OSCILLATORY BEHAVIOR OF SEMI-CANONICAL THIRD-ORDER DELAY DIFFERENTAL EQUATIONS WITH A SUPERLINEAR NEUTRAL TERM
A class of third-order semi-canonical differential equations with a superlinear neutral term of the type ( a ( t ) [ ( b ( t ) ( x ( t ) + p ( t ) x α ( τ ) ) ’ ) ’ ] β ) + q ( t ) x λ ( σ ( t ) ) = 0 is considered. Some oscillation conditions are presented which are new in form and complement those...
Saved in:
Published in | Applicable analysis and discrete mathematics Vol. 18; no. 2; pp. 477 - 490 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
University of Belgrade, Serbia
01.01.2024
|
Online Access | Get full text |
ISSN | 1452-8630 2406-100X |
DOI | 10.2298/AADM210812006V |
Cover
Abstract | A class of third-order semi-canonical differential equations with a superlinear neutral term of the type
(
a
(
t
)
[
(
b
(
t
)
(
x
(
t
)
+
p
(
t
)
x
α
(
τ
)
)
’
)
’
]
β
)
+
q
(
t
)
x
λ
(
σ
(
t
)
)
=
0
is considered. Some oscillation conditions are presented which are new in form and complement those already reported in the literature. Some examples illustrating the main results are provided. |
---|---|
AbstractList | A class of third-order semi-canonical differential equations with a superlinear neutral term of the type
(
a
(
t
)
[
(
b
(
t
)
(
x
(
t
)
+
p
(
t
)
x
α
(
τ
)
)
’
)
’
]
β
)
+
q
(
t
)
x
λ
(
σ
(
t
)
)
=
0
is considered. Some oscillation conditions are presented which are new in form and complement those already reported in the literature. Some examples illustrating the main results are provided. A class of third-order semi-canonical differential equations with a superlinear neutral term of the type ( a(t)[(b(t)(x(t) + p(t)x?(? (t))?)?]?)? + q(t)x?(?(t)) = 0 is considered. Some oscillation conditions are presented which are new in form and complement those already reported in the literature. Some examples illustrating the main results are provided. |
Author | Graef, John R. Deepalakshmi, R. Thandapani, E. Vidhyaa, K. S. |
Author_xml | – sequence: 1 givenname: K. S. surname: Vidhyaa fullname: Vidhyaa, K. S. – sequence: 2 givenname: R. surname: Deepalakshmi fullname: Deepalakshmi, R. – sequence: 3 givenname: John R. surname: Graef fullname: Graef, John R. – sequence: 4 givenname: E. surname: Thandapani fullname: Thandapani, E. |
BookMark | eNp1kEFLwzAAhYNMcJtevQn5A51p0rTpMbapDXStpu10p5JlLXTMTtoi-O_dmAgKnt7h8X0P3gxMukNXA3BrowXGPrvnPFxiGzEbI-SuLsAUO8i1bIReJ2BqOxRbzCXoCsyGYYcQZdT3p6DL8kAmCS8ytYYPIuYrmSmYRTAXS2kFPM1SGfAEFrFUoZWpUCgYioSvYSijSCiRFsdWPJe8kFmawxdZxJDDvHwSKpGp4AqmoizUSSHU8hpcNno_1DffOQdlJIogtpLs8bRjGWy7H9amwZRoanxTewRrQ2ntUkwxNu4WbxAxDdWYboihjYtpjWqbmK3nMY9ptqXMkDlYnL2mPwxDXzfVe9--6f6zslF1eqv6_dYRcP4Aph312B66sdft_n_s7ozthvHQ_4xgjxDfIQ75Asj9cEU |
CitedBy_id | crossref_primary_10_1007_s00009_024_02728_8 crossref_primary_10_3934_math_2024802 |
Cites_doi | 10.1007/978-94-015-9401-1 10.1155/2019/5691758 10.3390/math8030325 10.1515/ms-2017-0335 10.1143/PTP.56.679 10.1016/j.amc.2004.04.017 10.12732/ijpam.v108i1.15 10.58997/ejde.2020.32 10.1016/0167-2789(86)90055-2 10.3390/math10162902 10.2478/tmmp-2021-0028 10.1186/1029-242X-2014-512 10.1155/2012/569201 10.1007/978-1-4612-9892-2 10.3390/math8050686 10.3906/mat-2004-85 10.26351/FDE/29/1-2/4 10.1080/16583655.2019.1622847 10.55730/1300-0098.3145 10.1016/j.aml.2015.12.010 10.14232/ejqtde.2021.1.46 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.2298/AADM210812006V |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2406-100X |
EndPage | 490 |
ExternalDocumentID | 10_2298_AADM210812006V 27339434 |
GroupedDBID | 23M 2WC 53S 5GY AAHSX ABBHK ABDBF ABJPR ACHDO ACIPV ACMTB ACTMH ACUHS AENEX AEUPB AFOWJ AFVYC ALMA_UNASSIGNED_HOLDINGS ALRMG AMVHM CS3 DQDLB ECEWR EOJEC ESX IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST KQ8 OBODZ OK1 OVT RNS SA0 TR2 TUS AAYXX ABXSQ ADULT AEHFS AELHJ AGLNM AIHAF C1A CITATION |
ID | FETCH-LOGICAL-c216v-bf253a5c9ce732ac55e652522c6d2b03cf5a25b3c5f625e0e13cd77878a8d58c3 |
ISSN | 1452-8630 |
IngestDate | Tue Aug 05 12:01:06 EDT 2025 Thu Apr 24 22:59:58 EDT 2025 Thu Jul 03 21:35:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c216v-bf253a5c9ce732ac55e652522c6d2b03cf5a25b3c5f625e0e13cd77878a8d58c3 |
OpenAccessLink | http://www.doiserbia.nb.rs/ft.aspx?id=1452-86302400006V |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_2298_AADM210812006V crossref_citationtrail_10_2298_AADM210812006V jstor_primary_27339434 |
PublicationCentury | 2000 |
PublicationDate | 20240101 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 1 year: 2024 text: 20240101 day: 1 |
PublicationDecade | 2020 |
PublicationTitle | Applicable analysis and discrete mathematics |
PublicationYear | 2024 |
Publisher | University of Belgrade, Serbia |
Publisher_xml | – name: University of Belgrade, Serbia |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref25 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref1 doi: 10.1007/978-94-015-9401-1 – ident: ref3 doi: 10.1155/2019/5691758 – ident: ref25 doi: 10.3390/math8030325 – ident: ref21 doi: 10.1515/ms-2017-0335 – ident: ref12 doi: 10.1143/PTP.56.679 – ident: ref19 doi: 10.1016/j.amc.2004.04.017 – ident: ref5 doi: 10.12732/ijpam.v108i1.15 – ident: ref22 – ident: ref23 doi: 10.58997/ejde.2020.32 – ident: ref16 doi: 10.1016/0167-2789(86)90055-2 – ident: ref15 doi: 10.3390/math10162902 – ident: ref13 – ident: ref2 doi: 10.2478/tmmp-2021-0028 – ident: ref11 doi: 10.1186/1029-242X-2014-512 – ident: ref14 doi: 10.1155/2012/569201 – ident: ref9 doi: 10.1007/978-1-4612-9892-2 – ident: ref17 doi: 10.3390/math8050686 – ident: ref6 doi: 10.3906/mat-2004-85 – ident: ref8 doi: 10.26351/FDE/29/1-2/4 – ident: ref7 doi: 10.1080/16583655.2019.1622847 – ident: ref20 doi: 10.55730/1300-0098.3145 – ident: ref18 – ident: ref4 doi: 10.1016/j.aml.2015.12.010 – ident: ref24 doi: 10.14232/ejqtde.2021.1.46 – ident: ref10 |
SSID | ssj0058599 |
Score | 2.3022006 |
Snippet | A class of third-order semi-canonical differential equations with a superlinear neutral term of the type
(
a
(
t
)
[
(
b
(
t
)
(
x
(
t
)
+
p
(
t
)
x
α
(
τ
)
)... A class of third-order semi-canonical differential equations with a superlinear neutral term of the type ( a(t)[(b(t)(x(t) + p(t)x?(? (t))?)?]?)? +... |
SourceID | crossref jstor |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 477 |
Title | OSCILLATORY BEHAVIOR OF SEMI-CANONICAL THIRD-ORDER DELAY DIFFERENTAL EQUATIONS WITH A SUPERLINEAR NEUTRAL TERM |
URI | https://www.jstor.org/stable/27339434 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIEHxG1i3OQHJB6ilMSJk-6xgsEEKgjYpr5VjuOoFWs32gZp_CH-Jt-xEy8dRRq8RFVqW2nO13O-Y58LYy8kdT5RsQ5znUdhqqsoVFqU4UBJnVIFt9yWXRx9zA6P0_djOe71fnWilup10dc_t-aV_I9UcQ9ypSzZf5CsXxQ38BnyxRUSxvVaMv4E-wUx2nPyNt-e2N_KzGch3tmZS3pcT2fLMrRFNgMqCnnh26JQJqT5XjfhcC7PLVjV57YGFpX4WZiatkICUuBdHjt0596UdqXasia0BU9Jvkvw8GDuy8F60n4yK6cXyqWg9b_2PYU2sIin6ttqOreRBV_8N--WylR_xAvTVj8svG1FFRz0u9sWLk-60bGphBLOmuMYY-8Rr4BFiMbbFbP3j52WTZvOL85gp67f6FVbIMQ-5TcMh29GcGvBY6BfTi6tXnvSf8UY-hBFOEe0wmRz_g12U-R5TLGjHz774yq4XLZRqf9lrjoozX-1OX-D_XQDYC2dObrL7jR-CB86UN1jPbO4z26PLqX2gC068OItvPhZxTfhxTvw4hZevAMv7uHFCV5c8Q68eAMvTvB6yI7fHhy9Pgyb9hyhFnH2IywqIRP8pfe1yROhtJQmkwJ8XmelKKJEV1IJWSRaVnCyTWTiRJc5DMRADUo50Mku28GTmkeMx-C9WSLKtNAFLAp83ryAIcGyYE8wEnssbF_bRDe166mFyulku5j22Es__txVbfnryF0rBT8MdD6hmomPr73EE3aLAO725Z6ynfWyNs_AVNfFc4uS30pBlAs |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oscillatory+behavior+of+semi-canonical+third-order+delay+differental+equations+with+a+superlinear+neutral+term&rft.jtitle=Applicable+analysis+and+discrete+mathematics&rft.au=Vidhyaa%2C+K.S.&rft.au=Deepalakshmi%2C+R.&rft.au=Graef%2C+John&rft.au=Thandapani%2C+E.&rft.date=2024&rft.issn=1452-8630&rft.eissn=2406-100X&rft.volume=18&rft.issue=2&rft.spage=477&rft.epage=490&rft_id=info:doi/10.2298%2FAADM210812006V&rft.externalDBID=n%2Fa&rft.externalDocID=10_2298_AADM210812006V |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1452-8630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1452-8630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1452-8630&client=summon |