Optimality Conditions in Directionally Differentiable Pareto Problems with a Set Constraint via Tangent Cones
We study a multiobjective optimization problem in with a feasible set defined by inequality and equality constraints and a convex set constraint. All the involved functions are, at least, directionally differentiable. Quasiconvex inequalities are considered. Given these assumptions, an expression fo...
Saved in:
Published in | Numerical functional analysis and optimization Vol. 24; no. 5-6; pp. 557 - 574 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis Group
12.01.2003
|
Subjects | |
Online Access | Get full text |
ISSN | 0163-0563 1532-2467 |
DOI | 10.1081/NFA-120023868 |
Cover
Abstract | We study a multiobjective optimization problem in
with a feasible set defined by inequality and equality constraints and a convex set constraint. All the involved functions are, at least, directionally differentiable. Quasiconvex inequalities are considered. Given these assumptions, an expression for the contingent cone to the feasible set using an extended Mangasarian-Fromovitz constraint qualification is provided. As application, necessary and sufficient optimality conditions of Kuhn-Tucker type are established for a local Pareto minimal point. |
---|---|
AbstractList | We study a multiobjective optimization problem in
with a feasible set defined by inequality and equality constraints and a convex set constraint. All the involved functions are, at least, directionally differentiable. Quasiconvex inequalities are considered. Given these assumptions, an expression for the contingent cone to the feasible set using an extended Mangasarian-Fromovitz constraint qualification is provided. As application, necessary and sufficient optimality conditions of Kuhn-Tucker type are established for a local Pareto minimal point. |
Author | Jiménez, Bienvenido Novo, Vicente |
Author_xml | – sequence: 1 givenname: Bienvenido surname: Jiménez fullname: Jiménez, Bienvenido email: bjimen1@encina.pntic.mec.es organization: Departamento de Economía e Historia Económica , Facultad de Economía y Empresa , Universidad de Salamanca – sequence: 2 givenname: Vicente surname: Novo fullname: Novo, Vicente organization: Departamento de Matemática Aplicada , E.T.S.I. Industriales, UNED |
BookMark | eNp1kFFLwzAUhYNMcJs--p4_UL1J2jR7HNOpMNzA-VzSNNFIm4wkOPrvbZn4IPp0OZdzLvd8MzRx3mmErgncEBDk9nm9zAgFoExwcYampGA0ozkvJ2gKhLMMCs4u0CzGDwBgdCGmqNseku1ka1OPV941NlnvIrYO39mg1ahk2_aDMkYH7ZKVdavxTgadPN4FP6gu4qNN71jiF53GKzEFaV3Cn1bivXRvQ2xc63iJzo1so776nnP0ur7frx6zzfbhabXcZIoSnrImr8VQxECpmlKDKDQhlBUl5IpwXktoSAlCkTo3C95wpTSUTWNgoYHmgjE2R-x0VwUfY9CmUjbJscz4WVsRqEZi1UCs-iE2pLJfqUMY2IT-X784-a0zPnTy6EPbVEn2rQ8mSKdsrNjf0S9leII3 |
CitedBy_id | crossref_primary_10_4236_jamp_2022_107160 crossref_primary_10_1080_01630563_2013_809583 crossref_primary_10_1080_02331934_2019_1702985 crossref_primary_10_1080_02331934_2018_1545122 crossref_primary_10_1007_s40314_024_03049_y crossref_primary_10_1051_ro_2018020 crossref_primary_10_1051_ro_2004023 crossref_primary_10_1007_s10957_010_9793_z crossref_primary_10_1007_s41980_024_00904_w crossref_primary_10_1080_02331930701761433 crossref_primary_10_1080_01630560902841187 crossref_primary_10_1080_01630560701766692 crossref_primary_10_1080_02331934_2010_539688 crossref_primary_10_1016_j_ejor_2012_09_006 crossref_primary_10_1007_s10203_023_00403_3 crossref_primary_10_1051_cocv_2020060 crossref_primary_10_1080_01630563_2019_1667826 crossref_primary_10_1007_s00186_013_0457_2 |
Cites_doi | 10.1007/BF02193096 10.1137/S1052623498337273 10.1137/0713043 10.1007/978-3-642-46802-5_15 10.1007/978-1-4613-3326-5 10.1515/9781400873173 10.1007/s101070050083 10.1007/978-3-642-48294-6 10.1016/S0022-247X(02)00064-1 10.1137/0806010 10.1007/BF02189792 10.1007/BF00938820 10.1137/0324061 10.1007/978-3-642-02431-3 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2003 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2003 |
DBID | AAYXX CITATION |
DOI | 10.1081/NFA-120023868 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1532-2467 |
EndPage | 574 |
ExternalDocumentID | 10_1081_NFA_120023868 10363963 |
GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACAGQ ACGEJ ACGFS ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AGROQ AHDZW AHMOU AIJEM AJWEG AKBVH AKOOK ALCKM ALMA_UNASSIGNED_HOLDINGS ALQZU AMEWO AQRUH ARCSS AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CRFIH CS3 DGEBU DKSSO DMQIW DU5 EAP EBS EDO EJD EMK EPL EST ESX E~A E~B GTTXZ H13 HZ~ H~P I-F IPNFZ J.P KYCEM M4Z NA5 NHB NY~ O9- P2P PQQKQ QCRFL RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ TUS TWF UT5 UU3 YNT YQT ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION |
ID | FETCH-LOGICAL-c216t-d4b8120f07cd7e085e11235704c166ba0d1708c1b4f96d6cce07ddf09e0248333 |
ISSN | 0163-0563 |
IngestDate | Tue Jul 01 00:30:34 EDT 2025 Thu Apr 24 22:52:17 EDT 2025 Wed Dec 25 09:03:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5-6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c216t-d4b8120f07cd7e085e11235704c166ba0d1708c1b4f96d6cce07ddf09e0248333 |
PageCount | 18 |
ParticipantIDs | crossref_citationtrail_10_1081_NFA_120023868 crossref_primary_10_1081_NFA_120023868 informaworld_taylorfrancis_310_1081_NFA_120023868 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1/12/2003 |
PublicationDateYYYYMMDD | 2003-01-12 |
PublicationDate_xml | – month: 01 year: 2003 text: 1/12/2003 day: 12 |
PublicationDecade | 2000 |
PublicationTitle | Numerical functional analysis and optimization |
PublicationYear | 2003 |
Publisher | Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis Group |
References | CIT3868-7 CIT3868-18 CIT3868-6 CIT3868-17 CIT3868-5 CIT3868-16 CIT3868-15 CIT3868-2 CIT3868-13 Novo V. (CIT3868-14) 2002 CIT3868-1 Clarke F. H. (CIT3868-4) 1983 CIT3868-10 CIT3868-20 Giorgi G. (CIT3868-9) 1992; 15 Bazaraa M. S. (CIT3868-3) 1979 Jiménez B. (CIT3868-12) 2002; 9 CIT3868-8 Hiriart-Urruty J. B. (CIT3868-11) 1996 CIT3868-19 |
References_xml | – ident: CIT3868-7 doi: 10.1007/BF02193096 – ident: CIT3868-5 doi: 10.1137/S1052623498337273 – ident: CIT3868-15 doi: 10.1137/0713043 – volume: 15 start-page: 3 issue: 2 year: 1992 ident: CIT3868-9 publication-title: Riv. Mat. Sci. Econom. Social. Anno. – ident: CIT3868-8 doi: 10.1007/978-3-642-46802-5_15 – ident: CIT3868-10 doi: 10.1007/978-1-4613-3326-5 – ident: CIT3868-16 doi: 10.1515/9781400873173 – volume-title: 5th International Conference on Operations Research, University of La Habana year: 2002 ident: CIT3868-14 – ident: CIT3868-1 doi: 10.1007/s101070050083 – ident: CIT3868-2 doi: 10.1007/978-3-642-48294-6 – volume-title: Optimization and nonsmooth analysis year: 1983 ident: CIT3868-4 – ident: CIT3868-13 doi: 10.1016/S0022-247X(02)00064-1 – volume-title: Convex analysis and minimization algorithms I year: 1996 ident: CIT3868-11 – ident: CIT3868-6 doi: 10.1137/0806010 – ident: CIT3868-19 doi: 10.1007/BF02189792 – ident: CIT3868-18 doi: 10.1007/BF00938820 – volume: 9 start-page: 97 issue: 1 year: 2002 ident: CIT3868-12 publication-title: J. Convex Anal. – ident: CIT3868-20 doi: 10.1137/0324061 – volume-title: Nonlinear programming year: 1979 ident: CIT3868-3 – ident: CIT3868-17 doi: 10.1007/978-3-642-02431-3 |
SSID | ssj0003298 |
Score | 1.6692412 |
Snippet | We study a multiobjective optimization problem in
with a feasible set defined by inequality and equality constraints and a convex set constraint. All the... |
SourceID | crossref informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 557 |
SubjectTerms | Dini differentiable functions Hadamard differentiable functions Lagrange multipliers Mathematics Subject Classification: 90C29 Multiobjective optimization problems Optimality conditions for a Pareto minimum Quasiconvexity Tangent cone |
Title | Optimality Conditions in Directionally Differentiable Pareto Problems with a Set Constraint via Tangent Cones |
URI | https://www.tandfonline.com/doi/abs/10.1081/NFA-120023868 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLbKzAUOiFUMm3xAXIohzub0WAZGFdIMHDow4hJ5i5RRFwSZkeAf8K95z3bcBoo0cElbK3HSvs_Pr2_7CHkmhMkVR5pUaSzLS6OZNBVn2NusSbStlEv5Pz4pZ6f5u7PibDT6uZW1dNGpl_rHzrqS_5EqjIFcsUr2HyQbJ4UBeA_yhSNIGI5XkvF7WO9Lb0gfrjH23OeFB0WGVvbiO3zyJCiwmLFO6gMS22LyhaOS6cvbQGt0jr7TkUZ048tWjufSVV7hcEg1PO-rdX2gZzHGfTG4E2Xf3wR98Wt8tFDjGbN02qWPy6-82_o1qBXQta1ZR5f0-tK5bj-2mDRqBy4JTMhifOClxOBwETSX7TVrytLcc2_0qteXTweIFWxbkxa-b3XYlAtP5fOHvgeDBoR0cjSF-zvzw3P0DPtq_7bfxSxEF3-veA2X1_Hya2Q_FQIj_vvT2ZvPn-K2nqWOWDl-t9CwFSZ4Nbj_wMAZtL_dMlzmt8jN8I-DTj18bpORXd0hN45ju95vd8lyAyS6ARJtV3QAJDoEEvVAoj2QKAKJSgpAohsgUQASDUCiDkj3yOnR2_nhjAUeDqZTXnYMVjOYgUmTCG2EBRvdcqywFkmueVkqmRgukkpzlTeT0pRa20QY0yQTiw3zsiy7T_ZWMP8DQrNCc80zoSutsLmcTHVTwUvJZaaUmRyQF_2PV-vQpB6fdlHvFNYBeR5P_-K7s_ztRL4tibpz7rDGc9fU2c5rHl518kfk-mYVPCZ73dcL-wRM1U49DSD6BdltlTo |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG4UH9QH70a89sH45LBdRzceCZGgApIICYkPy3pZQuRi3DDRX29PNwh4efFp2dI2Xc_Z6bf29PsQuvR95QkKMqmR0o7HlXQiFVAHuM1iInUgbMp_q80bPe--X-7nWZVJnlYJ_9BxRhRhYzV83LAYnafE0Zt2vepQ1043PFhFa2WD2cG7GWnPozBzrQ6uQTSQn8ZZzq_5o_rSfLTEVrowz9S30fOsh1l6yUtpmoqS_PxG3vi_V9hBWzn8xNXMX3bRih7voc3WnLs12UejRxNFRhae49oEdrTBM_FgjPPwCNh9-GHuMmkVEyLEUOMOyOVOcCcTqEkwLPDiCD_pFFpJrBRFit8HEe5G9jwXPNbJAerVb7u1hpOLMjjSpTx1jGkNJiAx8aXytQFsmsJxW594knIuIqKoTwJJhRdXuOJSauIrFZOKBvY0xtghKoxN-0cIs7KkkjJfBlIA01jkyjgwF04jJoSqFNH1zDShzBnLobfD0O6cBzQ0oxjOR7GIrubFXzOqjr8K0kU7h6ldG4kzIZOQ_Vrn-B91LtB6o9tqhs279sMJ2rBpgIQas5-iQvo21WcGzqTi3PrtF5_T7oI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG4UE6MP3o147YPxyWG7jm48EpTgBSQREuLLsl6WELlFhon-enu6QcDLC0_Llp6m6-lOv7Wn34fQpe8rT1CQSY2UdjyupBOpgDrAbRYTqQNhU_7rDV5rew-dYmdO6gvSKuEfOk6JImysho97pOIsI47eNKplh7p2tuHBKlrjBpZANh8jjVkQZq6VwTWABtLTOMvoNX-ZL0xHC2Slc9NMdRu9ThuYZpe8FSaJKMivH9yNS73BDtrKwCcup6NlF63owR7arM-YW8f7qP9sYkjfgnNcGcJ-NoxL3B3gLDgCcu99mrtUWMUECNHTuAliuUPcTOVpxhiWd3GEX3QCtYytEEWCP7oRbkX2NBc81uMD1K7etSo1J5NkcKRLeeIYxxpEQGLiS-VrA9c0hcO2PvEk5VxERFGfBJIKLy5xxaXUxFcqJiUN3GmMsUOUG5j6jxBmRUklZb4MpACesciVcWAunEZMCFXKo-upZ0KZ8ZVDa3uh3TcPaGh6MZz1Yh5dzYqPUqKO_wrSeTeHiV0ZiVMZk5D9aXO8hM0FWm_eVsOn-8bjCdqwOYCEGq-folzyPtFnBssk4tyO2m_GQu0m |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimality+Conditions+in+Directionally+Differentiable+Pareto+Problems+with+a+Set+Constraint+via+Tangent+Cones&rft.jtitle=Numerical+functional+analysis+and+optimization&rft.au=Jim%C3%A9nez%2C+Bienvenido&rft.au=Novo%2C+Vicente&rft.date=2003-01-12&rft.issn=0163-0563&rft.eissn=1532-2467&rft.volume=24&rft.issue=5-6&rft.spage=557&rft.epage=574&rft_id=info:doi/10.1081%2FNFA-120023868&rft.externalDBID=n%2Fa&rft.externalDocID=10_1081_NFA_120023868 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-0563&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-0563&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-0563&client=summon |