Optimality Conditions in Directionally Differentiable Pareto Problems with a Set Constraint via Tangent Cones

We study a multiobjective optimization problem in with a feasible set defined by inequality and equality constraints and a convex set constraint. All the involved functions are, at least, directionally differentiable. Quasiconvex inequalities are considered. Given these assumptions, an expression fo...

Full description

Saved in:
Bibliographic Details
Published inNumerical functional analysis and optimization Vol. 24; no. 5-6; pp. 557 - 574
Main Authors Jiménez, Bienvenido, Novo, Vicente
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 12.01.2003
Subjects
Online AccessGet full text
ISSN0163-0563
1532-2467
DOI10.1081/NFA-120023868

Cover

Abstract We study a multiobjective optimization problem in with a feasible set defined by inequality and equality constraints and a convex set constraint. All the involved functions are, at least, directionally differentiable. Quasiconvex inequalities are considered. Given these assumptions, an expression for the contingent cone to the feasible set using an extended Mangasarian-Fromovitz constraint qualification is provided. As application, necessary and sufficient optimality conditions of Kuhn-Tucker type are established for a local Pareto minimal point.
AbstractList We study a multiobjective optimization problem in with a feasible set defined by inequality and equality constraints and a convex set constraint. All the involved functions are, at least, directionally differentiable. Quasiconvex inequalities are considered. Given these assumptions, an expression for the contingent cone to the feasible set using an extended Mangasarian-Fromovitz constraint qualification is provided. As application, necessary and sufficient optimality conditions of Kuhn-Tucker type are established for a local Pareto minimal point.
Author Jiménez, Bienvenido
Novo, Vicente
Author_xml – sequence: 1
  givenname: Bienvenido
  surname: Jiménez
  fullname: Jiménez, Bienvenido
  email: bjimen1@encina.pntic.mec.es
  organization: Departamento de Economía e Historia Económica , Facultad de Economía y Empresa , Universidad de Salamanca
– sequence: 2
  givenname: Vicente
  surname: Novo
  fullname: Novo, Vicente
  organization: Departamento de Matemática Aplicada , E.T.S.I. Industriales, UNED
BookMark eNp1kFFLwzAUhYNMcJs--p4_UL1J2jR7HNOpMNzA-VzSNNFIm4wkOPrvbZn4IPp0OZdzLvd8MzRx3mmErgncEBDk9nm9zAgFoExwcYampGA0ozkvJ2gKhLMMCs4u0CzGDwBgdCGmqNseku1ka1OPV941NlnvIrYO39mg1ahk2_aDMkYH7ZKVdavxTgadPN4FP6gu4qNN71jiF53GKzEFaV3Cn1bivXRvQ2xc63iJzo1so776nnP0ur7frx6zzfbhabXcZIoSnrImr8VQxECpmlKDKDQhlBUl5IpwXktoSAlCkTo3C95wpTSUTWNgoYHmgjE2R-x0VwUfY9CmUjbJscz4WVsRqEZi1UCs-iE2pLJfqUMY2IT-X784-a0zPnTy6EPbVEn2rQ8mSKdsrNjf0S9leII3
CitedBy_id crossref_primary_10_4236_jamp_2022_107160
crossref_primary_10_1080_01630563_2013_809583
crossref_primary_10_1080_02331934_2019_1702985
crossref_primary_10_1080_02331934_2018_1545122
crossref_primary_10_1007_s40314_024_03049_y
crossref_primary_10_1051_ro_2018020
crossref_primary_10_1051_ro_2004023
crossref_primary_10_1007_s10957_010_9793_z
crossref_primary_10_1007_s41980_024_00904_w
crossref_primary_10_1080_02331930701761433
crossref_primary_10_1080_01630560902841187
crossref_primary_10_1080_01630560701766692
crossref_primary_10_1080_02331934_2010_539688
crossref_primary_10_1016_j_ejor_2012_09_006
crossref_primary_10_1007_s10203_023_00403_3
crossref_primary_10_1051_cocv_2020060
crossref_primary_10_1080_01630563_2019_1667826
crossref_primary_10_1007_s00186_013_0457_2
Cites_doi 10.1007/BF02193096
10.1137/S1052623498337273
10.1137/0713043
10.1007/978-3-642-46802-5_15
10.1007/978-1-4613-3326-5
10.1515/9781400873173
10.1007/s101070050083
10.1007/978-3-642-48294-6
10.1016/S0022-247X(02)00064-1
10.1137/0806010
10.1007/BF02189792
10.1007/BF00938820
10.1137/0324061
10.1007/978-3-642-02431-3
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2003
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2003
DBID AAYXX
CITATION
DOI 10.1081/NFA-120023868
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-2467
EndPage 574
ExternalDocumentID 10_1081_NFA_120023868
10363963
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACAGQ
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AIJEM
AJWEG
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AQRUH
ARCSS
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DGEBU
DKSSO
DMQIW
DU5
EAP
EBS
EDO
EJD
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
M4Z
NA5
NHB
NY~
O9-
P2P
PQQKQ
QCRFL
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TUS
TWF
UT5
UU3
YNT
YQT
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
ID FETCH-LOGICAL-c216t-d4b8120f07cd7e085e11235704c166ba0d1708c1b4f96d6cce07ddf09e0248333
ISSN 0163-0563
IngestDate Tue Jul 01 00:30:34 EDT 2025
Thu Apr 24 22:52:17 EDT 2025
Wed Dec 25 09:03:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5-6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c216t-d4b8120f07cd7e085e11235704c166ba0d1708c1b4f96d6cce07ddf09e0248333
PageCount 18
ParticipantIDs crossref_citationtrail_10_1081_NFA_120023868
crossref_primary_10_1081_NFA_120023868
informaworld_taylorfrancis_310_1081_NFA_120023868
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1/12/2003
PublicationDateYYYYMMDD 2003-01-12
PublicationDate_xml – month: 01
  year: 2003
  text: 1/12/2003
  day: 12
PublicationDecade 2000
PublicationTitle Numerical functional analysis and optimization
PublicationYear 2003
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References CIT3868-7
CIT3868-18
CIT3868-6
CIT3868-17
CIT3868-5
CIT3868-16
CIT3868-15
CIT3868-2
CIT3868-13
Novo V. (CIT3868-14) 2002
CIT3868-1
Clarke F. H. (CIT3868-4) 1983
CIT3868-10
CIT3868-20
Giorgi G. (CIT3868-9) 1992; 15
Bazaraa M. S. (CIT3868-3) 1979
Jiménez B. (CIT3868-12) 2002; 9
CIT3868-8
Hiriart-Urruty J. B. (CIT3868-11) 1996
CIT3868-19
References_xml – ident: CIT3868-7
  doi: 10.1007/BF02193096
– ident: CIT3868-5
  doi: 10.1137/S1052623498337273
– ident: CIT3868-15
  doi: 10.1137/0713043
– volume: 15
  start-page: 3
  issue: 2
  year: 1992
  ident: CIT3868-9
  publication-title: Riv. Mat. Sci. Econom. Social. Anno.
– ident: CIT3868-8
  doi: 10.1007/978-3-642-46802-5_15
– ident: CIT3868-10
  doi: 10.1007/978-1-4613-3326-5
– ident: CIT3868-16
  doi: 10.1515/9781400873173
– volume-title: 5th International Conference on Operations Research, University of La Habana
  year: 2002
  ident: CIT3868-14
– ident: CIT3868-1
  doi: 10.1007/s101070050083
– ident: CIT3868-2
  doi: 10.1007/978-3-642-48294-6
– volume-title: Optimization and nonsmooth analysis
  year: 1983
  ident: CIT3868-4
– ident: CIT3868-13
  doi: 10.1016/S0022-247X(02)00064-1
– volume-title: Convex analysis and minimization algorithms I
  year: 1996
  ident: CIT3868-11
– ident: CIT3868-6
  doi: 10.1137/0806010
– ident: CIT3868-19
  doi: 10.1007/BF02189792
– ident: CIT3868-18
  doi: 10.1007/BF00938820
– volume: 9
  start-page: 97
  issue: 1
  year: 2002
  ident: CIT3868-12
  publication-title: J. Convex Anal.
– ident: CIT3868-20
  doi: 10.1137/0324061
– volume-title: Nonlinear programming
  year: 1979
  ident: CIT3868-3
– ident: CIT3868-17
  doi: 10.1007/978-3-642-02431-3
SSID ssj0003298
Score 1.6692412
Snippet We study a multiobjective optimization problem in with a feasible set defined by inequality and equality constraints and a convex set constraint. All the...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 557
SubjectTerms Dini differentiable functions
Hadamard differentiable functions
Lagrange multipliers
Mathematics Subject Classification: 90C29
Multiobjective optimization problems
Optimality conditions for a Pareto minimum
Quasiconvexity
Tangent cone
Title Optimality Conditions in Directionally Differentiable Pareto Problems with a Set Constraint via Tangent Cones
URI https://www.tandfonline.com/doi/abs/10.1081/NFA-120023868
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLbKzAUOiFUMm3xAXIohzub0WAZGFdIMHDow4hJ5i5RRFwSZkeAf8K95z3bcBoo0cElbK3HSvs_Pr2_7CHkmhMkVR5pUaSzLS6OZNBVn2NusSbStlEv5Pz4pZ6f5u7PibDT6uZW1dNGpl_rHzrqS_5EqjIFcsUr2HyQbJ4UBeA_yhSNIGI5XkvF7WO9Lb0gfrjH23OeFB0WGVvbiO3zyJCiwmLFO6gMS22LyhaOS6cvbQGt0jr7TkUZ048tWjufSVV7hcEg1PO-rdX2gZzHGfTG4E2Xf3wR98Wt8tFDjGbN02qWPy6-82_o1qBXQta1ZR5f0-tK5bj-2mDRqBy4JTMhifOClxOBwETSX7TVrytLcc2_0qteXTweIFWxbkxa-b3XYlAtP5fOHvgeDBoR0cjSF-zvzw3P0DPtq_7bfxSxEF3-veA2X1_Hya2Q_FQIj_vvT2ZvPn-K2nqWOWDl-t9CwFSZ4Nbj_wMAZtL_dMlzmt8jN8I-DTj18bpORXd0hN45ju95vd8lyAyS6ARJtV3QAJDoEEvVAoj2QKAKJSgpAohsgUQASDUCiDkj3yOnR2_nhjAUeDqZTXnYMVjOYgUmTCG2EBRvdcqywFkmueVkqmRgukkpzlTeT0pRa20QY0yQTiw3zsiy7T_ZWMP8DQrNCc80zoSutsLmcTHVTwUvJZaaUmRyQF_2PV-vQpB6fdlHvFNYBeR5P_-K7s_ztRL4tibpz7rDGc9fU2c5rHl518kfk-mYVPCZ73dcL-wRM1U49DSD6BdltlTo
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG4UH9QH70a89sH45LBdRzceCZGgApIICYkPy3pZQuRi3DDRX29PNwh4efFp2dI2Xc_Z6bf29PsQuvR95QkKMqmR0o7HlXQiFVAHuM1iInUgbMp_q80bPe--X-7nWZVJnlYJ_9BxRhRhYzV83LAYnafE0Zt2vepQ1043PFhFa2WD2cG7GWnPozBzrQ6uQTSQn8ZZzq_5o_rSfLTEVrowz9S30fOsh1l6yUtpmoqS_PxG3vi_V9hBWzn8xNXMX3bRih7voc3WnLs12UejRxNFRhae49oEdrTBM_FgjPPwCNh9-GHuMmkVEyLEUOMOyOVOcCcTqEkwLPDiCD_pFFpJrBRFit8HEe5G9jwXPNbJAerVb7u1hpOLMjjSpTx1jGkNJiAx8aXytQFsmsJxW594knIuIqKoTwJJhRdXuOJSauIrFZOKBvY0xtghKoxN-0cIs7KkkjJfBlIA01jkyjgwF04jJoSqFNH1zDShzBnLobfD0O6cBzQ0oxjOR7GIrubFXzOqjr8K0kU7h6ldG4kzIZOQ_Vrn-B91LtB6o9tqhs279sMJ2rBpgIQas5-iQvo21WcGzqTi3PrtF5_T7oI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG4UE6MP3o147YPxyWG7jm48EpTgBSQREuLLsl6WELlFhon-enu6QcDLC0_Llp6m6-lOv7Wn34fQpe8rT1CQSY2UdjyupBOpgDrAbRYTqQNhU_7rDV5rew-dYmdO6gvSKuEfOk6JImysho97pOIsI47eNKplh7p2tuHBKlrjBpZANh8jjVkQZq6VwTWABtLTOMvoNX-ZL0xHC2Slc9NMdRu9ThuYZpe8FSaJKMivH9yNS73BDtrKwCcup6NlF63owR7arM-YW8f7qP9sYkjfgnNcGcJ-NoxL3B3gLDgCcu99mrtUWMUECNHTuAliuUPcTOVpxhiWd3GEX3QCtYytEEWCP7oRbkX2NBc81uMD1K7etSo1J5NkcKRLeeIYxxpEQGLiS-VrA9c0hcO2PvEk5VxERFGfBJIKLy5xxaXUxFcqJiUN3GmMsUOUG5j6jxBmRUklZb4MpACesciVcWAunEZMCFXKo-upZ0KZ8ZVDa3uh3TcPaGh6MZz1Yh5dzYqPUqKO_wrSeTeHiV0ZiVMZk5D9aXO8hM0FWm_eVsOn-8bjCdqwOYCEGq-folzyPtFnBssk4tyO2m_GQu0m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimality+Conditions+in+Directionally+Differentiable+Pareto+Problems+with+a+Set+Constraint+via+Tangent+Cones&rft.jtitle=Numerical+functional+analysis+and+optimization&rft.au=Jim%C3%A9nez%2C+Bienvenido&rft.au=Novo%2C+Vicente&rft.date=2003-01-12&rft.issn=0163-0563&rft.eissn=1532-2467&rft.volume=24&rft.issue=5-6&rft.spage=557&rft.epage=574&rft_id=info:doi/10.1081%2FNFA-120023868&rft.externalDBID=n%2Fa&rft.externalDocID=10_1081_NFA_120023868
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-0563&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-0563&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-0563&client=summon