Residues flanking the ARKme3T/S motif allow binding of diverse targets to the HP1 chromodomain: Insights from molecular dynamics simulations

The chromodomain (CD) of HP1 proteins is an established H3K9me3 reader that also binds H1, EHMT2 and H3K23 lysine-methylated targets. Structural experiments have provided atomistic pictures of its recognition of the conserved ARKme3S/T motif, but structural dynamics' contribution to the recogni...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1865; no. 1; p. 129771
Main Authors Pokorná, Pavlína, Krepl, Miroslav, Šponer, Jiří
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2021
Subjects
Online AccessGet full text
ISSN0304-4165
1872-8006
1872-8006
DOI10.1016/j.bbagen.2020.129771

Cover

Loading…
Abstract The chromodomain (CD) of HP1 proteins is an established H3K9me3 reader that also binds H1, EHMT2 and H3K23 lysine-methylated targets. Structural experiments have provided atomistic pictures of its recognition of the conserved ARKme3S/T motif, but structural dynamics' contribution to the recognition may have been masked by ensemble averaging. We acquired ~350 μs of explicit solvent molecular dynamics (MD) simulations of the CD domain interacting with several peptides using the latest AMBER force fields. The simulations reproduced the experimentally observed static binding patterns well but also revealed visible structural dynamics at the interfaces. While the buried K0me3 and A−2 target residues are tightly bound, several flanking sidechains sample diverse sites on the CD surface. Different amino acid positions of the targets can substitute for each other by forming mutually replaceable interactions with CD, thereby explaining the lack of strict requirement for cationic H3 target residues at the −3 position. The Q−4 residue of H3 targets further stabilizes the binding. The recognition pattern of the H3K23 ATKme3A motif, for which no structure is available, is predicted. The CD reads a longer target segment than previously thought, ranging from positions −7 to +3. The CD anionic clamp can be neutralized not only by the −3 and −1 residues, but also by −7, −6, −5 and +3 residues. Structural dynamics, not immediately apparent from the structural data, contribute to molecular recognition between the HP1 CD domain and its targets. Mutual replaceability of target residues increases target sequence flexibility. •Atomistic simulations of HP1 chromodomain (CD) bound to diverse targets are reported.•The binding includes structural dynamics that is not visible from experimental data.•Residues as distant as −7 to +3 positions from Kme3 affect target binding to HP1 CD.•Amino acids in different positions can replace each other in the binding.•Recent AMBER force fields provide improved description of the CD-target binding.
AbstractList The chromodomain (CD) of HP1 proteins is an established H3K9me3 reader that also binds H1, EHMT2 and H3K23 lysine-methylated targets. Structural experiments have provided atomistic pictures of its recognition of the conserved ARKme3S/T motif, but structural dynamics' contribution to the recognition may have been masked by ensemble averaging. We acquired ~350 μs of explicit solvent molecular dynamics (MD) simulations of the CD domain interacting with several peptides using the latest AMBER force fields. The simulations reproduced the experimentally observed static binding patterns well but also revealed visible structural dynamics at the interfaces. While the buried K0me3 and A−2 target residues are tightly bound, several flanking sidechains sample diverse sites on the CD surface. Different amino acid positions of the targets can substitute for each other by forming mutually replaceable interactions with CD, thereby explaining the lack of strict requirement for cationic H3 target residues at the −3 position. The Q−4 residue of H3 targets further stabilizes the binding. The recognition pattern of the H3K23 ATKme3A motif, for which no structure is available, is predicted. The CD reads a longer target segment than previously thought, ranging from positions −7 to +3. The CD anionic clamp can be neutralized not only by the −3 and −1 residues, but also by −7, −6, −5 and +3 residues. Structural dynamics, not immediately apparent from the structural data, contribute to molecular recognition between the HP1 CD domain and its targets. Mutual replaceability of target residues increases target sequence flexibility. •Atomistic simulations of HP1 chromodomain (CD) bound to diverse targets are reported.•The binding includes structural dynamics that is not visible from experimental data.•Residues as distant as −7 to +3 positions from Kme3 affect target binding to HP1 CD.•Amino acids in different positions can replace each other in the binding.•Recent AMBER force fields provide improved description of the CD-target binding.
The chromodomain (CD) of HP1 proteins is an established H3K9ᵐᵉ³ reader that also binds H1, EHMT2 and H3K23 lysine-methylated targets. Structural experiments have provided atomistic pictures of its recognition of the conserved ARKᵐᵉ³S/T motif, but structural dynamics' contribution to the recognition may have been masked by ensemble averaging.We acquired ~350 μs of explicit solvent molecular dynamics (MD) simulations of the CD domain interacting with several peptides using the latest AMBER force fields.The simulations reproduced the experimentally observed static binding patterns well but also revealed visible structural dynamics at the interfaces. While the buried K₀ᵐᵉ³ and A₋₂ target residues are tightly bound, several flanking sidechains sample diverse sites on the CD surface. Different amino acid positions of the targets can substitute for each other by forming mutually replaceable interactions with CD, thereby explaining the lack of strict requirement for cationic H3 target residues at the −3 position. The Q₋₄ residue of H3 targets further stabilizes the binding. The recognition pattern of the H3K23 ATKᵐᵉ³A motif, for which no structure is available, is predicted.The CD reads a longer target segment than previously thought, ranging from positions −7 to +3. The CD anionic clamp can be neutralized not only by the −3 and −1 residues, but also by −7, −6, −5 and +3 residues.Structural dynamics, not immediately apparent from the structural data, contribute to molecular recognition between the HP1 CD domain and its targets. Mutual replaceability of target residues increases target sequence flexibility.
The chromodomain (CD) of HP1 proteins is an established H3K9me3 reader that also binds H1, EHMT2 and H3K23 lysine-methylated targets. Structural experiments have provided atomistic pictures of its recognition of the conserved ARKme3S/T motif, but structural dynamics' contribution to the recognition may have been masked by ensemble averaging.BACKGROUNDThe chromodomain (CD) of HP1 proteins is an established H3K9me3 reader that also binds H1, EHMT2 and H3K23 lysine-methylated targets. Structural experiments have provided atomistic pictures of its recognition of the conserved ARKme3S/T motif, but structural dynamics' contribution to the recognition may have been masked by ensemble averaging.We acquired ~350 μs of explicit solvent molecular dynamics (MD) simulations of the CD domain interacting with several peptides using the latest AMBER force fields.METHODSWe acquired ~350 μs of explicit solvent molecular dynamics (MD) simulations of the CD domain interacting with several peptides using the latest AMBER force fields.The simulations reproduced the experimentally observed static binding patterns well but also revealed visible structural dynamics at the interfaces. While the buried K0me3 and A-2 target residues are tightly bound, several flanking sidechains sample diverse sites on the CD surface. Different amino acid positions of the targets can substitute for each other by forming mutually replaceable interactions with CD, thereby explaining the lack of strict requirement for cationic H3 target residues at the -3 position. The Q-4 residue of H3 targets further stabilizes the binding. The recognition pattern of the H3K23 ATKme3A motif, for which no structure is available, is predicted.RESULTSThe simulations reproduced the experimentally observed static binding patterns well but also revealed visible structural dynamics at the interfaces. While the buried K0me3 and A-2 target residues are tightly bound, several flanking sidechains sample diverse sites on the CD surface. Different amino acid positions of the targets can substitute for each other by forming mutually replaceable interactions with CD, thereby explaining the lack of strict requirement for cationic H3 target residues at the -3 position. The Q-4 residue of H3 targets further stabilizes the binding. The recognition pattern of the H3K23 ATKme3A motif, for which no structure is available, is predicted.The CD reads a longer target segment than previously thought, ranging from positions -7 to +3. The CD anionic clamp can be neutralized not only by the -3 and -1 residues, but also by -7, -6, -5 and +3 residues.CONCLUSIONSThe CD reads a longer target segment than previously thought, ranging from positions -7 to +3. The CD anionic clamp can be neutralized not only by the -3 and -1 residues, but also by -7, -6, -5 and +3 residues.Structural dynamics, not immediately apparent from the structural data, contribute to molecular recognition between the HP1 CD domain and its targets. Mutual replaceability of target residues increases target sequence flexibility.GENERAL SIGNIFICANCEStructural dynamics, not immediately apparent from the structural data, contribute to molecular recognition between the HP1 CD domain and its targets. Mutual replaceability of target residues increases target sequence flexibility.
ArticleNumber 129771
Author Krepl, Miroslav
Šponer, Jiří
Pokorná, Pavlína
Author_xml – sequence: 1
  givenname: Pavlína
  surname: Pokorná
  fullname: Pokorná, Pavlína
  email: pokorna.pavlina@ibp.cz
  organization: Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
– sequence: 2
  givenname: Miroslav
  surname: Krepl
  fullname: Krepl, Miroslav
  organization: Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
– sequence: 3
  givenname: Jiří
  surname: Šponer
  fullname: Šponer, Jiří
  email: sponer@ncbr.muni.cz
  organization: Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
BookMark eNqFkc9O3DAYxC0EEgvtG3DwsZcsdmI7WQ6VEGoLKlIroGfLfz7veklsanupeIc-dL2kpx6KL5ZGvxnpmzlBhyEGQOiMkiUlVJxvl1qrNYRlS9oqtau-pwdoQYe-bQZCxCFakI6whlHBj9FJzltSH1_xBfp9B9nbHWTsRhUefVjjsgF8efd1gu7h_B5PsXiH1TjGX1j7YPdEdNj6Z0gZcFFpDSXjEl99198pNpsUp2jjpHy4wDch-_WmEq6qNW0EsxtVwvYlqMmbjLOfqlB8DPkdOnJqzPD-73-Kfnz-9HB13dx--3JzdXnbmJb2tLGMsKE3ihrNrWZKMOUUB6GJ0z1lvVO6tT3TK-qEFQw6StxAFOPGCdP2XXeKPsy5Tyn-rLcXOflsYKwNQNxl2XJOV7Wfjr6NMj6QTnAuKnoxoybFnBM4aXx5Pawk5UdJidyvJbdyXkvu15LzWtXM_jE_JT-p9PKW7eNsg1rXs4cks_EQDFifwBRpo_9_wB89xrRC
CitedBy_id crossref_primary_10_1093_chromsci_bmae036
crossref_primary_10_1021_jacs_3c06481
crossref_primary_10_1515_biol_2022_0678
Cites_doi 10.1186/s13072-017-0117-5
10.1016/j.sbi.2016.12.004
10.1021/acs.jctc.9b00591
10.1021/jp301100g
10.1007/s004120050372
10.1016/j.bbrc.2013.04.020
10.1016/j.tig.2014.01.002
10.1007/s00412-009-0252-2
10.1093/nar/gkm726
10.1093/jb/mvz004
10.1016/j.bpj.2018.03.025
10.1016/j.bpj.2009.04.061
10.1016/j.molcel.2013.04.025
10.1002/prot.21123
10.1007/s12551-020-00663-y
10.1007/s00726-009-0371-3
10.1021/acs.biochem.5b00024
10.1021/acs.jctc.9b00434
10.1038/35065132
10.1021/acs.jctc.6b00300
10.1128/MCB.24.8.3157-3167.2004
10.1021/ct5010406
10.1021/ct400341p
10.1016/j.bpj.2012.02.024
10.1093/emboj/cdg306
10.1016/j.chembiol.2020.05.007
10.1002/bip.360221211
10.1074/mcp.M900160-MCP200
10.1021/acs.jctc.0c00080
10.1371/journal.pone.0008570
10.1021/acs.jctc.8b01123
10.1038/nsmb.2436
10.1021/acs.jctc.5b00255
10.1074/jbc.M110.191411
10.1021/ja00124a002
10.1074/jbc.C500229200
10.1093/embo-reports/kvf194
10.1002/cbic.201000598
10.1038/nature06875
10.1021/acs.jctc.6b00567
10.1093/nar/gkp166
10.1021/acs.jctc.5b00444
10.1038/nature04254
10.1186/s13072-018-0251-8
10.1016/j.sbi.2017.01.006
10.1038/nmeth.4067
10.1074/jbc.M116.768374
10.1074/jbc.M111.337204
10.1002/prot.22972
10.1073/pnas.162371699
10.1093/nar/gkv1240
10.1016/j.tibs.2013.08.002
10.1063/1.445869
10.1016/0263-7855(96)00018-5
10.1016/j.str.2010.06.012
10.1021/acs.jctc.8b00955
10.1021/ct300400x
10.1038/35065138
10.1016/j.cpc.2012.09.022
10.1007/s00894-005-0028-4
10.1126/science.1078572
10.1021/jz501780a
10.1016/j.bpj.2012.03.030
10.1101/gad.1110503
10.1016/j.sbi.2016.11.018
10.1021/ct500918t
10.1016/0021-9991(77)90098-5
10.1021/ct300613v
10.1021/acs.chemrev.7b00427
10.1038/nature04219
10.1021/jacs.7b09223
10.1038/nsmb.1995
10.1016/j.bbagrm.2014.02.007
10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
10.1016/S0959-437X(00)00058-7
10.1371/journal.pone.0035376
10.1038/nature08839
10.1093/jb/mvy117
10.1016/j.str.2016.07.018
10.1038/nrm1355
10.1016/j.sbi.2018.02.002
10.1016/j.tcb.2014.01.002
10.1021/ct400314y
10.1093/nar/gkw438
10.1016/j.abb.2019.01.035
10.1016/j.cplett.2003.12.039
10.1126/science.1069473
10.1038/srep22527
10.1101/gad.269603
10.1021/ct5008108
10.1021/jp901540t
ContentType Journal Article
Copyright 2020
Copyright © 2020. Published by Elsevier B.V.
Copyright_xml – notice: 2020
– notice: Copyright © 2020. Published by Elsevier B.V.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2020.129771
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 10_1016_j_bbagen_2020_129771
S0304416520302828
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c2171-d40487ca1cb5db4a64afa5e6b0fb7147fab2d74b91f6d64e310f80a45cf6c2733
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Thu Jul 10 23:23:17 EDT 2025
Fri Jul 11 01:59:07 EDT 2025
Tue Jul 01 00:22:14 EDT 2025
Thu Apr 24 22:57:49 EDT 2025
Fri Feb 23 02:45:21 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CD
Protein-protein interaction
Peptide recognition
CSD
Chromodomain
MD
MD simulations
HP1
PTM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2171-d40487ca1cb5db4a64afa5e6b0fb7147fab2d74b91f6d64e310f80a45cf6c2733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2458036556
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2551905931
proquest_miscellaneous_2458036556
crossref_citationtrail_10_1016_j_bbagen_2020_129771
crossref_primary_10_1016_j_bbagen_2020_129771
elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129771
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Meehan, Kao, Pennings (bb0110) 2003; 22
Ryckaert, Ciccotti, Berendsen (bb0315) 1977; 23
Musselman, Lalonde, Cote, Kutateladze (bb0395) 2012; 19
Jacobs, Khorasanizadeh (bb0365) 2002; 295
Shimojo, Kawaguchi, Oda, Hashiguchi, Omori, Moritsugu, Kidera, Hiragami-Hamada, Nakayama, Sato (bb0125) 2016; 6
Best, Mittal (bb0460) 2011; 79
Chin, Esteve, Pradhan, Benner, Patnaik, Carey, Pradhan (bb0065) 2007; 35
Mendez, Kim, Chruszcz, Stephens, Minor, Khorasanizadeh, Elgin (bb0090) 2011; 12
Hopkins, Le Grand, Walker, Roitberg (bb0320) 2015; 11
Dong, Liu, Lyu, Beldar, Lamb, Tempel, Li, Li, James, Qin (bb0380) 2020; 27
Ayoub, Jeyasekharan, Bernal, Venkitaraman (bb0340) 2008; 453
Maison, Almouzni (bb0100) 2004; 5
Huang, Su, Kao, Hsieh, Jhong, Cheng, Huang, Lee (bb0030) 2016; 44
Machado, Dans, Pantano (bb0165) 2010; 38
Nishibuchi, Machida, Nakagawa, Yoshimura, Hiragami-Hamada, Abe, Kurumizaka, Tagami, Nakayama (bb0385) 2019; 165
Matthes, de Groot (bb0465) 2009; 97
Steinbrecher, Latzer, Case (bb0255) 2012; 8
Allison (bb0155) 2017; 43
Horakova, Bartova, Galiova, Uhlirova, Matula, Kozubek (bb0095) 2010; 119
Fischle, Wang, Jacobs, Kim, Allis, Khorasanizadeh (bb0190) 2003; 17
Best, Zhu, Shim, Lopes, Mittal, Feig, MacKerell (bb0270) 2012; 8
Bannister, Zegerman, Partridge, Miska, Thomas, Allshire, Kouzarides (bb0050) 2001; 410
Maier, Martinez, Kasavajhala, Wickstrom, Hauser, Simmerling (bb0205) 2015; 11
Pokorna, Krepl, Bartova, Sponer (bb0200) 2019; 15
Hiragami-Hamada, Nakayama (bb0360) 2019; 165
Min, Zhang, Xu (bb0445) 2003; 17
Izadi, Anandakrishnan, Onufriev (bb0240) 2014; 5
Ruan, Ouyang, Amaya, Ravichandran, Loppnau, Min, Zang (bb0140) 2012; 7
Sanchez, Zhou (bb0400) 2011; 36
Best, Hummer (bb5005) 2009; 113
Nerenberg, Head-Gordon (bb0430) 2018; 49
Collins, Greer, Coleman, Sweatt (bb0425) 2019; 12
Bonomi, Heller, Camilloni, Vendruscolo (bb0160) 2017; 42
Wang, Marszalek (bb0450) 2020; 16
Leroy, Weston, Zee, Young, Plazas-Mayorca, Garcia (bb0035) 2009; 8
Liu, Qin, Lei, Tempel, Zhang, Loppnau, Li, Min (bb0120) 2017; 292
Fischle, Tseng, Dormann, Ueberheide, Garcia, Shabanowitz, Hunt, Funabiki, Allis (bb0175) 2005; 438
Hornak, Abel, Okur, Strockbine, Roitberg, Simmerling (bb0210) 2006; 65
Baril, Koenig, Krone, Albanese, He, Lee, Houk, Waters, Brustad (bb0440) 2017; 139
Kuhrova, Best, Bottaro, Bussi, Sponer, Otyepka, Banas (bb0250) 2016; 12
Lee, Li, Shin, Yi, Bang, Park, Han, Kwon (bb0080) 2013; 434
Cornell, Cieplak, Bayly, Gould, Merz, Ferguson, Spellmeyer, Fox, Caldwell, Kollman (bb0220) 1995; 117
Eisert, Kennedy, Waters (bb0375) 2015; 54
He, Umehara, Saito, Harada, Watanabe, Yabuki, Kigawa, Takahashi, Kuwasako, Tsuda (bb0405) 2010; 18
Cheutin, Gorski, May, Singh, Misteli (bb0130) 2004; 24
Aqvist, Wennerstrom, Nervall, Bjelic, Brandsdal (bb0310) 2004; 384
Humphrey, Dalke, Schulten (bb0330) 1996; 14
Wang, Cieplak, Kollman (bb0215) 2000; 21
Krepl, Havrila, Stadlbauer, Banas, Otyepka, Pasulka, Stefl, Sponer (bb0290) 2015; 11
Minc, Allory, Worman, Courvalin, Buendia (bb0040) 1999; 108
Cheutin, McNairn, Jenuwein, Gilbert, Singh, Misteli (bb0135) 2003; 299
Eissenberg, Elgin (bb0010) 2014; 30
Homeyer, Horn, Lanig, Sticht (bb0260) 2006; 12
Lindorff-Larsen, Piana, Palmo, Maragakis, Klepeis, Dror, Shaw (bb5000) 2010; 78
Lu, Wang (bb0390) 2013; 38
Best (bb0435) 2017; 42
Sponer, Bussi, Krepl, Banas, Bottaro, Cunha, Gil-Ley, Pinamonti, Poblete, Jurecka (bb0150) 2018; 118
Rose, Klose (bb0045) 2014; 1839
Hirota, Lipp, Toh, Peters (bb0170) 2005; 438
Krepl, Cléry, Blatter, Allain, Šponer (bb0295) 2016; 44
Eissenberg, Elgin (bb0025) 2000; 10
Liu, Galka, Mori, Liu, Lin, Wei, Pittock, Voss, Dhami, Li (bb0075) 2013; 50
Bergonzo, Cheatham (bb0355) 2015; 11
Papamokos, Tziatzos, Papageorgiou, Georgatos, Politou, Kaxiras (bb0180) 2012; 102
Soniat, Chook (bb0415) 2016; 24
Li, Song, Merz (bb0230) 2015; 11
Kaustov, Ouyang, Amaya, Lemak, Nady, Duan, Wasney, Li, Vedadi, Schapira (bb0145) 2011; 286
Case, Ben-Shalom, Brozell, Cerutti, Cheatham (bb0285) 2018
Wu, Min, Lunin, Antoshenko, Dombrovski, Zeng, Allali-Hassani, Campagna-Slater, Vedadi, Arrowsmith (bb0370) 2010; 5
Muchardt, Guilleme, Seeler, Trouche, Dejean, Yaniv (bb0115) 2002; 3
Huang, Rauscher, Nawrocki, Ran, Feig, de Groot, Grubmuller, MacKerell (bb0265) 2017; 14
Le Grand, Götz, Walker (bb0300) 2013; 184
Lachner, O'Carroll, Rea, Mechtler, Jenuwein (bb0055) 2001; 410
Tian, Kasavajhala, Belfon, Raguette, Huang, Migues, Bickel, Wang, Pincay, Wu (bb0235) 2020; 16
Metzger, Imhof, Patel, Kahl, Hoffmeyer, Friedrichs, Muller, Greschik, Kirfel, Ji (bb0420) 2010; 464
Daujat, Zeissler, Waldmann, Happel, Schneider (bb0060) 2005; 280
Takemura, Kitao (bb0280) 2012; 116
Pantoja-Uceda, Neira, Contreras, Manton, Welch, Rizzuti (bb0350) 2019; 664
Saint-Andre, Batsche, Rachez, Muchardt (bb0105) 2011; 18
Debiec, Cerutti, Baker, Gronenborn, Case, Chong (bb0275) 2016; 12
Watanabe, Mishima, Shimizu, Suetake, Takada (bb0185) 2018; 114
Shabane, Izadi, Onufriev (bb0345) 2019; 15
Kuhrova, Mlynsky, Zgarbova, Krepl, Bussi, Best, Otyepka, Sponer, Banas (bb0245) 2019; 15
Salomon-Ferrer, Gotz, Poole, Le Grand, Walker (bb0305) 2013; 9
Richart, Brunner, Stott, Murzina, Thomas (bb0085) 2012; 287
Kumar, Kono (bb0005) 2020; 12
Kabsch, Sander (bb0335) 1983; 22
Jorgensen, Chandrasekhar, Madura, Impey, Klein (bb0225) 1983; 79
Canzio, Larson, Narlikar (bb0015) 2014; 24
Chignola, Gaetani, Rebane, Org, Mollica, Zucchelli, Spitaleri, Mannella, Peterson, Musco (bb0410) 2009; 37
Roe, Cheatham (bb0325) 2013; 9
Best, de Sancho, Mittal (bb0455) 2012; 102
Li, Kirschmann, Wallrath (bb0020) 2002; 99
Shanle, Shinsky, Bridgers, Bae, Sagum, Krajewski, Rothbart, Bedford, Strahl (bb0070) 2017; 10
The PyMOL Molecular Graphics System. Version 1.8 Schrödinger, LLC.
Watanabe (10.1016/j.bbagen.2020.129771_bb0185) 2018; 114
Mendez (10.1016/j.bbagen.2020.129771_bb0090) 2011; 12
Maison (10.1016/j.bbagen.2020.129771_bb0100) 2004; 5
Humphrey (10.1016/j.bbagen.2020.129771_bb0330) 1996; 14
Liu (10.1016/j.bbagen.2020.129771_bb0075) 2013; 50
Sponer (10.1016/j.bbagen.2020.129771_bb0150) 2018; 118
Kumar (10.1016/j.bbagen.2020.129771_bb0005) 2020; 12
Shanle (10.1016/j.bbagen.2020.129771_bb0070) 2017; 10
Roe (10.1016/j.bbagen.2020.129771_bb0325) 2013; 9
Krepl (10.1016/j.bbagen.2020.129771_bb0295) 2016; 44
Min (10.1016/j.bbagen.2020.129771_bb0445) 2003; 17
Eissenberg (10.1016/j.bbagen.2020.129771_bb0025) 2000; 10
Kuhrova (10.1016/j.bbagen.2020.129771_bb0250) 2016; 12
Collins (10.1016/j.bbagen.2020.129771_bb0425) 2019; 12
Nerenberg (10.1016/j.bbagen.2020.129771_bb0430) 2018; 49
Jacobs (10.1016/j.bbagen.2020.129771_bb0365) 2002; 295
Homeyer (10.1016/j.bbagen.2020.129771_bb0260) 2006; 12
Pantoja-Uceda (10.1016/j.bbagen.2020.129771_bb0350) 2019; 664
Canzio (10.1016/j.bbagen.2020.129771_bb0015) 2014; 24
Takemura (10.1016/j.bbagen.2020.129771_bb0280) 2012; 116
Sanchez (10.1016/j.bbagen.2020.129771_bb0400) 2011; 36
Baril (10.1016/j.bbagen.2020.129771_bb0440) 2017; 139
Cornell (10.1016/j.bbagen.2020.129771_bb0220) 1995; 117
Wang (10.1016/j.bbagen.2020.129771_bb0215) 2000; 21
Best (10.1016/j.bbagen.2020.129771_bb0455) 2012; 102
Saint-Andre (10.1016/j.bbagen.2020.129771_bb0105) 2011; 18
Dong (10.1016/j.bbagen.2020.129771_bb0380) 2020; 27
Huang (10.1016/j.bbagen.2020.129771_bb0265) 2017; 14
Steinbrecher (10.1016/j.bbagen.2020.129771_bb0255) 2012; 8
Ryckaert (10.1016/j.bbagen.2020.129771_bb0315) 1977; 23
Papamokos (10.1016/j.bbagen.2020.129771_bb0180) 2012; 102
Eissenberg (10.1016/j.bbagen.2020.129771_bb0010) 2014; 30
Ruan (10.1016/j.bbagen.2020.129771_bb0140) 2012; 7
Best (10.1016/j.bbagen.2020.129771_bb0270) 2012; 8
Kaustov (10.1016/j.bbagen.2020.129771_bb0145) 2011; 286
Hirota (10.1016/j.bbagen.2020.129771_bb0170) 2005; 438
Shabane (10.1016/j.bbagen.2020.129771_bb0345) 2019; 15
Minc (10.1016/j.bbagen.2020.129771_bb0040) 1999; 108
Hopkins (10.1016/j.bbagen.2020.129771_bb0320) 2015; 11
Meehan (10.1016/j.bbagen.2020.129771_bb0110) 2003; 22
Leroy (10.1016/j.bbagen.2020.129771_bb0035) 2009; 8
Rose (10.1016/j.bbagen.2020.129771_bb0045) 2014; 1839
Shimojo (10.1016/j.bbagen.2020.129771_bb0125) 2016; 6
Krepl (10.1016/j.bbagen.2020.129771_bb0290) 2015; 11
Wang (10.1016/j.bbagen.2020.129771_bb0450) 2020; 16
Tian (10.1016/j.bbagen.2020.129771_bb0235) 2020; 16
Bonomi (10.1016/j.bbagen.2020.129771_bb0160) 2017; 42
Fischle (10.1016/j.bbagen.2020.129771_bb0175) 2005; 438
Liu (10.1016/j.bbagen.2020.129771_bb0120) 2017; 292
Wu (10.1016/j.bbagen.2020.129771_bb0370) 2010; 5
Bannister (10.1016/j.bbagen.2020.129771_bb0050) 2001; 410
Hornak (10.1016/j.bbagen.2020.129771_bb0210) 2006; 65
Richart (10.1016/j.bbagen.2020.129771_bb0085) 2012; 287
Izadi (10.1016/j.bbagen.2020.129771_bb0240) 2014; 5
Eisert (10.1016/j.bbagen.2020.129771_bb0375) 2015; 54
Le Grand (10.1016/j.bbagen.2020.129771_bb0300) 2013; 184
Bergonzo (10.1016/j.bbagen.2020.129771_bb0355) 2015; 11
Jorgensen (10.1016/j.bbagen.2020.129771_bb0225) 1983; 79
Case (10.1016/j.bbagen.2020.129771_bb0285) 2018
Salomon-Ferrer (10.1016/j.bbagen.2020.129771_bb0305) 2013; 9
Hiragami-Hamada (10.1016/j.bbagen.2020.129771_bb0360) 2019; 165
Metzger (10.1016/j.bbagen.2020.129771_bb0420) 2010; 464
Kabsch (10.1016/j.bbagen.2020.129771_bb0335) 1983; 22
Debiec (10.1016/j.bbagen.2020.129771_bb0275) 2016; 12
Ayoub (10.1016/j.bbagen.2020.129771_bb0340) 2008; 453
10.1016/j.bbagen.2020.129771_bb0195
Matthes (10.1016/j.bbagen.2020.129771_bb0465) 2009; 97
Li (10.1016/j.bbagen.2020.129771_bb0020) 2002; 99
Fischle (10.1016/j.bbagen.2020.129771_bb0190) 2003; 17
Horakova (10.1016/j.bbagen.2020.129771_bb0095) 2010; 119
Muchardt (10.1016/j.bbagen.2020.129771_bb0115) 2002; 3
He (10.1016/j.bbagen.2020.129771_bb0405) 2010; 18
Best (10.1016/j.bbagen.2020.129771_bb5005) 2009; 113
Aqvist (10.1016/j.bbagen.2020.129771_bb0310) 2004; 384
Chignola (10.1016/j.bbagen.2020.129771_bb0410) 2009; 37
Machado (10.1016/j.bbagen.2020.129771_bb0165) 2010; 38
Maier (10.1016/j.bbagen.2020.129771_bb0205) 2015; 11
Lu (10.1016/j.bbagen.2020.129771_bb0390) 2013; 38
Chin (10.1016/j.bbagen.2020.129771_bb0065) 2007; 35
Kuhrova (10.1016/j.bbagen.2020.129771_bb0245) 2019; 15
Cheutin (10.1016/j.bbagen.2020.129771_bb0135) 2003; 299
Daujat (10.1016/j.bbagen.2020.129771_bb0060) 2005; 280
Nishibuchi (10.1016/j.bbagen.2020.129771_bb0385) 2019; 165
Musselman (10.1016/j.bbagen.2020.129771_bb0395) 2012; 19
Lindorff-Larsen (10.1016/j.bbagen.2020.129771_bb5000) 2010; 78
Pokorna (10.1016/j.bbagen.2020.129771_bb0200) 2019; 15
Li (10.1016/j.bbagen.2020.129771_bb0230) 2015; 11
Lachner (10.1016/j.bbagen.2020.129771_bb0055) 2001; 410
Best (10.1016/j.bbagen.2020.129771_bb0435) 2017; 42
Huang (10.1016/j.bbagen.2020.129771_bb0030) 2016; 44
Best (10.1016/j.bbagen.2020.129771_bb0460) 2011; 79
Cheutin (10.1016/j.bbagen.2020.129771_bb0130) 2004; 24
Allison (10.1016/j.bbagen.2020.129771_bb0155) 2017; 43
Lee (10.1016/j.bbagen.2020.129771_bb0080) 2013; 434
Soniat (10.1016/j.bbagen.2020.129771_bb0415) 2016; 24
References_xml – volume: 15
  start-page: 3288
  year: 2019
  end-page: 3305
  ident: bb0245
  article-title: Improving the performance of the Amber RNA force field by tuning the hydrogen-bonding interactions
  publication-title: J. Chem. Theory Comput.
– volume: 438
  start-page: 1176
  year: 2005
  end-page: 1180
  ident: bb0170
  article-title: Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin
  publication-title: Nature
– volume: 97
  start-page: 599
  year: 2009
  end-page: 608
  ident: bb0465
  article-title: Secondary structure propensities in peptide folding simulations: a systematic comparison of molecular mechanics interaction schemes
  publication-title: Biophys. J.
– volume: 38
  start-page: 1571
  year: 2010
  end-page: 1581
  ident: bb0165
  article-title: Isoform-specific determinants in the HP1 binding to histone 3: insights from molecular simulations
  publication-title: Amino Acids
– volume: 24
  start-page: 1802
  year: 2016
  end-page: 1809
  ident: bb0415
  article-title: Karyopherin-beta2 recognition of a PY-NLS variant that lacks the proline-tyrosine motif
  publication-title: Structure
– volume: 464
  start-page: 792
  year: 2010
  end-page: 796
  ident: bb0420
  article-title: Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4
  publication-title: Nature
– volume: 10
  start-page: 12
  year: 2017
  ident: bb0070
  article-title: Histone peptide microarray screen of chromo and Tudor domains defines new histone lysine methylation interactions
  publication-title: Epigenet. Chromatin
– volume: 19
  start-page: 1218
  year: 2012
  end-page: 1227
  ident: bb0395
  article-title: Perceiving the epigenetic landscape through histone readers
  publication-title: Nat. Struct. Mol. Biol.
– volume: 286
  start-page: 521
  year: 2011
  end-page: 529
  ident: bb0145
  article-title: Recognition and specificity determinants of the human cbx chromodomains
  publication-title: J. Biol. Chem.
– volume: 54
  start-page: 2314
  year: 2015
  end-page: 2322
  ident: bb0375
  article-title: Investigation of the beta-sheet interactions between dHP1 chromodomain and histone 3
  publication-title: Biochemistry
– volume: 99
  start-page: 16462
  year: 2002
  end-page: 16469
  ident: bb0020
  article-title: Does heterochromatin protein 1 always follow code?
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 24
  start-page: 3157
  year: 2004
  end-page: 3167
  ident: bb0130
  article-title: In vivo dynamics of Swi6 in yeast: evidence for a stochastic model of heterochromatin
  publication-title: Mol. Cell. Biol.
– volume: 3
  start-page: 975
  year: 2002
  end-page: 981
  ident: bb0115
  article-title: Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1 alpha
  publication-title: EMBO Rep.
– volume: 12
  start-page: 7
  year: 2019
  ident: bb0425
  article-title: Histone H3 lysine K4 methylation and its role in learning and memory
  publication-title: Epigenet. Chromatin
– volume: 17
  start-page: 1823
  year: 2003
  end-page: 1828
  ident: bb0445
  article-title: Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27
  publication-title: Genes Dev.
– volume: 42
  start-page: 106
  year: 2017
  end-page: 116
  ident: bb0160
  article-title: Principles of protein structural ensemble determination
  publication-title: Curr. Opin. Struc. Biol.
– volume: 44
  start-page: D435
  year: 2016
  end-page: D446
  ident: bb0030
  article-title: 10-year anniversary of a resource for post-translational modification of proteins
  publication-title: Nucleic Acids Res.
– volume: 43
  start-page: 79
  year: 2017
  end-page: 87
  ident: bb0155
  article-title: Using simulation to interpret experimental data in terms of protein conformational ensembles
  publication-title: Curr. Opin. Struc. Biol.
– volume: 384
  start-page: 288
  year: 2004
  end-page: 294
  ident: bb0310
  article-title: Molecular dynamics simulations of water and biomolecules with a Monte Carlo constant pressure algorithm
  publication-title: Chem. Phys. Lett.
– volume: 37
  start-page: 2951
  year: 2009
  end-page: 2961
  ident: bb0410
  article-title: The solution structure of the first PHD finger of autoimmune regulator in complex with non-modified histone H3 tail reveals the antagonistic role of H3R2 methylation
  publication-title: Nucleic Acids Res
– volume: 113
  start-page: 9004
  year: 2009
  end-page: 9015
  ident: bb5005
  article-title: Optimized Molecular Dynamics Force Fields Applied to the Helix-Coil Transition of Polypeptides
  publication-title: J. Phys. Chem. B
– volume: 287
  start-page: 18730
  year: 2012
  end-page: 18737
  ident: bb0085
  article-title: Characterization of chromoshadow domain-mediated binding of heterochromatin protein 1 alpha (HP1 alpha) to histone H3
  publication-title: J. Biol. Chem.
– volume: 42
  start-page: 147
  year: 2017
  end-page: 154
  ident: bb0435
  article-title: Computational and theoretical advances in studies of intrinsically disordered proteins
  publication-title: Curr. Opin. Struct. Biol.
– volume: 11
  start-page: 1220
  year: 2015
  end-page: 1243
  ident: bb0290
  article-title: Can we execute stable microsecond-scale atomistic simulations of protein-RNA complexes?
  publication-title: J. Chem. Theory Comput.
– volume: 15
  start-page: 5659
  year: 2019
  end-page: 5673
  ident: bb0200
  article-title: Role of fine structural dynamics in recognition of histone H3 by HP1 gamma(CSD) dimer and ability of force fields to describe their interaction network
  publication-title: J. Chem. Theory Comput.
– volume: 292
  start-page: 5655
  year: 2017
  end-page: 5664
  ident: bb0120
  article-title: Peptide recognition by heterochromatin protein 1 (HP1) chromoshadow domains revisited: plasticity in the pseudosymmetric histone binding site of human HP1
  publication-title: J. Biol. Chem.
– volume: 438
  start-page: 1116
  year: 2005
  end-page: 1122
  ident: bb0175
  article-title: Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation
  publication-title: Nature
– volume: 5
  start-page: 3863
  year: 2014
  end-page: 3871
  ident: bb0240
  article-title: Building water models: a different approach
  publication-title: J. Phys. Chem. Lett.
– volume: 12
  start-page: 281
  year: 2006
  end-page: 289
  ident: bb0260
  article-title: AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine
  publication-title: J. Mol. Model.
– year: 2018
  ident: bb0285
  article-title: AMBER
– volume: 114
  start-page: 2336
  year: 2018
  end-page: 2351
  ident: bb0185
  article-title: Interactions of HP1 bound to H3K9me3 dinucleosome by molecular simulations and biochemical assays
  publication-title: Biophys. J.
– volume: 410
  start-page: 120
  year: 2001
  end-page: 124
  ident: bb0050
  article-title: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain
  publication-title: Nature
– volume: 14
  start-page: 33
  year: 1996
  end-page: 38
  ident: bb0330
  article-title: VMD: visual molecular dynamics
  publication-title: J. Mol. Graphics Modell.
– volume: 5
  start-page: e8570
  year: 2010
  ident: bb0370
  article-title: Structural biology of human H3K9 methyltransferases
  publication-title: PLoS One
– volume: 6
  start-page: 22527
  year: 2016
  ident: bb0125
  article-title: Extended string-like binding of the phosphorylated HP1 alpha N-terminal tail to the lysine 9-methylated histone H3 tail
  publication-title: Sci. Rep.
– volume: 30
  start-page: 103
  year: 2014
  end-page: 110
  ident: bb0010
  article-title: HP1a: a structural chromosomal protein regulating transcription
  publication-title: Trends Genet
– volume: 280
  start-page: 38090
  year: 2005
  end-page: 38095
  ident: bb0060
  article-title: HP1 binds specifically to Lys(26)-methylated histone H1.4, whereas simultaneous Ser(27) phosphorylation blocks HP1 binding
  publication-title: J. Biol. Chem.
– volume: 22
  start-page: 3164
  year: 2003
  end-page: 3174
  ident: bb0110
  article-title: HP1 binding to native chromatin in vitro is determined by the hinge region and not by the chromodomain
  publication-title: EMBO J.
– volume: 79
  start-page: 926
  year: 1983
  end-page: 935
  ident: bb0225
  article-title: Comparison of simple potential functions for simulating liquid water
  publication-title: J. Chem. Phys.
– volume: 12
  start-page: 1084
  year: 2011
  end-page: 1096
  ident: bb0090
  article-title: The HP1a disordered C terminus and chromo shadow domain cooperate to select target peptide partners
  publication-title: Chembiochem
– volume: 7
  start-page: e35376
  year: 2012
  ident: bb0140
  article-title: Structural basis of the chromodomain of Cbx3 bound to methylated peptides from histone h1 and G9a
  publication-title: PLoS One
– volume: 295
  start-page: 2080
  year: 2002
  end-page: 2083
  ident: bb0365
  article-title: Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail
  publication-title: Science
– volume: 49
  start-page: 129
  year: 2018
  end-page: 138
  ident: bb0430
  article-title: New developments in force fields for biomolecular simulations
  publication-title: Curr. Opin. Struc. Biol.
– volume: 36
  start-page: 364
  year: 2011
  end-page: 372
  ident: bb0400
  article-title: The PHD finger: a versatile epigenome reader
  publication-title: Trends Biochem. Sci.
– volume: 10
  start-page: 204
  year: 2000
  end-page: 210
  ident: bb0025
  article-title: The HP1 protein family: getting a grip on chromatin
  publication-title: Curr. Opin. Genet. Dev.
– volume: 21
  start-page: 1049
  year: 2000
  end-page: 1074
  ident: bb0215
  article-title: How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?
  publication-title: J. Comput. Chem.
– volume: 8
  start-page: 2432
  year: 2009
  end-page: 2442
  ident: bb0035
  article-title: Heterochromatin protein 1 is extensively decorated with histone code-like post-translational modifications
  publication-title: Mol. Cell. Proteomics
– volume: 117
  start-page: 5179
  year: 1995
  end-page: 5197
  ident: bb0220
  article-title: A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 546
  year: 2013
  end-page: 555
  ident: bb0390
  article-title: Tudor: a versatile family of histone methylation 'readers'
  publication-title: Trends Biochem. Sci.
– volume: 1839
  start-page: 1362
  year: 2014
  end-page: 1372
  ident: bb0045
  article-title: Understanding the relationship between DNA methylation and histone lysine methylation
  publication-title: Biochim. Biophys. Acta
– volume: 664
  start-page: 95
  year: 2019
  end-page: 101
  ident: bb0350
  article-title: The isolated C-terminal nuclear localization sequence of the breast cancer metastasis suppressor 1 is disordered
  publication-title: Arch. Biochem. Biophys.
– volume: 65
  start-page: 712
  year: 2006
  end-page: 725
  ident: bb0210
  article-title: Comparison of multiple Amber force fields and development of improved protein backbone parameters
  publication-title: Proteins
– volume: 24
  start-page: 377
  year: 2014
  end-page: 386
  ident: bb0015
  article-title: Mechanisms of functional promiscuity by HP1 proteins
  publication-title: Trends Cell Biol
– volume: 119
  start-page: 227
  year: 2010
  end-page: 241
  ident: bb0095
  article-title: SUV39h-independent association of HP1 beta with fibrillarin-positive nucleolar regions
  publication-title: Chromosoma
– volume: 8
  start-page: 3257
  year: 2012
  end-page: 3273
  ident: bb0270
  article-title: Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles
  publication-title: J. Chem. Theory Comput.
– volume: 12
  start-page: 3926
  year: 2016
  end-page: 3947
  ident: bb0275
  article-title: Further along the road less traveled: AMBER ff15ipq, an original protein force field built on a self-consistent physical model
  publication-title: J. Chem. Theory Comput.
– volume: 102
  start-page: 1926
  year: 2012
  end-page: 1933
  ident: bb0180
  article-title: Structural ro of RKS Motifs in cromatin iteractions: a molecular dynamics study of HP1 bound to a variably modified histone tail
  publication-title: Biophys. J.
– volume: 8
  start-page: 4405
  year: 2012
  end-page: 4412
  ident: bb0255
  article-title: Revised AMBER parameters for bioorganic phosphates
  publication-title: J. Chem. Theory Comput.
– volume: 453
  start-page: 682
  year: 2008
  end-page: 686
  ident: bb0340
  article-title: HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response
  publication-title: Nature
– volume: 12
  start-page: 4534
  year: 2016
  end-page: 4548
  ident: bb0250
  article-title: Computer folding of RNA tetraloops: identification of key force field deficiencies
  publication-title: J. Chem. Theory Comput.
– volume: 16
  start-page: 3240
  year: 2020
  end-page: 3252
  ident: bb0450
  article-title: Exploiting a mechanical perturbation of a titin domain to identify how force field parameterization affects protein refolding pathways
  publication-title: J. Chem. Theory Comput.
– volume: 139
  start-page: 17253
  year: 2017
  end-page: 17256
  ident: bb0440
  article-title: Investigation of trimethyllysine binding by the HP1 chromodomain via unnatural amino acid mutagenesis
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 7313
  year: 2007
  end-page: 7323
  ident: bb0065
  article-title: Automethylation of G9a and its implication in wider substrate specificity and HP1 binding
  publication-title: Nucleic Acids Res.
– volume: 17
  start-page: 1870
  year: 2003
  end-page: 1881
  ident: bb0190
  article-title: Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polvcomb and HP1 chromodomains
  publication-title: Genes Dev.
– volume: 9
  start-page: 3878
  year: 2013
  end-page: 3888
  ident: bb0305
  article-title: Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald
  publication-title: J. Chem. Theory Comput.
– volume: 15
  start-page: 2620
  year: 2019
  end-page: 2634
  ident: bb0345
  article-title: General purpose water model can improve atomistic simulations of intrinsically disordered proteins
  publication-title: J. Chem. Theory Comput.
– volume: 18
  start-page: 1127
  year: 2010
  end-page: 1139
  ident: bb0405
  article-title: Structural insight into the zinc finger CW domain as a histone modification reader
  publication-title: Structure
– volume: 16
  start-page: 528
  year: 2020
  end-page: 552
  ident: bb0235
  article-title: ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution
  publication-title: J. Chem. Theory Comput.
– volume: 12
  start-page: 387
  year: 2020
  end-page: 400
  ident: bb0005
  article-title: Heterochromatin protein 1 (HP1): interactions with itself and chromatin components
  publication-title: Biophys. Rev.
– volume: 79
  start-page: 1318
  year: 2011
  end-page: 1328
  ident: bb0460
  article-title: Free-energy landscape of the GB1 hairpin in all-atom explicit solvent simulations with different force fields: similarities and differences
  publication-title: Proteins
– volume: 11
  start-page: 1864
  year: 2015
  end-page: 1874
  ident: bb0320
  article-title: Long-time-step molecular dynamics through hydrogen mass repartitioning
  publication-title: J. Chem. Theory Comput.
– volume: 5
  start-page: 296
  year: 2004
  end-page: 304
  ident: bb0100
  article-title: HP1 and the dynamics of heterochromatin maintenance
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 78
  start-page: 1950
  year: 2010
  end-page: 1958
  ident: bb5000
  article-title: Proteins
  publication-title: Improved Side-chain Torsion Potentials for the Amber ff99SB Protein Force Field
– volume: 11
  start-page: 3696
  year: 2015
  end-page: 3713
  ident: bb0205
  article-title: ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB
  publication-title: J. Chem. Theory Comput.
– volume: 410
  start-page: 116
  year: 2001
  end-page: 120
  ident: bb0055
  article-title: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins
  publication-title: Nature
– volume: 27
  start-page: 827
  year: 2020
  end-page: 838
  ident: bb0380
  article-title: Structural basis for the binding selectivity of human CDY chromodomains
  publication-title: Cell Chem. Biol.
– volume: 165
  start-page: 433
  year: 2019
  end-page: 446
  ident: bb0385
  article-title: Mitotic phosphorylation of HP1alpha regulates its cell cycle-dependent chromatin binding
  publication-title: J. Biochem.
– volume: 11
  start-page: 1645
  year: 2015
  end-page: 1657
  ident: bb0230
  article-title: Systematic parameterization of monovalent ions employing the nonbonded model
  publication-title: J. Chem. Theory Comput.
– volume: 434
  start-page: 820
  year: 2013
  end-page: 828
  ident: bb0080
  article-title: DNA microarray profiling of genes differentially regulated by three heterochromatin protein 1 (HP1) homologs in Drosophila
  publication-title: Biochem. Bioph. Res. Co.
– volume: 50
  start-page: 723
  year: 2013
  end-page: 735
  ident: bb0075
  article-title: A method for systematic mapping of protein lysine methylation identifies functions for HP1 beta in DNA damage response
  publication-title: Mol. Cell
– volume: 14
  start-page: 71
  year: 2017
  end-page: 73
  ident: bb0265
  article-title: CHARMM36m: an improved force field for folded and intrinsically disordered proteins
  publication-title: Nat. Methods
– volume: 23
  start-page: 327
  year: 1977
  end-page: 341
  ident: bb0315
  article-title: Numerical-integration of cartesian equations of motion of a system with constraints - molecular-dynamics of N-alkanes
  publication-title: J. Comput. Phys.
– volume: 9
  start-page: 3084
  year: 2013
  end-page: 3095
  ident: bb0325
  article-title: PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data
  publication-title: J. Chem. Theory Comput.
– volume: 184
  start-page: 374
  year: 2013
  end-page: 380
  ident: bb0300
  article-title: SPFP: speed without compromise - a mixed precision model for GPU accelerated molecular dynamics simulations
  publication-title: Comput. Phys. Commun.
– volume: 108
  start-page: 220
  year: 1999
  end-page: 234
  ident: bb0040
  article-title: Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells
  publication-title: Chromosoma
– volume: 22
  start-page: 2577
  year: 1983
  end-page: 2637
  ident: bb0335
  article-title: Dictionary of protein secondary structure - pattern-recognition of hydrogen-bonded and geometrical features
  publication-title: Biopolymers
– volume: 18
  start-page: 337
  year: 2011
  end-page: 344
  ident: bb0105
  article-title: Histone H3 lysine 9 trimethylation and HP1 gamma favor inclusion of alternative exons
  publication-title: Nat. Struct. Mol. Biol.
– volume: 118
  start-page: 4177
  year: 2018
  end-page: 4338
  ident: bb0150
  article-title: RNA structural dynamics as captured by molecular simulations: a comprehensive overview
  publication-title: Chem. Rev.
– volume: 11
  start-page: 3969
  year: 2015
  end-page: 3972
  ident: bb0355
  article-title: Improved force field parameters lead to a better description of RNA structure
  publication-title: J. Chem. Theory Comput.
– volume: 44
  start-page: 6452
  year: 2016
  end-page: 6470
  ident: bb0295
  article-title: Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs
  publication-title: Nucleic Acids Res.
– volume: 299
  start-page: 721
  year: 2003
  end-page: 725
  ident: bb0135
  article-title: Maintenance of stable heterochromatin domains by dynamic HP1 binding
  publication-title: Science
– reference: The PyMOL Molecular Graphics System. Version 1.8 Schrödinger, LLC.
– volume: 116
  start-page: 6279
  year: 2012
  end-page: 6287
  ident: bb0280
  article-title: Water model tuning for improved reproduction of rotational diffusion and NMR spectral density
  publication-title: J. Phys. Chem. B
– volume: 102
  start-page: 1462
  year: 2012
  end-page: 1467
  ident: bb0455
  article-title: Residue-specific alpha-helix propensities from molecular simulation
  publication-title: Biophys. J.
– volume: 165
  start-page: 455
  year: 2019
  end-page: 458
  ident: bb0360
  article-title: Do the charges matter? Balancing the charges of the chromodomain proteins on the nucleosome
  publication-title: J. Biochem.
– year: 2018
  ident: 10.1016/j.bbagen.2020.129771_bb0285
– volume: 10
  start-page: 12
  year: 2017
  ident: 10.1016/j.bbagen.2020.129771_bb0070
  article-title: Histone peptide microarray screen of chromo and Tudor domains defines new histone lysine methylation interactions
  publication-title: Epigenet. Chromatin.
  doi: 10.1186/s13072-017-0117-5
– volume: 42
  start-page: 106
  year: 2017
  ident: 10.1016/j.bbagen.2020.129771_bb0160
  article-title: Principles of protein structural ensemble determination
  publication-title: Curr. Opin. Struc. Biol.
  doi: 10.1016/j.sbi.2016.12.004
– volume: 16
  start-page: 528
  year: 2020
  ident: 10.1016/j.bbagen.2020.129771_bb0235
  article-title: ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b00591
– volume: 116
  start-page: 6279
  year: 2012
  ident: 10.1016/j.bbagen.2020.129771_bb0280
  article-title: Water model tuning for improved reproduction of rotational diffusion and NMR spectral density
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp301100g
– volume: 108
  start-page: 220
  year: 1999
  ident: 10.1016/j.bbagen.2020.129771_bb0040
  article-title: Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells
  publication-title: Chromosoma
  doi: 10.1007/s004120050372
– volume: 434
  start-page: 820
  year: 2013
  ident: 10.1016/j.bbagen.2020.129771_bb0080
  article-title: DNA microarray profiling of genes differentially regulated by three heterochromatin protein 1 (HP1) homologs in Drosophila
  publication-title: Biochem. Bioph. Res. Co.
  doi: 10.1016/j.bbrc.2013.04.020
– volume: 30
  start-page: 103
  year: 2014
  ident: 10.1016/j.bbagen.2020.129771_bb0010
  article-title: HP1a: a structural chromosomal protein regulating transcription
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2014.01.002
– volume: 119
  start-page: 227
  year: 2010
  ident: 10.1016/j.bbagen.2020.129771_bb0095
  article-title: SUV39h-independent association of HP1 beta with fibrillarin-positive nucleolar regions
  publication-title: Chromosoma
  doi: 10.1007/s00412-009-0252-2
– volume: 35
  start-page: 7313
  year: 2007
  ident: 10.1016/j.bbagen.2020.129771_bb0065
  article-title: Automethylation of G9a and its implication in wider substrate specificity and HP1 binding
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm726
– volume: 165
  start-page: 455
  year: 2019
  ident: 10.1016/j.bbagen.2020.129771_bb0360
  article-title: Do the charges matter? Balancing the charges of the chromodomain proteins on the nucleosome
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvz004
– volume: 114
  start-page: 2336
  year: 2018
  ident: 10.1016/j.bbagen.2020.129771_bb0185
  article-title: Interactions of HP1 bound to H3K9me3 dinucleosome by molecular simulations and biochemical assays
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2018.03.025
– volume: 97
  start-page: 599
  year: 2009
  ident: 10.1016/j.bbagen.2020.129771_bb0465
  article-title: Secondary structure propensities in peptide folding simulations: a systematic comparison of molecular mechanics interaction schemes
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2009.04.061
– volume: 50
  start-page: 723
  year: 2013
  ident: 10.1016/j.bbagen.2020.129771_bb0075
  article-title: A method for systematic mapping of protein lysine methylation identifies functions for HP1 beta in DNA damage response
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.04.025
– volume: 65
  start-page: 712
  year: 2006
  ident: 10.1016/j.bbagen.2020.129771_bb0210
  article-title: Comparison of multiple Amber force fields and development of improved protein backbone parameters
  publication-title: Proteins
  doi: 10.1002/prot.21123
– volume: 12
  start-page: 387
  year: 2020
  ident: 10.1016/j.bbagen.2020.129771_bb0005
  article-title: Heterochromatin protein 1 (HP1): interactions with itself and chromatin components
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-020-00663-y
– volume: 38
  start-page: 1571
  year: 2010
  ident: 10.1016/j.bbagen.2020.129771_bb0165
  article-title: Isoform-specific determinants in the HP1 binding to histone 3: insights from molecular simulations
  publication-title: Amino Acids
  doi: 10.1007/s00726-009-0371-3
– volume: 54
  start-page: 2314
  year: 2015
  ident: 10.1016/j.bbagen.2020.129771_bb0375
  article-title: Investigation of the beta-sheet interactions between dHP1 chromodomain and histone 3
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.5b00024
– volume: 15
  start-page: 5659
  year: 2019
  ident: 10.1016/j.bbagen.2020.129771_bb0200
  article-title: Role of fine structural dynamics in recognition of histone H3 by HP1 gamma(CSD) dimer and ability of force fields to describe their interaction network
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b00434
– volume: 410
  start-page: 116
  year: 2001
  ident: 10.1016/j.bbagen.2020.129771_bb0055
  article-title: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins
  publication-title: Nature
  doi: 10.1038/35065132
– volume: 12
  start-page: 4534
  year: 2016
  ident: 10.1016/j.bbagen.2020.129771_bb0250
  article-title: Computer folding of RNA tetraloops: identification of key force field deficiencies
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.6b00300
– volume: 24
  start-page: 3157
  year: 2004
  ident: 10.1016/j.bbagen.2020.129771_bb0130
  article-title: In vivo dynamics of Swi6 in yeast: evidence for a stochastic model of heterochromatin
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.8.3157-3167.2004
– volume: 11
  start-page: 1864
  year: 2015
  ident: 10.1016/j.bbagen.2020.129771_bb0320
  article-title: Long-time-step molecular dynamics through hydrogen mass repartitioning
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct5010406
– volume: 9
  start-page: 3084
  year: 2013
  ident: 10.1016/j.bbagen.2020.129771_bb0325
  article-title: PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400341p
– volume: 102
  start-page: 1462
  year: 2012
  ident: 10.1016/j.bbagen.2020.129771_bb0455
  article-title: Residue-specific alpha-helix propensities from molecular simulation
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2012.02.024
– volume: 22
  start-page: 3164
  year: 2003
  ident: 10.1016/j.bbagen.2020.129771_bb0110
  article-title: HP1 binding to native chromatin in vitro is determined by the hinge region and not by the chromodomain
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg306
– volume: 27
  start-page: 827
  year: 2020
  ident: 10.1016/j.bbagen.2020.129771_bb0380
  article-title: Structural basis for the binding selectivity of human CDY chromodomains
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2020.05.007
– volume: 22
  start-page: 2577
  year: 1983
  ident: 10.1016/j.bbagen.2020.129771_bb0335
  article-title: Dictionary of protein secondary structure - pattern-recognition of hydrogen-bonded and geometrical features
  publication-title: Biopolymers
  doi: 10.1002/bip.360221211
– volume: 8
  start-page: 2432
  year: 2009
  ident: 10.1016/j.bbagen.2020.129771_bb0035
  article-title: Heterochromatin protein 1 is extensively decorated with histone code-like post-translational modifications
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M900160-MCP200
– volume: 16
  start-page: 3240
  year: 2020
  ident: 10.1016/j.bbagen.2020.129771_bb0450
  article-title: Exploiting a mechanical perturbation of a titin domain to identify how force field parameterization affects protein refolding pathways
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.0c00080
– volume: 5
  start-page: e8570
  year: 2010
  ident: 10.1016/j.bbagen.2020.129771_bb0370
  article-title: Structural biology of human H3K9 methyltransferases
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0008570
– volume: 15
  start-page: 2620
  year: 2019
  ident: 10.1016/j.bbagen.2020.129771_bb0345
  article-title: General purpose water model can improve atomistic simulations of intrinsically disordered proteins
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b01123
– volume: 19
  start-page: 1218
  year: 2012
  ident: 10.1016/j.bbagen.2020.129771_bb0395
  article-title: Perceiving the epigenetic landscape through histone readers
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2436
– volume: 11
  start-page: 3696
  year: 2015
  ident: 10.1016/j.bbagen.2020.129771_bb0205
  article-title: ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00255
– volume: 286
  start-page: 521
  year: 2011
  ident: 10.1016/j.bbagen.2020.129771_bb0145
  article-title: Recognition and specificity determinants of the human cbx chromodomains
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.191411
– volume: 117
  start-page: 5179
  year: 1995
  ident: 10.1016/j.bbagen.2020.129771_bb0220
  article-title: A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00124a002
– volume: 280
  start-page: 38090
  year: 2005
  ident: 10.1016/j.bbagen.2020.129771_bb0060
  article-title: HP1 binds specifically to Lys(26)-methylated histone H1.4, whereas simultaneous Ser(27) phosphorylation blocks HP1 binding
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C500229200
– volume: 78
  start-page: 1950
  year: 2010
  ident: 10.1016/j.bbagen.2020.129771_bb5000
– volume: 3
  start-page: 975
  year: 2002
  ident: 10.1016/j.bbagen.2020.129771_bb0115
  article-title: Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1 alpha
  publication-title: EMBO Rep.
  doi: 10.1093/embo-reports/kvf194
– volume: 12
  start-page: 1084
  year: 2011
  ident: 10.1016/j.bbagen.2020.129771_bb0090
  article-title: The HP1a disordered C terminus and chromo shadow domain cooperate to select target peptide partners
  publication-title: Chembiochem
  doi: 10.1002/cbic.201000598
– volume: 453
  start-page: 682
  year: 2008
  ident: 10.1016/j.bbagen.2020.129771_bb0340
  article-title: HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response
  publication-title: Nature
  doi: 10.1038/nature06875
– volume: 12
  start-page: 3926
  year: 2016
  ident: 10.1016/j.bbagen.2020.129771_bb0275
  article-title: Further along the road less traveled: AMBER ff15ipq, an original protein force field built on a self-consistent physical model
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.6b00567
– volume: 37
  start-page: 2951
  year: 2009
  ident: 10.1016/j.bbagen.2020.129771_bb0410
  article-title: The solution structure of the first PHD finger of autoimmune regulator in complex with non-modified histone H3 tail reveals the antagonistic role of H3R2 methylation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp166
– volume: 11
  start-page: 3969
  year: 2015
  ident: 10.1016/j.bbagen.2020.129771_bb0355
  article-title: Improved force field parameters lead to a better description of RNA structure
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00444
– volume: 438
  start-page: 1176
  year: 2005
  ident: 10.1016/j.bbagen.2020.129771_bb0170
  article-title: Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin
  publication-title: Nature
  doi: 10.1038/nature04254
– volume: 12
  start-page: 7
  year: 2019
  ident: 10.1016/j.bbagen.2020.129771_bb0425
  article-title: Histone H3 lysine K4 methylation and its role in learning and memory
  publication-title: Epigenet. Chromatin.
  doi: 10.1186/s13072-018-0251-8
– volume: 42
  start-page: 147
  year: 2017
  ident: 10.1016/j.bbagen.2020.129771_bb0435
  article-title: Computational and theoretical advances in studies of intrinsically disordered proteins
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2017.01.006
– volume: 14
  start-page: 71
  year: 2017
  ident: 10.1016/j.bbagen.2020.129771_bb0265
  article-title: CHARMM36m: an improved force field for folded and intrinsically disordered proteins
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4067
– volume: 292
  start-page: 5655
  year: 2017
  ident: 10.1016/j.bbagen.2020.129771_bb0120
  article-title: Peptide recognition by heterochromatin protein 1 (HP1) chromoshadow domains revisited: plasticity in the pseudosymmetric histone binding site of human HP1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.768374
– volume: 287
  start-page: 18730
  year: 2012
  ident: 10.1016/j.bbagen.2020.129771_bb0085
  article-title: Characterization of chromoshadow domain-mediated binding of heterochromatin protein 1 alpha (HP1 alpha) to histone H3
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.337204
– volume: 79
  start-page: 1318
  year: 2011
  ident: 10.1016/j.bbagen.2020.129771_bb0460
  article-title: Free-energy landscape of the GB1 hairpin in all-atom explicit solvent simulations with different force fields: similarities and differences
  publication-title: Proteins
  doi: 10.1002/prot.22972
– volume: 99
  start-page: 16462
  year: 2002
  ident: 10.1016/j.bbagen.2020.129771_bb0020
  article-title: Does heterochromatin protein 1 always follow code?
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.162371699
– volume: 44
  start-page: D435
  issue: 2016
  year: 2016
  ident: 10.1016/j.bbagen.2020.129771_bb0030
  article-title: 10-year anniversary of a resource for post-translational modification of proteins
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1240
– volume: 38
  start-page: 546
  year: 2013
  ident: 10.1016/j.bbagen.2020.129771_bb0390
  article-title: Tudor: a versatile family of histone methylation 'readers'
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2013.08.002
– volume: 79
  start-page: 926
  year: 1983
  ident: 10.1016/j.bbagen.2020.129771_bb0225
  article-title: Comparison of simple potential functions for simulating liquid water
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445869
– volume: 14
  start-page: 33
  year: 1996
  ident: 10.1016/j.bbagen.2020.129771_bb0330
  article-title: VMD: visual molecular dynamics
  publication-title: J. Mol. Graphics Modell.
  doi: 10.1016/0263-7855(96)00018-5
– volume: 18
  start-page: 1127
  year: 2010
  ident: 10.1016/j.bbagen.2020.129771_bb0405
  article-title: Structural insight into the zinc finger CW domain as a histone modification reader
  publication-title: Structure
  doi: 10.1016/j.str.2010.06.012
– volume: 15
  start-page: 3288
  year: 2019
  ident: 10.1016/j.bbagen.2020.129771_bb0245
  article-title: Improving the performance of the Amber RNA force field by tuning the hydrogen-bonding interactions
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b00955
– volume: 8
  start-page: 3257
  year: 2012
  ident: 10.1016/j.bbagen.2020.129771_bb0270
  article-title: Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300400x
– volume: 410
  start-page: 120
  year: 2001
  ident: 10.1016/j.bbagen.2020.129771_bb0050
  article-title: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain
  publication-title: Nature
  doi: 10.1038/35065138
– volume: 184
  start-page: 374
  year: 2013
  ident: 10.1016/j.bbagen.2020.129771_bb0300
  article-title: SPFP: speed without compromise - a mixed precision model for GPU accelerated molecular dynamics simulations
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.09.022
– volume: 12
  start-page: 281
  year: 2006
  ident: 10.1016/j.bbagen.2020.129771_bb0260
  article-title: AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-005-0028-4
– volume: 299
  start-page: 721
  year: 2003
  ident: 10.1016/j.bbagen.2020.129771_bb0135
  article-title: Maintenance of stable heterochromatin domains by dynamic HP1 binding
  publication-title: Science
  doi: 10.1126/science.1078572
– volume: 5
  start-page: 3863
  year: 2014
  ident: 10.1016/j.bbagen.2020.129771_bb0240
  article-title: Building water models: a different approach
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz501780a
– volume: 102
  start-page: 1926
  year: 2012
  ident: 10.1016/j.bbagen.2020.129771_bb0180
  article-title: Structural ro of RKS Motifs in cromatin iteractions: a molecular dynamics study of HP1 bound to a variably modified histone tail
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2012.03.030
– volume: 17
  start-page: 1870
  year: 2003
  ident: 10.1016/j.bbagen.2020.129771_bb0190
  article-title: Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polvcomb and HP1 chromodomains
  publication-title: Genes Dev.
  doi: 10.1101/gad.1110503
– volume: 43
  start-page: 79
  year: 2017
  ident: 10.1016/j.bbagen.2020.129771_bb0155
  article-title: Using simulation to interpret experimental data in terms of protein conformational ensembles
  publication-title: Curr. Opin. Struc. Biol.
  doi: 10.1016/j.sbi.2016.11.018
– volume: 11
  start-page: 1645
  year: 2015
  ident: 10.1016/j.bbagen.2020.129771_bb0230
  article-title: Systematic parameterization of monovalent ions employing the nonbonded model
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct500918t
– volume: 23
  start-page: 327
  year: 1977
  ident: 10.1016/j.bbagen.2020.129771_bb0315
  article-title: Numerical-integration of cartesian equations of motion of a system with constraints - molecular-dynamics of N-alkanes
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(77)90098-5
– ident: 10.1016/j.bbagen.2020.129771_bb0195
– volume: 36
  start-page: 364
  year: 2011
  ident: 10.1016/j.bbagen.2020.129771_bb0400
  article-title: The PHD finger: a versatile epigenome reader
  publication-title: Trends Biochem. Sci.
– volume: 8
  start-page: 4405
  year: 2012
  ident: 10.1016/j.bbagen.2020.129771_bb0255
  article-title: Revised AMBER parameters for bioorganic phosphates
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300613v
– volume: 118
  start-page: 4177
  year: 2018
  ident: 10.1016/j.bbagen.2020.129771_bb0150
  article-title: RNA structural dynamics as captured by molecular simulations: a comprehensive overview
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00427
– volume: 438
  start-page: 1116
  year: 2005
  ident: 10.1016/j.bbagen.2020.129771_bb0175
  article-title: Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation
  publication-title: Nature
  doi: 10.1038/nature04219
– volume: 139
  start-page: 17253
  year: 2017
  ident: 10.1016/j.bbagen.2020.129771_bb0440
  article-title: Investigation of trimethyllysine binding by the HP1 chromodomain via unnatural amino acid mutagenesis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09223
– volume: 18
  start-page: 337
  year: 2011
  ident: 10.1016/j.bbagen.2020.129771_bb0105
  article-title: Histone H3 lysine 9 trimethylation and HP1 gamma favor inclusion of alternative exons
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1995
– volume: 1839
  start-page: 1362
  year: 2014
  ident: 10.1016/j.bbagen.2020.129771_bb0045
  article-title: Understanding the relationship between DNA methylation and histone lysine methylation
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2014.02.007
– volume: 21
  start-page: 1049
  year: 2000
  ident: 10.1016/j.bbagen.2020.129771_bb0215
  article-title: How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?
  publication-title: J. Comput. Chem.
  doi: 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
– volume: 10
  start-page: 204
  year: 2000
  ident: 10.1016/j.bbagen.2020.129771_bb0025
  article-title: The HP1 protein family: getting a grip on chromatin
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/S0959-437X(00)00058-7
– volume: 7
  start-page: e35376
  year: 2012
  ident: 10.1016/j.bbagen.2020.129771_bb0140
  article-title: Structural basis of the chromodomain of Cbx3 bound to methylated peptides from histone h1 and G9a
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0035376
– volume: 464
  start-page: 792
  year: 2010
  ident: 10.1016/j.bbagen.2020.129771_bb0420
  article-title: Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4
  publication-title: Nature
  doi: 10.1038/nature08839
– volume: 165
  start-page: 433
  year: 2019
  ident: 10.1016/j.bbagen.2020.129771_bb0385
  article-title: Mitotic phosphorylation of HP1alpha regulates its cell cycle-dependent chromatin binding
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvy117
– volume: 24
  start-page: 1802
  year: 2016
  ident: 10.1016/j.bbagen.2020.129771_bb0415
  article-title: Karyopherin-beta2 recognition of a PY-NLS variant that lacks the proline-tyrosine motif
  publication-title: Structure
  doi: 10.1016/j.str.2016.07.018
– volume: 5
  start-page: 296
  year: 2004
  ident: 10.1016/j.bbagen.2020.129771_bb0100
  article-title: HP1 and the dynamics of heterochromatin maintenance
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1355
– volume: 49
  start-page: 129
  year: 2018
  ident: 10.1016/j.bbagen.2020.129771_bb0430
  article-title: New developments in force fields for biomolecular simulations
  publication-title: Curr. Opin. Struc. Biol.
  doi: 10.1016/j.sbi.2018.02.002
– volume: 24
  start-page: 377
  year: 2014
  ident: 10.1016/j.bbagen.2020.129771_bb0015
  article-title: Mechanisms of functional promiscuity by HP1 proteins
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2014.01.002
– volume: 9
  start-page: 3878
  year: 2013
  ident: 10.1016/j.bbagen.2020.129771_bb0305
  article-title: Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400314y
– volume: 44
  start-page: 6452
  year: 2016
  ident: 10.1016/j.bbagen.2020.129771_bb0295
  article-title: Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw438
– volume: 664
  start-page: 95
  year: 2019
  ident: 10.1016/j.bbagen.2020.129771_bb0350
  article-title: The isolated C-terminal nuclear localization sequence of the breast cancer metastasis suppressor 1 is disordered
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2019.01.035
– volume: 384
  start-page: 288
  year: 2004
  ident: 10.1016/j.bbagen.2020.129771_bb0310
  article-title: Molecular dynamics simulations of water and biomolecules with a Monte Carlo constant pressure algorithm
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2003.12.039
– volume: 295
  start-page: 2080
  year: 2002
  ident: 10.1016/j.bbagen.2020.129771_bb0365
  article-title: Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail
  publication-title: Science
  doi: 10.1126/science.1069473
– volume: 6
  start-page: 22527
  year: 2016
  ident: 10.1016/j.bbagen.2020.129771_bb0125
  article-title: Extended string-like binding of the phosphorylated HP1 alpha N-terminal tail to the lysine 9-methylated histone H3 tail
  publication-title: Sci. Rep.
  doi: 10.1038/srep22527
– volume: 17
  start-page: 1823
  year: 2003
  ident: 10.1016/j.bbagen.2020.129771_bb0445
  article-title: Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27
  publication-title: Genes Dev.
  doi: 10.1101/gad.269603
– volume: 11
  start-page: 1220
  year: 2015
  ident: 10.1016/j.bbagen.2020.129771_bb0290
  article-title: Can we execute stable microsecond-scale atomistic simulations of protein-RNA complexes?
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct5008108
– volume: 113
  start-page: 9004
  year: 2009
  ident: 10.1016/j.bbagen.2020.129771_bb5005
  article-title: Optimized Molecular Dynamics Force Fields Applied to the Helix-Coil Transition of Polypeptides
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp901540t
SSID ssj0000595
Score 2.325094
Snippet The chromodomain (CD) of HP1 proteins is an established H3K9me3 reader that also binds H1, EHMT2 and H3K23 lysine-methylated targets. Structural experiments...
The chromodomain (CD) of HP1 proteins is an established H3K9ᵐᵉ³ reader that also binds H1, EHMT2 and H3K23 lysine-methylated targets. Structural experiments...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 129771
SubjectTerms amino acids
Chromodomain
HP1
MD simulations
molecular dynamics
Peptide recognition
peptides
Protein-protein interaction
solvents
Title Residues flanking the ARKme3T/S motif allow binding of diverse targets to the HP1 chromodomain: Insights from molecular dynamics simulations
URI https://dx.doi.org/10.1016/j.bbagen.2020.129771
https://www.proquest.com/docview/2458036556
https://www.proquest.com/docview/2551905931
Volume 1865
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA6lIvoiWhXrpUTwddzJTC6zvi2LZWuxSC_Qt5ArjnRnirOl9MVf4I_2nGRGUdCCb0NIQpiTnPMl-XI-Qt40ALpLZDVicC64aurC1jEW0ptQwnLi84jnHR-P5OqMfzgX51tkOb2FQVrl6PuzT0_eeiyZjX9zdtm2sxO81AM4ISr4wI0DvmDnCmf522-_aB4AH0S-SeAF1p6ezyWOl7WwaDELaoVpFgAKsb-Fpz8cdYo--w_JgxE20kUe2SOyFbodcjcLSd7skHvLSbftMfl-HGCGQSc0XpgkjEAB5NHF8eE61KezE4r0u0jxwv2a2ja9aqF9pD4xNALN3PCBbvrUbvWJUfcZSXu-X5u2e0cPugF39NA_lEJvo74u9VncfqBDux5FwYYn5Gz__elyVYyaC4WDzQkrPIclrZxhzgpvuZHcRCOCtGW0inEVja284nbOovSSB0CHsSkNFy5KB1Cofkq2u74LzwiNwrimblzlK8clk81clcwYFWsbZHTlLqmnX63dmJAcdTEu9MQ8-6KzgTQaSGcD7ZLiZ6vLnJDjlvpqsqL-bWJpiBm3tHw9GV2DCfEixXShvxp0xUUDkV8I-Y86AEXnqJfInv_3CF6Q-xVSaNKJz0uyvfl6FV4BBtrYvTTJ98idxcHh6ugH83cHPA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA51i9QX0apYrxF8HXYuSWbWt2WxzLrtIu0W-hZyxZHuTHG2iP_BH-05mYyioAXfhpCEMCc550vy5XyEvK0AdKfIasTgnLCyKhJdeJ8Iq1wKy4nNPJ53nK5FfcE-XPLLPbIY38IgrTL6_sGnB28dS6bxb06vm2Z6jpd6ACd4Dh-4cbhD9jE7FZ-Q_flyVa9_OWQexFewfoINxhd0gealNaxbTISaY6YFQEPZ3yLUH746BKDjB-R-RI50PgzuIdlz7SG5O2hJfjskB4tRuu0R-X7mYJJBJ9RfqaCNQAHn0fnZauuKzfScIgPPU7xz_0p1Ex620M5TG0gajg708J7uutCu_phR8wl5e7bbqqZ9R5dtj5t66B9KobcosUvtoG_f077ZRl2w_jG5OH6_WdRJlF1IDOxPssQyWNWlUZnR3GqmBFNecSd06nWZsdIrnduS6VnmhRXMAUD0VaoYN14YQEPFEzJpu9Y9JdRzZaqiMrnNDROZqGZlmilV-kI74U16RIrxV0sTc5KjNMaVHMlnn-VgIIkGkoOBjkjys9X1kJPjlvrlaEX529ySEDZuaflmNLoEE-Jdimpdd9PLnPEKgj_n4h91AI3OUDIxe_bfI3hNDurN6Yk8Wa5Xz8m9HBk14QDoBZnsvty4lwCJdvpVnPI_AOzICe0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Residues+flanking+the+ARKme3T%2FS+motif+allow+binding+of+diverse+targets+to+the+HP1+chromodomain%3A+Insights+from+molecular+dynamics+simulations&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Pokorn%C3%A1%2C+Pavl%C3%ADna&rft.au=Krepl%2C+Miroslav&rft.au=%C5%A0poner%2C+Ji%C5%99%C3%AD&rft.date=2021-01-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1865&rft.issue=1&rft.spage=129771&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129771&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon