, Papageorgiou, Georgatos, Politou, Kaxiras (bb0180) 2012; 102 Soniat, Chook (bb0415) 2016; 24 Li, Song, Merz (bb0230) 2015; 11 Kaustov, Ouyang, Amaya, Lemak, Nady, Duan, Wasney, Li, Vedadi, Schapira (bb0145) 2011; 286 Case, Ben-Shalom, Brozell, Cerutti, Cheatham (bb0285) 2018 Wu, Min, Lunin, Antoshenko, Dombrovski, Zeng, Allali-Hassani, Campagna-Slater, Vedadi, Arrowsmith (bb0370) 2010; 5 Muchardt, Guilleme, Seeler, Trouche, Dejean, Yaniv (bb0115) 2002; 3 Huang, Rauscher, Nawrocki, Ran, Feig, de Groot, Grubmuller, MacKerell (bb0265) 2017; 14 Le Grand, Götz, Walker (bb0300) 2013; 184 Lachner, O'Carroll, Rea, Mechtler, Jenuwein (bb0055) 2001; 410 Tian, Kasavajhala, Belfon, Raguette, Huang, Migues, Bickel, Wang, Pincay, Wu (bb0235) 2020; 16 Metzger, Imhof, Patel, Kahl, Hoffmeyer, Friedrichs, Muller, Greschik, Kirfel, Ji (bb0420) 2010; 464 Daujat, Zeissler, Waldmann, Happel, Schneider (bb0060) 2005; 280 Takemura, Kitao (bb0280) 2012; 116 Pantoja-Uceda, Neira, Contreras, Manton, Welch, Rizzuti (bb0350) 2019; 664 Saint-Andre, Batsche, Rachez, Muchardt (bb0105) 2011; 18 Debiec, Cerutti, Baker, Gronenborn, Case, Chong (bb0275) 2016; 12 Watanabe, Mishima, Shimizu, Suetake, Takada (bb0185) 2018; 114 Shabane, Izadi, Onufriev (bb0345) 2019; 15 Kuhrova, Mlynsky, Zgarbova, Krepl, Bussi, Best, Otyepka, Sponer, Banas (bb0245) 2019; 15 Salomon-Ferrer, Gotz, Poole, Le Grand, Walker (bb0305) 2013; 9 Richart, Brunner, Stott, Murzina, Thomas (bb0085) 2012; 287 Kumar, Kono (bb0005) 2020; 12 Kabsch, Sander (bb0335) 1983; 22 Jorgensen, Chandrasekhar, Madura, Impey, Klein (bb0225) 1983; 79 Canzio, Larson, Narlikar (bb0015) 2014; 24 Chignola, Gaetani, Rebane, Org, Mollica, Zucchelli, Spitaleri, Mannella, Peterson, Musco (bb0410) 2009; 37 Roe, Cheatham (bb0325) 2013; 9 Best, de Sancho, Mittal (bb0455) 2012; 102 Li, Kirschmann, Wallrath (bb0020) 2002; 99 Shanle, Shinsky, Bridgers, Bae, Sagum, Krajewski, Rothbart, Bedford, Strahl (bb0070) 2017; 10 The PyMOL Molecular Graphics System. Version 1.8 Schrödinger, LLC. Watanabe (10.1016/j.bbagen.2020.129771_bb0185) 2018; 114 Mendez (10.1016/j.bbagen.2020.129771_bb0090) 2011; 12 Maison (10.1016/j.bbagen.2020.129771_bb0100) 2004; 5 Humphrey (10.1016/j.bbagen.2020.129771_bb0330) 1996; 14 Liu (10.1016/j.bbagen.2020.129771_bb0075) 2013; 50 Sponer (10.1016/j.bbagen.2020.129771_bb0150) 2018; 118 Kumar (10.1016/j.bbagen.2020.129771_bb0005) 2020; 12 Shanle (10.1016/j.bbagen.2020.129771_bb0070) 2017; 10 Roe (10.1016/j.bbagen.2020.129771_bb0325) 2013; 9 Krepl (10.1016/j.bbagen.2020.129771_bb0295) 2016; 44 Min (10.1016/j.bbagen.2020.129771_bb0445) 2003; 17 Eissenberg (10.1016/j.bbagen.2020.129771_bb0025) 2000; 10 Kuhrova (10.1016/j.bbagen.2020.129771_bb0250) 2016; 12 Collins (10.1016/j.bbagen.2020.129771_bb0425) 2019; 12 Nerenberg (10.1016/j.bbagen.2020.129771_bb0430) 2018; 49 Jacobs (10.1016/j.bbagen.2020.129771_bb0365) 2002; 295 Homeyer (10.1016/j.bbagen.2020.129771_bb0260) 2006; 12 Pantoja-Uceda (10.1016/j.bbagen.2020.129771_bb0350) 2019; 664 Canzio (10.1016/j.bbagen.2020.129771_bb0015) 2014; 24 Takemura (10.1016/j.bbagen.2020.129771_bb0280) 2012; 116 Sanchez (10.1016/j.bbagen.2020.129771_bb0400) 2011; 36 Baril (10.1016/j.bbagen.2020.129771_bb0440) 2017; 139 Cornell (10.1016/j.bbagen.2020.129771_bb0220) 1995; 117 Wang (10.1016/j.bbagen.2020.129771_bb0215) 2000; 21 Best (10.1016/j.bbagen.2020.129771_bb0455) 2012; 102 Saint-Andre (10.1016/j.bbagen.2020.129771_bb0105) 2011; 18 Dong (10.1016/j.bbagen.2020.129771_bb0380) 2020; 27 Huang (10.1016/j.bbagen.2020.129771_bb0265) 2017; 14 Steinbrecher (10.1016/j.bbagen.2020.129771_bb0255) 2012; 8 Ryckaert (10.1016/j.bbagen.2020.129771_bb0315) 1977; 23 Papamokos (10.1016/j.bbagen.2020.129771_bb0180) 2012; 102 Eissenberg (10.1016/j.bbagen.2020.129771_bb0010) 2014; 30 Ruan (10.1016/j.bbagen.2020.129771_bb0140) 2012; 7 Best (10.1016/j.bbagen.2020.129771_bb0270) 2012; 8 Kaustov (10.1016/j.bbagen.2020.129771_bb0145) 2011; 286 Hirota (10.1016/j.bbagen.2020.129771_bb0170) 2005; 438 Shabane (10.1016/j.bbagen.2020.129771_bb0345) 2019; 15 Minc (10.1016/j.bbagen.2020.129771_bb0040) 1999; 108 Hopkins (10.1016/j.bbagen.2020.129771_bb0320) 2015; 11 Meehan (10.1016/j.bbagen.2020.129771_bb0110) 2003; 22 Leroy (10.1016/j.bbagen.2020.129771_bb0035) 2009; 8 Rose (10.1016/j.bbagen.2020.129771_bb0045) 2014; 1839 Shimojo (10.1016/j.bbagen.2020.129771_bb0125) 2016; 6 Krepl (10.1016/j.bbagen.2020.129771_bb0290) 2015; 11 Wang (10.1016/j.bbagen.2020.129771_bb0450) 2020; 16 Tian (10.1016/j.bbagen.2020.129771_bb0235) 2020; 16 Bonomi (10.1016/j.bbagen.2020.129771_bb0160) 2017; 42 Fischle (10.1016/j.bbagen.2020.129771_bb0175) 2005; 438 Liu (10.1016/j.bbagen.2020.129771_bb0120) 2017; 292 Wu (10.1016/j.bbagen.2020.129771_bb0370) 2010; 5 Bannister (10.1016/j.bbagen.2020.129771_bb0050) 2001; 410 Hornak (10.1016/j.bbagen.2020.129771_bb0210) 2006; 65 Richart (10.1016/j.bbagen.2020.129771_bb0085) 2012; 287 Izadi (10.1016/j.bbagen.2020.129771_bb0240) 2014; 5 Eisert (10.1016/j.bbagen.2020.129771_bb0375) 2015; 54 Le Grand (10.1016/j.bbagen.2020.129771_bb0300) 2013; 184 Bergonzo (10.1016/j.bbagen.2020.129771_bb0355) 2015; 11 Jorgensen (10.1016/j.bbagen.2020.129771_bb0225) 1983; 79 Case (10.1016/j.bbagen.2020.129771_bb0285) 2018 Salomon-Ferrer (10.1016/j.bbagen.2020.129771_bb0305) 2013; 9 Hiragami-Hamada (10.1016/j.bbagen.2020.129771_bb0360) 2019; 165 Metzger (10.1016/j.bbagen.2020.129771_bb0420) 2010; 464 Kabsch (10.1016/j.bbagen.2020.129771_bb0335) 1983; 22 Debiec (10.1016/j.bbagen.2020.129771_bb0275) 2016; 12 Ayoub (10.1016/j.bbagen.2020.129771_bb0340) 2008; 453 10.1016/j.bbagen.2020.129771_bb0195 Matthes (10.1016/j.bbagen.2020.129771_bb0465) 2009; 97 Li (10.1016/j.bbagen.2020.129771_bb0020) 2002; 99 Fischle (10.1016/j.bbagen.2020.129771_bb0190) 2003; 17 Horakova (10.1016/j.bbagen.2020.129771_bb0095) 2010; 119 Muchardt (10.1016/j.bbagen.2020.129771_bb0115) 2002; 3 He (10.1016/j.bbagen.2020.129771_bb0405) 2010; 18 Best (10.1016/j.bbagen.2020.129771_bb5005) 2009; 113 Aqvist (10.1016/j.bbagen.2020.129771_bb0310) 2004; 384 Chignola (10.1016/j.bbagen.2020.129771_bb0410) 2009; 37 Machado (10.1016/j.bbagen.2020.129771_bb0165) 2010; 38 Maier (10.1016/j.bbagen.2020.129771_bb0205) 2015; 11 Lu (10.1016/j.bbagen.2020.129771_bb0390) 2013; 38 Chin (10.1016/j.bbagen.2020.129771_bb0065) 2007; 35 Kuhrova (10.1016/j.bbagen.2020.129771_bb0245) 2019; 15 Cheutin (10.1016/j.bbagen.2020.129771_bb0135) 2003; 299 Daujat (10.1016/j.bbagen.2020.129771_bb0060) 2005; 280 Nishibuchi (10.1016/j.bbagen.2020.129771_bb0385) 2019; 165 Musselman (10.1016/j.bbagen.2020.129771_bb0395) 2012; 19 Lindorff-Larsen (10.1016/j.bbagen.2020.129771_bb5000) 2010; 78 Pokorna (10.1016/j.bbagen.2020.129771_bb0200) 2019; 15 Li (10.1016/j.bbagen.2020.129771_bb0230) 2015; 11 Lachner (10.1016/j.bbagen.2020.129771_bb0055) 2001; 410 Best (10.1016/j.bbagen.2020.129771_bb0435) 2017; 42 Huang (10.1016/j.bbagen.2020.129771_bb0030) 2016; 44 Best (10.1016/j.bbagen.2020.129771_bb0460) 2011; 79 Cheutin (10.1016/j.bbagen.2020.129771_bb0130) 2004; 24 Allison (10.1016/j.bbagen.2020.129771_bb0155) 2017; 43 Lee (10.1016/j.bbagen.2020.129771_bb0080) 2013; 434 Soniat (10.1016/j.bbagen.2020.129771_bb0415) 2016; 24 |
References_xml | – volume: 15 start-page: 3288 year: 2019 end-page: 3305 ident: bb0245 article-title: Improving the performance of the Amber RNA force field by tuning the hydrogen-bonding interactions publication-title: J. Chem. Theory Comput. – volume: 438 start-page: 1176 year: 2005 end-page: 1180 ident: bb0170 article-title: Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin publication-title: Nature – volume: 97 start-page: 599 year: 2009 end-page: 608 ident: bb0465 article-title: Secondary structure propensities in peptide folding simulations: a systematic comparison of molecular mechanics interaction schemes publication-title: Biophys. J. – volume: 38 start-page: 1571 year: 2010 end-page: 1581 ident: bb0165 article-title: Isoform-specific determinants in the HP1 binding to histone 3: insights from molecular simulations publication-title: Amino Acids – volume: 24 start-page: 1802 year: 2016 end-page: 1809 ident: bb0415 article-title: Karyopherin-beta2 recognition of a PY-NLS variant that lacks the proline-tyrosine motif publication-title: Structure – volume: 464 start-page: 792 year: 2010 end-page: 796 ident: bb0420 article-title: Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4 publication-title: Nature – volume: 10 start-page: 12 year: 2017 ident: bb0070 article-title: Histone peptide microarray screen of chromo and Tudor domains defines new histone lysine methylation interactions publication-title: Epigenet. Chromatin – volume: 19 start-page: 1218 year: 2012 end-page: 1227 ident: bb0395 article-title: Perceiving the epigenetic landscape through histone readers publication-title: Nat. Struct. Mol. Biol. – volume: 286 start-page: 521 year: 2011 end-page: 529 ident: bb0145 article-title: Recognition and specificity determinants of the human cbx chromodomains publication-title: J. Biol. Chem. – volume: 54 start-page: 2314 year: 2015 end-page: 2322 ident: bb0375 article-title: Investigation of the beta-sheet interactions between dHP1 chromodomain and histone 3 publication-title: Biochemistry – volume: 99 start-page: 16462 year: 2002 end-page: 16469 ident: bb0020 article-title: Does heterochromatin protein 1 always follow code? publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 24 start-page: 3157 year: 2004 end-page: 3167 ident: bb0130 article-title: In vivo dynamics of Swi6 in yeast: evidence for a stochastic model of heterochromatin publication-title: Mol. Cell. Biol. – volume: 3 start-page: 975 year: 2002 end-page: 981 ident: bb0115 article-title: Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1 alpha publication-title: EMBO Rep. – volume: 12 start-page: 7 year: 2019 ident: bb0425 article-title: Histone H3 lysine K4 methylation and its role in learning and memory publication-title: Epigenet. Chromatin – volume: 17 start-page: 1823 year: 2003 end-page: 1828 ident: bb0445 article-title: Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27 publication-title: Genes Dev. – volume: 42 start-page: 106 year: 2017 end-page: 116 ident: bb0160 article-title: Principles of protein structural ensemble determination publication-title: Curr. Opin. Struc. Biol. – volume: 44 start-page: D435 year: 2016 end-page: D446 ident: bb0030 article-title: 10-year anniversary of a resource for post-translational modification of proteins publication-title: Nucleic Acids Res. – volume: 43 start-page: 79 year: 2017 end-page: 87 ident: bb0155 article-title: Using simulation to interpret experimental data in terms of protein conformational ensembles publication-title: Curr. Opin. Struc. Biol. – volume: 384 start-page: 288 year: 2004 end-page: 294 ident: bb0310 article-title: Molecular dynamics simulations of water and biomolecules with a Monte Carlo constant pressure algorithm publication-title: Chem. Phys. Lett. – volume: 37 start-page: 2951 year: 2009 end-page: 2961 ident: bb0410 article-title: The solution structure of the first PHD finger of autoimmune regulator in complex with non-modified histone H3 tail reveals the antagonistic role of H3R2 methylation publication-title: Nucleic Acids Res – volume: 113 start-page: 9004 year: 2009 end-page: 9015 ident: bb5005 article-title: Optimized Molecular Dynamics Force Fields Applied to the Helix-Coil Transition of Polypeptides publication-title: J. Phys. Chem. B – volume: 287 start-page: 18730 year: 2012 end-page: 18737 ident: bb0085 article-title: Characterization of chromoshadow domain-mediated binding of heterochromatin protein 1 alpha (HP1 alpha) to histone H3 publication-title: J. Biol. Chem. – volume: 42 start-page: 147 year: 2017 end-page: 154 ident: bb0435 article-title: Computational and theoretical advances in studies of intrinsically disordered proteins publication-title: Curr. Opin. Struct. Biol. – volume: 11 start-page: 1220 year: 2015 end-page: 1243 ident: bb0290 article-title: Can we execute stable microsecond-scale atomistic simulations of protein-RNA complexes? publication-title: J. Chem. Theory Comput. – volume: 15 start-page: 5659 year: 2019 end-page: 5673 ident: bb0200 article-title: Role of fine structural dynamics in recognition of histone H3 by HP1 gamma(CSD) dimer and ability of force fields to describe their interaction network publication-title: J. Chem. Theory Comput. – volume: 292 start-page: 5655 year: 2017 end-page: 5664 ident: bb0120 article-title: Peptide recognition by heterochromatin protein 1 (HP1) chromoshadow domains revisited: plasticity in the pseudosymmetric histone binding site of human HP1 publication-title: J. Biol. Chem. – volume: 438 start-page: 1116 year: 2005 end-page: 1122 ident: bb0175 article-title: Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation publication-title: Nature – volume: 5 start-page: 3863 year: 2014 end-page: 3871 ident: bb0240 article-title: Building water models: a different approach publication-title: J. Phys. Chem. Lett. – volume: 12 start-page: 281 year: 2006 end-page: 289 ident: bb0260 article-title: AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine publication-title: J. Mol. Model. – year: 2018 ident: bb0285 article-title: AMBER – volume: 114 start-page: 2336 year: 2018 end-page: 2351 ident: bb0185 article-title: Interactions of HP1 bound to H3K9me3 dinucleosome by molecular simulations and biochemical assays publication-title: Biophys. J. – volume: 410 start-page: 120 year: 2001 end-page: 124 ident: bb0050 article-title: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain publication-title: Nature – volume: 14 start-page: 33 year: 1996 end-page: 38 ident: bb0330 article-title: VMD: visual molecular dynamics publication-title: J. Mol. Graphics Modell. – volume: 5 start-page: e8570 year: 2010 ident: bb0370 article-title: Structural biology of human H3K9 methyltransferases publication-title: PLoS One – volume: 6 start-page: 22527 year: 2016 ident: bb0125 article-title: Extended string-like binding of the phosphorylated HP1 alpha N-terminal tail to the lysine 9-methylated histone H3 tail publication-title: Sci. Rep. – volume: 30 start-page: 103 year: 2014 end-page: 110 ident: bb0010 article-title: HP1a: a structural chromosomal protein regulating transcription publication-title: Trends Genet – volume: 280 start-page: 38090 year: 2005 end-page: 38095 ident: bb0060 article-title: HP1 binds specifically to Lys(26)-methylated histone H1.4, whereas simultaneous Ser(27) phosphorylation blocks HP1 binding publication-title: J. Biol. Chem. – volume: 22 start-page: 3164 year: 2003 end-page: 3174 ident: bb0110 article-title: HP1 binding to native chromatin in vitro is determined by the hinge region and not by the chromodomain publication-title: EMBO J. – volume: 79 start-page: 926 year: 1983 end-page: 935 ident: bb0225 article-title: Comparison of simple potential functions for simulating liquid water publication-title: J. Chem. Phys. – volume: 12 start-page: 1084 year: 2011 end-page: 1096 ident: bb0090 article-title: The HP1a disordered C terminus and chromo shadow domain cooperate to select target peptide partners publication-title: Chembiochem – volume: 7 start-page: e35376 year: 2012 ident: bb0140 article-title: Structural basis of the chromodomain of Cbx3 bound to methylated peptides from histone h1 and G9a publication-title: PLoS One – volume: 295 start-page: 2080 year: 2002 end-page: 2083 ident: bb0365 article-title: Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail publication-title: Science – volume: 49 start-page: 129 year: 2018 end-page: 138 ident: bb0430 article-title: New developments in force fields for biomolecular simulations publication-title: Curr. Opin. Struc. Biol. – volume: 36 start-page: 364 year: 2011 end-page: 372 ident: bb0400 article-title: The PHD finger: a versatile epigenome reader publication-title: Trends Biochem. Sci. – volume: 10 start-page: 204 year: 2000 end-page: 210 ident: bb0025 article-title: The HP1 protein family: getting a grip on chromatin publication-title: Curr. Opin. Genet. Dev. – volume: 21 start-page: 1049 year: 2000 end-page: 1074 ident: bb0215 article-title: How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? publication-title: J. Comput. Chem. – volume: 8 start-page: 2432 year: 2009 end-page: 2442 ident: bb0035 article-title: Heterochromatin protein 1 is extensively decorated with histone code-like post-translational modifications publication-title: Mol. Cell. Proteomics – volume: 117 start-page: 5179 year: 1995 end-page: 5197 ident: bb0220 article-title: A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 546 year: 2013 end-page: 555 ident: bb0390 article-title: Tudor: a versatile family of histone methylation 'readers' publication-title: Trends Biochem. Sci. – volume: 1839 start-page: 1362 year: 2014 end-page: 1372 ident: bb0045 article-title: Understanding the relationship between DNA methylation and histone lysine methylation publication-title: Biochim. Biophys. Acta – volume: 664 start-page: 95 year: 2019 end-page: 101 ident: bb0350 article-title: The isolated C-terminal nuclear localization sequence of the breast cancer metastasis suppressor 1 is disordered publication-title: Arch. Biochem. Biophys. – volume: 65 start-page: 712 year: 2006 end-page: 725 ident: bb0210 article-title: Comparison of multiple Amber force fields and development of improved protein backbone parameters publication-title: Proteins – volume: 24 start-page: 377 year: 2014 end-page: 386 ident: bb0015 article-title: Mechanisms of functional promiscuity by HP1 proteins publication-title: Trends Cell Biol – volume: 119 start-page: 227 year: 2010 end-page: 241 ident: bb0095 article-title: SUV39h-independent association of HP1 beta with fibrillarin-positive nucleolar regions publication-title: Chromosoma – volume: 8 start-page: 3257 year: 2012 end-page: 3273 ident: bb0270 article-title: Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles publication-title: J. Chem. Theory Comput. – volume: 12 start-page: 3926 year: 2016 end-page: 3947 ident: bb0275 article-title: Further along the road less traveled: AMBER ff15ipq, an original protein force field built on a self-consistent physical model publication-title: J. Chem. Theory Comput. – volume: 102 start-page: 1926 year: 2012 end-page: 1933 ident: bb0180 article-title: Structural ro of RKS Motifs in cromatin iteractions: a molecular dynamics study of HP1 bound to a variably modified histone tail publication-title: Biophys. J. – volume: 8 start-page: 4405 year: 2012 end-page: 4412 ident: bb0255 article-title: Revised AMBER parameters for bioorganic phosphates publication-title: J. Chem. Theory Comput. – volume: 453 start-page: 682 year: 2008 end-page: 686 ident: bb0340 article-title: HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response publication-title: Nature – volume: 12 start-page: 4534 year: 2016 end-page: 4548 ident: bb0250 article-title: Computer folding of RNA tetraloops: identification of key force field deficiencies publication-title: J. Chem. Theory Comput. – volume: 16 start-page: 3240 year: 2020 end-page: 3252 ident: bb0450 article-title: Exploiting a mechanical perturbation of a titin domain to identify how force field parameterization affects protein refolding pathways publication-title: J. Chem. Theory Comput. – volume: 139 start-page: 17253 year: 2017 end-page: 17256 ident: bb0440 article-title: Investigation of trimethyllysine binding by the HP1 chromodomain via unnatural amino acid mutagenesis publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 7313 year: 2007 end-page: 7323 ident: bb0065 article-title: Automethylation of G9a and its implication in wider substrate specificity and HP1 binding publication-title: Nucleic Acids Res. – volume: 17 start-page: 1870 year: 2003 end-page: 1881 ident: bb0190 article-title: Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polvcomb and HP1 chromodomains publication-title: Genes Dev. – volume: 9 start-page: 3878 year: 2013 end-page: 3888 ident: bb0305 article-title: Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald publication-title: J. Chem. Theory Comput. – volume: 15 start-page: 2620 year: 2019 end-page: 2634 ident: bb0345 article-title: General purpose water model can improve atomistic simulations of intrinsically disordered proteins publication-title: J. Chem. Theory Comput. – volume: 18 start-page: 1127 year: 2010 end-page: 1139 ident: bb0405 article-title: Structural insight into the zinc finger CW domain as a histone modification reader publication-title: Structure – volume: 16 start-page: 528 year: 2020 end-page: 552 ident: bb0235 article-title: ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution publication-title: J. Chem. Theory Comput. – volume: 12 start-page: 387 year: 2020 end-page: 400 ident: bb0005 article-title: Heterochromatin protein 1 (HP1): interactions with itself and chromatin components publication-title: Biophys. Rev. – volume: 79 start-page: 1318 year: 2011 end-page: 1328 ident: bb0460 article-title: Free-energy landscape of the GB1 hairpin in all-atom explicit solvent simulations with different force fields: similarities and differences publication-title: Proteins – volume: 11 start-page: 1864 year: 2015 end-page: 1874 ident: bb0320 article-title: Long-time-step molecular dynamics through hydrogen mass repartitioning publication-title: J. Chem. Theory Comput. – volume: 5 start-page: 296 year: 2004 end-page: 304 ident: bb0100 article-title: HP1 and the dynamics of heterochromatin maintenance publication-title: Nat. Rev. Mol. Cell Biol. – volume: 78 start-page: 1950 year: 2010 end-page: 1958 ident: bb5000 article-title: Proteins publication-title: Improved Side-chain Torsion Potentials for the Amber ff99SB Protein Force Field – volume: 11 start-page: 3696 year: 2015 end-page: 3713 ident: bb0205 article-title: ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB publication-title: J. Chem. Theory Comput. – volume: 410 start-page: 116 year: 2001 end-page: 120 ident: bb0055 article-title: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins publication-title: Nature – volume: 27 start-page: 827 year: 2020 end-page: 838 ident: bb0380 article-title: Structural basis for the binding selectivity of human CDY chromodomains publication-title: Cell Chem. Biol. – volume: 165 start-page: 433 year: 2019 end-page: 446 ident: bb0385 article-title: Mitotic phosphorylation of HP1alpha regulates its cell cycle-dependent chromatin binding publication-title: J. Biochem. – volume: 11 start-page: 1645 year: 2015 end-page: 1657 ident: bb0230 article-title: Systematic parameterization of monovalent ions employing the nonbonded model publication-title: J. Chem. Theory Comput. – volume: 434 start-page: 820 year: 2013 end-page: 828 ident: bb0080 article-title: DNA microarray profiling of genes differentially regulated by three heterochromatin protein 1 (HP1) homologs in Drosophila publication-title: Biochem. Bioph. Res. Co. – volume: 50 start-page: 723 year: 2013 end-page: 735 ident: bb0075 article-title: A method for systematic mapping of protein lysine methylation identifies functions for HP1 beta in DNA damage response publication-title: Mol. Cell – volume: 14 start-page: 71 year: 2017 end-page: 73 ident: bb0265 article-title: CHARMM36m: an improved force field for folded and intrinsically disordered proteins publication-title: Nat. Methods – volume: 23 start-page: 327 year: 1977 end-page: 341 ident: bb0315 article-title: Numerical-integration of cartesian equations of motion of a system with constraints - molecular-dynamics of N-alkanes publication-title: J. Comput. Phys. – volume: 9 start-page: 3084 year: 2013 end-page: 3095 ident: bb0325 article-title: PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data publication-title: J. Chem. Theory Comput. – volume: 184 start-page: 374 year: 2013 end-page: 380 ident: bb0300 article-title: SPFP: speed without compromise - a mixed precision model for GPU accelerated molecular dynamics simulations publication-title: Comput. Phys. Commun. – volume: 108 start-page: 220 year: 1999 end-page: 234 ident: bb0040 article-title: Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells publication-title: Chromosoma – volume: 22 start-page: 2577 year: 1983 end-page: 2637 ident: bb0335 article-title: Dictionary of protein secondary structure - pattern-recognition of hydrogen-bonded and geometrical features publication-title: Biopolymers – volume: 18 start-page: 337 year: 2011 end-page: 344 ident: bb0105 article-title: Histone H3 lysine 9 trimethylation and HP1 gamma favor inclusion of alternative exons publication-title: Nat. Struct. Mol. Biol. – volume: 118 start-page: 4177 year: 2018 end-page: 4338 ident: bb0150 article-title: RNA structural dynamics as captured by molecular simulations: a comprehensive overview publication-title: Chem. Rev. – volume: 11 start-page: 3969 year: 2015 end-page: 3972 ident: bb0355 article-title: Improved force field parameters lead to a better description of RNA structure publication-title: J. Chem. Theory Comput. – volume: 44 start-page: 6452 year: 2016 end-page: 6470 ident: bb0295 article-title: Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs publication-title: Nucleic Acids Res. – volume: 299 start-page: 721 year: 2003 end-page: 725 ident: bb0135 article-title: Maintenance of stable heterochromatin domains by dynamic HP1 binding publication-title: Science – reference: The PyMOL Molecular Graphics System. Version 1.8 Schrödinger, LLC. – volume: 116 start-page: 6279 year: 2012 end-page: 6287 ident: bb0280 article-title: Water model tuning for improved reproduction of rotational diffusion and NMR spectral density publication-title: J. Phys. Chem. B – volume: 102 start-page: 1462 year: 2012 end-page: 1467 ident: bb0455 article-title: Residue-specific alpha-helix propensities from molecular simulation publication-title: Biophys. J. – volume: 165 start-page: 455 year: 2019 end-page: 458 ident: bb0360 article-title: Do the charges matter? Balancing the charges of the chromodomain proteins on the nucleosome publication-title: J. Biochem. – year: 2018 ident: 10.1016/j.bbagen.2020.129771_bb0285 – volume: 10 start-page: 12 year: 2017 ident: 10.1016/j.bbagen.2020.129771_bb0070 article-title: Histone peptide microarray screen of chromo and Tudor domains defines new histone lysine methylation interactions publication-title: Epigenet. Chromatin. doi: 10.1186/s13072-017-0117-5 – volume: 42 start-page: 106 year: 2017 ident: 10.1016/j.bbagen.2020.129771_bb0160 article-title: Principles of protein structural ensemble determination publication-title: Curr. Opin. Struc. Biol. doi: 10.1016/j.sbi.2016.12.004 – volume: 16 start-page: 528 year: 2020 ident: 10.1016/j.bbagen.2020.129771_bb0235 article-title: ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00591 – volume: 116 start-page: 6279 year: 2012 ident: 10.1016/j.bbagen.2020.129771_bb0280 article-title: Water model tuning for improved reproduction of rotational diffusion and NMR spectral density publication-title: J. Phys. Chem. B doi: 10.1021/jp301100g – volume: 108 start-page: 220 year: 1999 ident: 10.1016/j.bbagen.2020.129771_bb0040 article-title: Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells publication-title: Chromosoma doi: 10.1007/s004120050372 – volume: 434 start-page: 820 year: 2013 ident: 10.1016/j.bbagen.2020.129771_bb0080 article-title: DNA microarray profiling of genes differentially regulated by three heterochromatin protein 1 (HP1) homologs in Drosophila publication-title: Biochem. Bioph. Res. Co. doi: 10.1016/j.bbrc.2013.04.020 – volume: 30 start-page: 103 year: 2014 ident: 10.1016/j.bbagen.2020.129771_bb0010 article-title: HP1a: a structural chromosomal protein regulating transcription publication-title: Trends Genet. doi: 10.1016/j.tig.2014.01.002 – volume: 119 start-page: 227 year: 2010 ident: 10.1016/j.bbagen.2020.129771_bb0095 article-title: SUV39h-independent association of HP1 beta with fibrillarin-positive nucleolar regions publication-title: Chromosoma doi: 10.1007/s00412-009-0252-2 – volume: 35 start-page: 7313 year: 2007 ident: 10.1016/j.bbagen.2020.129771_bb0065 article-title: Automethylation of G9a and its implication in wider substrate specificity and HP1 binding publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm726 – volume: 165 start-page: 455 year: 2019 ident: 10.1016/j.bbagen.2020.129771_bb0360 article-title: Do the charges matter? Balancing the charges of the chromodomain proteins on the nucleosome publication-title: J. Biochem. doi: 10.1093/jb/mvz004 – volume: 114 start-page: 2336 year: 2018 ident: 10.1016/j.bbagen.2020.129771_bb0185 article-title: Interactions of HP1 bound to H3K9me3 dinucleosome by molecular simulations and biochemical assays publication-title: Biophys. J. doi: 10.1016/j.bpj.2018.03.025 – volume: 97 start-page: 599 year: 2009 ident: 10.1016/j.bbagen.2020.129771_bb0465 article-title: Secondary structure propensities in peptide folding simulations: a systematic comparison of molecular mechanics interaction schemes publication-title: Biophys. J. doi: 10.1016/j.bpj.2009.04.061 – volume: 50 start-page: 723 year: 2013 ident: 10.1016/j.bbagen.2020.129771_bb0075 article-title: A method for systematic mapping of protein lysine methylation identifies functions for HP1 beta in DNA damage response publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.04.025 – volume: 65 start-page: 712 year: 2006 ident: 10.1016/j.bbagen.2020.129771_bb0210 article-title: Comparison of multiple Amber force fields and development of improved protein backbone parameters publication-title: Proteins doi: 10.1002/prot.21123 – volume: 12 start-page: 387 year: 2020 ident: 10.1016/j.bbagen.2020.129771_bb0005 article-title: Heterochromatin protein 1 (HP1): interactions with itself and chromatin components publication-title: Biophys. Rev. doi: 10.1007/s12551-020-00663-y – volume: 38 start-page: 1571 year: 2010 ident: 10.1016/j.bbagen.2020.129771_bb0165 article-title: Isoform-specific determinants in the HP1 binding to histone 3: insights from molecular simulations publication-title: Amino Acids doi: 10.1007/s00726-009-0371-3 – volume: 54 start-page: 2314 year: 2015 ident: 10.1016/j.bbagen.2020.129771_bb0375 article-title: Investigation of the beta-sheet interactions between dHP1 chromodomain and histone 3 publication-title: Biochemistry doi: 10.1021/acs.biochem.5b00024 – volume: 15 start-page: 5659 year: 2019 ident: 10.1016/j.bbagen.2020.129771_bb0200 article-title: Role of fine structural dynamics in recognition of histone H3 by HP1 gamma(CSD) dimer and ability of force fields to describe their interaction network publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00434 – volume: 410 start-page: 116 year: 2001 ident: 10.1016/j.bbagen.2020.129771_bb0055 article-title: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins publication-title: Nature doi: 10.1038/35065132 – volume: 12 start-page: 4534 year: 2016 ident: 10.1016/j.bbagen.2020.129771_bb0250 article-title: Computer folding of RNA tetraloops: identification of key force field deficiencies publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.6b00300 – volume: 24 start-page: 3157 year: 2004 ident: 10.1016/j.bbagen.2020.129771_bb0130 article-title: In vivo dynamics of Swi6 in yeast: evidence for a stochastic model of heterochromatin publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.8.3157-3167.2004 – volume: 11 start-page: 1864 year: 2015 ident: 10.1016/j.bbagen.2020.129771_bb0320 article-title: Long-time-step molecular dynamics through hydrogen mass repartitioning publication-title: J. Chem. Theory Comput. doi: 10.1021/ct5010406 – volume: 9 start-page: 3084 year: 2013 ident: 10.1016/j.bbagen.2020.129771_bb0325 article-title: PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400341p – volume: 102 start-page: 1462 year: 2012 ident: 10.1016/j.bbagen.2020.129771_bb0455 article-title: Residue-specific alpha-helix propensities from molecular simulation publication-title: Biophys. J. doi: 10.1016/j.bpj.2012.02.024 – volume: 22 start-page: 3164 year: 2003 ident: 10.1016/j.bbagen.2020.129771_bb0110 article-title: HP1 binding to native chromatin in vitro is determined by the hinge region and not by the chromodomain publication-title: EMBO J. doi: 10.1093/emboj/cdg306 – volume: 27 start-page: 827 year: 2020 ident: 10.1016/j.bbagen.2020.129771_bb0380 article-title: Structural basis for the binding selectivity of human CDY chromodomains publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2020.05.007 – volume: 22 start-page: 2577 year: 1983 ident: 10.1016/j.bbagen.2020.129771_bb0335 article-title: Dictionary of protein secondary structure - pattern-recognition of hydrogen-bonded and geometrical features publication-title: Biopolymers doi: 10.1002/bip.360221211 – volume: 8 start-page: 2432 year: 2009 ident: 10.1016/j.bbagen.2020.129771_bb0035 article-title: Heterochromatin protein 1 is extensively decorated with histone code-like post-translational modifications publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M900160-MCP200 – volume: 16 start-page: 3240 year: 2020 ident: 10.1016/j.bbagen.2020.129771_bb0450 article-title: Exploiting a mechanical perturbation of a titin domain to identify how force field parameterization affects protein refolding pathways publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.0c00080 – volume: 5 start-page: e8570 year: 2010 ident: 10.1016/j.bbagen.2020.129771_bb0370 article-title: Structural biology of human H3K9 methyltransferases publication-title: PLoS One doi: 10.1371/journal.pone.0008570 – volume: 15 start-page: 2620 year: 2019 ident: 10.1016/j.bbagen.2020.129771_bb0345 article-title: General purpose water model can improve atomistic simulations of intrinsically disordered proteins publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b01123 – volume: 19 start-page: 1218 year: 2012 ident: 10.1016/j.bbagen.2020.129771_bb0395 article-title: Perceiving the epigenetic landscape through histone readers publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2436 – volume: 11 start-page: 3696 year: 2015 ident: 10.1016/j.bbagen.2020.129771_bb0205 article-title: ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00255 – volume: 286 start-page: 521 year: 2011 ident: 10.1016/j.bbagen.2020.129771_bb0145 article-title: Recognition and specificity determinants of the human cbx chromodomains publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.191411 – volume: 117 start-page: 5179 year: 1995 ident: 10.1016/j.bbagen.2020.129771_bb0220 article-title: A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00124a002 – volume: 280 start-page: 38090 year: 2005 ident: 10.1016/j.bbagen.2020.129771_bb0060 article-title: HP1 binds specifically to Lys(26)-methylated histone H1.4, whereas simultaneous Ser(27) phosphorylation blocks HP1 binding publication-title: J. Biol. Chem. doi: 10.1074/jbc.C500229200 – volume: 78 start-page: 1950 year: 2010 ident: 10.1016/j.bbagen.2020.129771_bb5000 – volume: 3 start-page: 975 year: 2002 ident: 10.1016/j.bbagen.2020.129771_bb0115 article-title: Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1 alpha publication-title: EMBO Rep. doi: 10.1093/embo-reports/kvf194 – volume: 12 start-page: 1084 year: 2011 ident: 10.1016/j.bbagen.2020.129771_bb0090 article-title: The HP1a disordered C terminus and chromo shadow domain cooperate to select target peptide partners publication-title: Chembiochem doi: 10.1002/cbic.201000598 – volume: 453 start-page: 682 year: 2008 ident: 10.1016/j.bbagen.2020.129771_bb0340 article-title: HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response publication-title: Nature doi: 10.1038/nature06875 – volume: 12 start-page: 3926 year: 2016 ident: 10.1016/j.bbagen.2020.129771_bb0275 article-title: Further along the road less traveled: AMBER ff15ipq, an original protein force field built on a self-consistent physical model publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.6b00567 – volume: 37 start-page: 2951 year: 2009 ident: 10.1016/j.bbagen.2020.129771_bb0410 article-title: The solution structure of the first PHD finger of autoimmune regulator in complex with non-modified histone H3 tail reveals the antagonistic role of H3R2 methylation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp166 – volume: 11 start-page: 3969 year: 2015 ident: 10.1016/j.bbagen.2020.129771_bb0355 article-title: Improved force field parameters lead to a better description of RNA structure publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00444 – volume: 438 start-page: 1176 year: 2005 ident: 10.1016/j.bbagen.2020.129771_bb0170 article-title: Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin publication-title: Nature doi: 10.1038/nature04254 – volume: 12 start-page: 7 year: 2019 ident: 10.1016/j.bbagen.2020.129771_bb0425 article-title: Histone H3 lysine K4 methylation and its role in learning and memory publication-title: Epigenet. Chromatin. doi: 10.1186/s13072-018-0251-8 – volume: 42 start-page: 147 year: 2017 ident: 10.1016/j.bbagen.2020.129771_bb0435 article-title: Computational and theoretical advances in studies of intrinsically disordered proteins publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2017.01.006 – volume: 14 start-page: 71 year: 2017 ident: 10.1016/j.bbagen.2020.129771_bb0265 article-title: CHARMM36m: an improved force field for folded and intrinsically disordered proteins publication-title: Nat. Methods doi: 10.1038/nmeth.4067 – volume: 292 start-page: 5655 year: 2017 ident: 10.1016/j.bbagen.2020.129771_bb0120 article-title: Peptide recognition by heterochromatin protein 1 (HP1) chromoshadow domains revisited: plasticity in the pseudosymmetric histone binding site of human HP1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.768374 – volume: 287 start-page: 18730 year: 2012 ident: 10.1016/j.bbagen.2020.129771_bb0085 article-title: Characterization of chromoshadow domain-mediated binding of heterochromatin protein 1 alpha (HP1 alpha) to histone H3 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.337204 – volume: 79 start-page: 1318 year: 2011 ident: 10.1016/j.bbagen.2020.129771_bb0460 article-title: Free-energy landscape of the GB1 hairpin in all-atom explicit solvent simulations with different force fields: similarities and differences publication-title: Proteins doi: 10.1002/prot.22972 – volume: 99 start-page: 16462 year: 2002 ident: 10.1016/j.bbagen.2020.129771_bb0020 article-title: Does heterochromatin protein 1 always follow code? publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.162371699 – volume: 44 start-page: D435 issue: 2016 year: 2016 ident: 10.1016/j.bbagen.2020.129771_bb0030 article-title: 10-year anniversary of a resource for post-translational modification of proteins publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1240 – volume: 38 start-page: 546 year: 2013 ident: 10.1016/j.bbagen.2020.129771_bb0390 article-title: Tudor: a versatile family of histone methylation 'readers' publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2013.08.002 – volume: 79 start-page: 926 year: 1983 ident: 10.1016/j.bbagen.2020.129771_bb0225 article-title: Comparison of simple potential functions for simulating liquid water publication-title: J. Chem. Phys. doi: 10.1063/1.445869 – volume: 14 start-page: 33 year: 1996 ident: 10.1016/j.bbagen.2020.129771_bb0330 article-title: VMD: visual molecular dynamics publication-title: J. Mol. Graphics Modell. doi: 10.1016/0263-7855(96)00018-5 – volume: 18 start-page: 1127 year: 2010 ident: 10.1016/j.bbagen.2020.129771_bb0405 article-title: Structural insight into the zinc finger CW domain as a histone modification reader publication-title: Structure doi: 10.1016/j.str.2010.06.012 – volume: 15 start-page: 3288 year: 2019 ident: 10.1016/j.bbagen.2020.129771_bb0245 article-title: Improving the performance of the Amber RNA force field by tuning the hydrogen-bonding interactions publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b00955 – volume: 8 start-page: 3257 year: 2012 ident: 10.1016/j.bbagen.2020.129771_bb0270 article-title: Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300400x – volume: 410 start-page: 120 year: 2001 ident: 10.1016/j.bbagen.2020.129771_bb0050 article-title: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain publication-title: Nature doi: 10.1038/35065138 – volume: 184 start-page: 374 year: 2013 ident: 10.1016/j.bbagen.2020.129771_bb0300 article-title: SPFP: speed without compromise - a mixed precision model for GPU accelerated molecular dynamics simulations publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.09.022 – volume: 12 start-page: 281 year: 2006 ident: 10.1016/j.bbagen.2020.129771_bb0260 article-title: AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine publication-title: J. Mol. Model. doi: 10.1007/s00894-005-0028-4 – volume: 299 start-page: 721 year: 2003 ident: 10.1016/j.bbagen.2020.129771_bb0135 article-title: Maintenance of stable heterochromatin domains by dynamic HP1 binding publication-title: Science doi: 10.1126/science.1078572 – volume: 5 start-page: 3863 year: 2014 ident: 10.1016/j.bbagen.2020.129771_bb0240 article-title: Building water models: a different approach publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz501780a – volume: 102 start-page: 1926 year: 2012 ident: 10.1016/j.bbagen.2020.129771_bb0180 article-title: Structural ro of RKS Motifs in cromatin iteractions: a molecular dynamics study of HP1 bound to a variably modified histone tail publication-title: Biophys. J. doi: 10.1016/j.bpj.2012.03.030 – volume: 17 start-page: 1870 year: 2003 ident: 10.1016/j.bbagen.2020.129771_bb0190 article-title: Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polvcomb and HP1 chromodomains publication-title: Genes Dev. doi: 10.1101/gad.1110503 – volume: 43 start-page: 79 year: 2017 ident: 10.1016/j.bbagen.2020.129771_bb0155 article-title: Using simulation to interpret experimental data in terms of protein conformational ensembles publication-title: Curr. Opin. Struc. Biol. doi: 10.1016/j.sbi.2016.11.018 – volume: 11 start-page: 1645 year: 2015 ident: 10.1016/j.bbagen.2020.129771_bb0230 article-title: Systematic parameterization of monovalent ions employing the nonbonded model publication-title: J. Chem. Theory Comput. doi: 10.1021/ct500918t – volume: 23 start-page: 327 year: 1977 ident: 10.1016/j.bbagen.2020.129771_bb0315 article-title: Numerical-integration of cartesian equations of motion of a system with constraints - molecular-dynamics of N-alkanes publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(77)90098-5 – ident: 10.1016/j.bbagen.2020.129771_bb0195 – volume: 36 start-page: 364 year: 2011 ident: 10.1016/j.bbagen.2020.129771_bb0400 article-title: The PHD finger: a versatile epigenome reader publication-title: Trends Biochem. Sci. – volume: 8 start-page: 4405 year: 2012 ident: 10.1016/j.bbagen.2020.129771_bb0255 article-title: Revised AMBER parameters for bioorganic phosphates publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300613v – volume: 118 start-page: 4177 year: 2018 ident: 10.1016/j.bbagen.2020.129771_bb0150 article-title: RNA structural dynamics as captured by molecular simulations: a comprehensive overview publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00427 – volume: 438 start-page: 1116 year: 2005 ident: 10.1016/j.bbagen.2020.129771_bb0175 article-title: Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation publication-title: Nature doi: 10.1038/nature04219 – volume: 139 start-page: 17253 year: 2017 ident: 10.1016/j.bbagen.2020.129771_bb0440 article-title: Investigation of trimethyllysine binding by the HP1 chromodomain via unnatural amino acid mutagenesis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09223 – volume: 18 start-page: 337 year: 2011 ident: 10.1016/j.bbagen.2020.129771_bb0105 article-title: Histone H3 lysine 9 trimethylation and HP1 gamma favor inclusion of alternative exons publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1995 – volume: 1839 start-page: 1362 year: 2014 ident: 10.1016/j.bbagen.2020.129771_bb0045 article-title: Understanding the relationship between DNA methylation and histone lysine methylation publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2014.02.007 – volume: 21 start-page: 1049 year: 2000 ident: 10.1016/j.bbagen.2020.129771_bb0215 article-title: How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? publication-title: J. Comput. Chem. doi: 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F – volume: 10 start-page: 204 year: 2000 ident: 10.1016/j.bbagen.2020.129771_bb0025 article-title: The HP1 protein family: getting a grip on chromatin publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/S0959-437X(00)00058-7 – volume: 7 start-page: e35376 year: 2012 ident: 10.1016/j.bbagen.2020.129771_bb0140 article-title: Structural basis of the chromodomain of Cbx3 bound to methylated peptides from histone h1 and G9a publication-title: PLoS One doi: 10.1371/journal.pone.0035376 – volume: 464 start-page: 792 year: 2010 ident: 10.1016/j.bbagen.2020.129771_bb0420 article-title: Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4 publication-title: Nature doi: 10.1038/nature08839 – volume: 165 start-page: 433 year: 2019 ident: 10.1016/j.bbagen.2020.129771_bb0385 article-title: Mitotic phosphorylation of HP1alpha regulates its cell cycle-dependent chromatin binding publication-title: J. Biochem. doi: 10.1093/jb/mvy117 – volume: 24 start-page: 1802 year: 2016 ident: 10.1016/j.bbagen.2020.129771_bb0415 article-title: Karyopherin-beta2 recognition of a PY-NLS variant that lacks the proline-tyrosine motif publication-title: Structure doi: 10.1016/j.str.2016.07.018 – volume: 5 start-page: 296 year: 2004 ident: 10.1016/j.bbagen.2020.129771_bb0100 article-title: HP1 and the dynamics of heterochromatin maintenance publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1355 – volume: 49 start-page: 129 year: 2018 ident: 10.1016/j.bbagen.2020.129771_bb0430 article-title: New developments in force fields for biomolecular simulations publication-title: Curr. Opin. Struc. Biol. doi: 10.1016/j.sbi.2018.02.002 – volume: 24 start-page: 377 year: 2014 ident: 10.1016/j.bbagen.2020.129771_bb0015 article-title: Mechanisms of functional promiscuity by HP1 proteins publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2014.01.002 – volume: 9 start-page: 3878 year: 2013 ident: 10.1016/j.bbagen.2020.129771_bb0305 article-title: Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400314y – volume: 44 start-page: 6452 year: 2016 ident: 10.1016/j.bbagen.2020.129771_bb0295 article-title: Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw438 – volume: 664 start-page: 95 year: 2019 ident: 10.1016/j.bbagen.2020.129771_bb0350 article-title: The isolated C-terminal nuclear localization sequence of the breast cancer metastasis suppressor 1 is disordered publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2019.01.035 – volume: 384 start-page: 288 year: 2004 ident: 10.1016/j.bbagen.2020.129771_bb0310 article-title: Molecular dynamics simulations of water and biomolecules with a Monte Carlo constant pressure algorithm publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2003.12.039 – volume: 295 start-page: 2080 year: 2002 ident: 10.1016/j.bbagen.2020.129771_bb0365 article-title: Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail publication-title: Science doi: 10.1126/science.1069473 – volume: 6 start-page: 22527 year: 2016 ident: 10.1016/j.bbagen.2020.129771_bb0125 article-title: Extended string-like binding of the phosphorylated HP1 alpha N-terminal tail to the lysine 9-methylated histone H3 tail publication-title: Sci. Rep. doi: 10.1038/srep22527 – volume: 17 start-page: 1823 year: 2003 ident: 10.1016/j.bbagen.2020.129771_bb0445 article-title: Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27 publication-title: Genes Dev. doi: 10.1101/gad.269603 – volume: 11 start-page: 1220 year: 2015 ident: 10.1016/j.bbagen.2020.129771_bb0290 article-title: Can we execute stable microsecond-scale atomistic simulations of protein-RNA complexes? publication-title: J. Chem. Theory Comput. doi: 10.1021/ct5008108 – volume: 113 start-page: 9004 year: 2009 ident: 10.1016/j.bbagen.2020.129771_bb5005 article-title: Optimized Molecular Dynamics Force Fields Applied to the Helix-Coil Transition of Polypeptides publication-title: J. Phys. Chem. B. doi: 10.1021/jp901540t |
SSID | ssj0000595 |
Score | 2.325094 |
Snippet | The chromodomain (CD) of HP1 proteins is an established H3K9me3 reader that also binds H1, EHMT2 and H3K23 lysine-methylated targets. Structural experiments... The chromodomain (CD) of HP1 proteins is an established H3K9ᵐᵉ³ reader that also binds H1, EHMT2 and H3K23 lysine-methylated targets. Structural experiments... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 129771 |
SubjectTerms | amino acids Chromodomain HP1 MD simulations molecular dynamics Peptide recognition peptides Protein-protein interaction solvents |
Title | Residues flanking the ARKme3T/S motif allow binding of diverse targets to the HP1 chromodomain: Insights from molecular dynamics simulations |
URI | https://dx.doi.org/10.1016/j.bbagen.2020.129771 https://www.proquest.com/docview/2458036556 https://www.proquest.com/docview/2551905931 |
Volume | 1865 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lIvoiWhXrpUTwddzJTC6zvi2LZWuxSC_Qt5ArjnRnirOl9MVf4I_2nGRGUdCCb0NIQpiTnPMl-XI-Qt40ALpLZDVicC64aurC1jEW0ptQwnLi84jnHR-P5OqMfzgX51tkOb2FQVrl6PuzT0_eeiyZjX9zdtm2sxO81AM4ISr4wI0DvmDnCmf522-_aB4AH0S-SeAF1p6ezyWOl7WwaDELaoVpFgAKsb-Fpz8cdYo--w_JgxE20kUe2SOyFbodcjcLSd7skHvLSbftMfl-HGCGQSc0XpgkjEAB5NHF8eE61KezE4r0u0jxwv2a2ja9aqF9pD4xNALN3PCBbvrUbvWJUfcZSXu-X5u2e0cPugF39NA_lEJvo74u9VncfqBDux5FwYYn5Gz__elyVYyaC4WDzQkrPIclrZxhzgpvuZHcRCOCtGW0inEVja284nbOovSSB0CHsSkNFy5KB1Cofkq2u74LzwiNwrimblzlK8clk81clcwYFWsbZHTlLqmnX63dmJAcdTEu9MQ8-6KzgTQaSGcD7ZLiZ6vLnJDjlvpqsqL-bWJpiBm3tHw9GV2DCfEixXShvxp0xUUDkV8I-Y86AEXnqJfInv_3CF6Q-xVSaNKJz0uyvfl6FV4BBtrYvTTJ98idxcHh6ugH83cHPA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA51i9QX0apYrxF8HXYuSWbWt2WxzLrtIu0W-hZyxZHuTHG2iP_BH-05mYyioAXfhpCEMCc550vy5XyEvK0AdKfIasTgnLCyKhJdeJ8Iq1wKy4nNPJ53nK5FfcE-XPLLPbIY38IgrTL6_sGnB28dS6bxb06vm2Z6jpd6ACd4Dh-4cbhD9jE7FZ-Q_flyVa9_OWQexFewfoINxhd0gealNaxbTISaY6YFQEPZ3yLUH746BKDjB-R-RI50PgzuIdlz7SG5O2hJfjskB4tRuu0R-X7mYJJBJ9RfqaCNQAHn0fnZauuKzfScIgPPU7xz_0p1Ex620M5TG0gajg708J7uutCu_phR8wl5e7bbqqZ9R5dtj5t66B9KobcosUvtoG_f077ZRl2w_jG5OH6_WdRJlF1IDOxPssQyWNWlUZnR3GqmBFNecSd06nWZsdIrnduS6VnmhRXMAUD0VaoYN14YQEPFEzJpu9Y9JdRzZaqiMrnNDROZqGZlmilV-kI74U16RIrxV0sTc5KjNMaVHMlnn-VgIIkGkoOBjkjys9X1kJPjlvrlaEX529ySEDZuaflmNLoEE-Jdimpdd9PLnPEKgj_n4h91AI3OUDIxe_bfI3hNDurN6Yk8Wa5Xz8m9HBk14QDoBZnsvty4lwCJdvpVnPI_AOzICe0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Residues+flanking+the+ARKme3T%2FS+motif+allow+binding+of+diverse+targets+to+the+HP1+chromodomain%3A+Insights+from+molecular+dynamics+simulations&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Pokorn%C3%A1%2C+Pavl%C3%ADna&rft.au=Krepl%2C+Miroslav&rft.au=%C5%A0poner%2C+Ji%C5%99%C3%AD&rft.date=2021-01-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1865&rft.issue=1&rft.spage=129771&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129771&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |