A quasi-Newton method in shape optimization for a transmission problem
We consider optimal design problems in stationary diffusion for mixtures of two isotropic phases. The goal is to find an optimal distribution of the phases such that the energy functional is maximized. By following the identity perturbation method, we calculate the first- and second-order shape deri...
Saved in:
Published in | Optimization methods & software Vol. 37; no. 6; pp. 2259 - 2285 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
02.11.2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1055-6788 1029-4937 |
DOI | 10.1080/10556788.2022.2078823 |
Cover
Abstract | We consider optimal design problems in stationary diffusion for mixtures of two isotropic phases. The goal is to find an optimal distribution of the phases such that the energy functional is maximized. By following the identity perturbation method, we calculate the first- and second-order shape derivatives in the distributional representation under weak regularity assumptions. Ascent methods based on the distributed first- and second-order shape derivatives are implemented and tested in classes of problems for which the classical solutions exist and can be explicitly calculated from the optimality conditions. A proposed quasi-Newton method offers a better ascent vector compared to gradient methods, reaching the optimal design in half as many steps. The method applies well also for multiple state problems. |
---|---|
AbstractList | We consider optimal design problems in stationary diffusion for mixtures of two isotropic phases. The goal is to find an optimal distribution of the phases such that the energy functional is maximized. By following the identity perturbation method, we calculate the first- and second-order shape derivatives in the distributional representation under weak regularity assumptions. Ascent methods based on the distributed first- and second-order shape derivatives are implemented and tested in classes of problems for which the classical solutions exist and can be explicitly calculated from the optimality conditions. A proposed quasi-Newton method offers a better ascent vector compared to gradient methods, reaching the optimal design in half as many steps. The method applies well also for multiple state problems. |
Author | Vrdoljak, Marko Kunštek, Petar |
Author_xml | – sequence: 1 givenname: Petar orcidid: 0000-0003-3961-8556 surname: Kunštek fullname: Kunštek, Petar organization: University of Zagreb – sequence: 2 givenname: Marko orcidid: 0000-0001-8623-2598 surname: Vrdoljak fullname: Vrdoljak, Marko email: marko@math.hr organization: University of Zagreb |
BookMark | eNp9UFFLwzAQDjLBOf0JQsHnziRN0uTNMZwKQ1_0OaTdlWW0TZdkjPnrTdl8lTvujrvvu-O-WzTpXQ8IPRA8J1jiJ4I5F6WUc4opTSGVtLhCU4KpypkqyslYc56PoBt0G8IOY8wIE1O0WmT7gwk2_4BjdH3WQdy6TWb7LGzNAJkbou3sj4k2DRvnM5NFb_rQ2RDG1uBd1UJ3h64b0wa4v-QZ-l69fC3f8vXn6_tysc5rSkTMDS1Hq6QyrKEguKqIAVEWEqBmGykrkHUNphEFNwSSc6W4KRQIwmTNihl6PO9Nd_cHCFHv3MH36aSmJWdKCaVIQvEzqvYuBA-NHrztjD9pgvUomf6TTI-S6Ytkifd85tk-vdqZo_PtRkdzap1v0te1Dbr4f8Uv64d0pQ |
Cites_doi | 10.1016/j.jcp.2014.01.005 10.1137/1.9781611973365 10.1016/j.jcp.2003.09.032 10.1515/jnum-2012-0013 10.1007/s10440-018-0204-z 10.1016/j.acha.2006.07.004 10.1137/16M1099972 10.1007/s10208-014-9200-5 10.1088/0266-5611/20/3/003 10.1016/j.matpur.2015.02.004 10.1007/s00158-006-0017-y 10.1137/070687438 10.1007/s00158-016-1514-2 10.1023/A:1022370419231 10.1016/S0045-7825(02)00656-4 10.1088/0266-5611/18/6/201 10.1137/15100477X 10.1137/080745134 10.1137/1.9780898718690 10.1007/978-3-642-58106-9 10.1007/978-3-319-17563-8_9 10.1016/j.jde.2019.11.077 10.4171/178 10.1137/S0036139902403901 10.1137/15M1049749 10.1016/j.jde.2019.03.033 10.1051/m2an/2015075 10.1016/0020-7683(81)90065-2 10.2514/1.J052245 10.1080/01630560701381005 10.1007/s00158-020-02742-w 10.1137/050624108 |
ContentType | Journal Article |
Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 2022 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/10556788.2022.2078823 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1029-4937 |
EndPage | 2285 |
ExternalDocumentID | 10_1080_10556788_2022_2078823 2078823 |
Genre | Research Article |
GrantInformation_xml | – fundername: Croatian Science Foundation grantid: IP-2018-01-3706 |
GroupedDBID | .4S .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE ADYSH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMPGV AMVHM AQRUH ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDO EMK EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION TASJS 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c216t-a272727b89a4f2e659b1ae6738eec4d88be8cceaf635a1ea1e5995a39e6148c43 |
ISSN | 1055-6788 |
IngestDate | Wed Aug 13 07:33:47 EDT 2025 Tue Aug 05 11:59:07 EDT 2025 Tue Jun 17 04:10:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c216t-a272727b89a4f2e659b1ae6738eec4d88be8cceaf635a1ea1e5995a39e6148c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8623-2598 0000-0003-3961-8556 |
PQID | 2754996991 |
PQPubID | 186278 |
PageCount | 27 |
ParticipantIDs | proquest_journals_2754996991 informaworld_taylorfrancis_310_1080_10556788_2022_2078823 crossref_primary_10_1080_10556788_2022_2078823 |
PublicationCentury | 2000 |
PublicationDate | 2022-11-02 |
PublicationDateYYYYMMDD | 2022-11-02 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Optimization methods & software |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_4_3_1 Dambrine M. (e_1_3_4_16_1) 2002; 96 Mohammadi B. (e_1_3_4_37_1) 2010 e_1_3_4_9_1 e_1_3_4_42_1 e_1_3_4_7_1 e_1_3_4_40_1 e_1_3_4_5_1 e_1_3_4_23_1 e_1_3_4_46_1 e_1_3_4_44_1 e_1_3_4_27_1 Hadamard J. (e_1_3_4_24_1) 1908 e_1_3_4_25_1 e_1_3_4_48_1 e_1_3_4_29_1 e_1_3_4_53_1 e_1_3_4_30_1 e_1_3_4_51_1 e_1_3_4_13_1 e_1_3_4_34_1 e_1_3_4_11_1 e_1_3_4_32_1 e_1_3_4_17_1 Delfour M.C. (e_1_3_4_20_1) 2001 e_1_3_4_15_1 e_1_3_4_36_1 e_1_3_4_19_1 e_1_3_4_2_1 Allaire G. (e_1_3_4_4_1) 2012 e_1_3_4_8_1 e_1_3_4_41_1 e_1_3_4_6_1 Eppler K. (e_1_3_4_21_1) 2005; 34 e_1_3_4_45_1 e_1_3_4_22_1 e_1_3_4_43_1 e_1_3_4_28_1 e_1_3_4_49_1 e_1_3_4_26_1 e_1_3_4_47_1 Murat F. (e_1_3_4_38_1) 1974 e_1_3_4_31_1 Luenberger D.G. (e_1_3_4_35_1) 1984 e_1_3_4_52_1 e_1_3_4_50_1 e_1_3_4_12_1 e_1_3_4_10_1 e_1_3_4_33_1 e_1_3_4_39_1 e_1_3_4_14_1 e_1_3_4_18_1 |
References_xml | – ident: e_1_3_4_52_1 – volume: 96 start-page: 95 issue: 1 year: 2002 ident: e_1_3_4_16_1 article-title: On variations of the shape Hessian and sufficient conditions for the stability of critical shapes publication-title: Racsam – volume-title: Shape Optimization by the Homogenization Method year: 2012 ident: e_1_3_4_4_1 – ident: e_1_3_4_18_1 doi: 10.1016/j.jcp.2014.01.005 – ident: e_1_3_4_10_1 doi: 10.1137/1.9781611973365 – ident: e_1_3_4_6_1 doi: 10.1016/j.jcp.2003.09.032 – ident: e_1_3_4_26_1 doi: 10.1515/jnum-2012-0013 – ident: e_1_3_4_51_1 – ident: e_1_3_4_13_1 doi: 10.1007/s10440-018-0204-z – ident: e_1_3_4_15_1 – ident: e_1_3_4_36_1 doi: 10.1016/j.acha.2006.07.004 – ident: e_1_3_4_44_1 doi: 10.1137/16M1099972 – ident: e_1_3_4_46_1 doi: 10.1007/s10208-014-9200-5 – ident: e_1_3_4_40_1 – ident: e_1_3_4_8_1 doi: 10.1088/0266-5611/20/3/003 – ident: e_1_3_4_9_1 doi: 10.1016/j.matpur.2015.02.004 – ident: e_1_3_4_31_1 – volume-title: Shapes and Geometries: Analysis, Differential Calculus, and Optimization year: 2001 ident: e_1_3_4_20_1 – ident: e_1_3_4_5_1 doi: 10.1007/s00158-006-0017-y – ident: e_1_3_4_3_1 doi: 10.1137/070687438 – ident: e_1_3_4_7_1 doi: 10.1007/s00158-016-1514-2 – ident: e_1_3_4_42_1 doi: 10.1023/A:1022370419231 – ident: e_1_3_4_48_1 – ident: e_1_3_4_11_1 doi: 10.1016/S0045-7825(02)00656-4 – ident: e_1_3_4_12_1 doi: 10.1088/0266-5611/18/6/201 – volume-title: Applied Shape Optimization for Fluids year: 2010 ident: e_1_3_4_37_1 – ident: e_1_3_4_22_1 doi: 10.1137/15100477X – ident: e_1_3_4_47_1 – ident: e_1_3_4_28_1 doi: 10.1137/080745134 – ident: e_1_3_4_25_1 doi: 10.1137/1.9780898718690 – ident: e_1_3_4_49_1 doi: 10.1007/978-3-642-58106-9 – ident: e_1_3_4_33_1 – ident: e_1_3_4_43_1 doi: 10.1007/978-3-319-17563-8_9 – ident: e_1_3_4_41_1 – volume-title: Mémoire Sur Le Problème D'Analyse Relatif À L'Équilibre Des Plaques Élastiques Encastrées year: 1908 ident: e_1_3_4_24_1 – ident: e_1_3_4_32_1 doi: 10.1016/j.jde.2019.11.077 – volume-title: Quelques Résultats Sur Le Contrôle Par Un Domaine Géométrique year: 1974 ident: e_1_3_4_38_1 – ident: e_1_3_4_27_1 doi: 10.4171/178 – ident: e_1_3_4_29_1 doi: 10.1137/S0036139902403901 – ident: e_1_3_4_53_1 doi: 10.1137/15M1049749 – ident: e_1_3_4_39_1 – ident: e_1_3_4_50_1 – ident: e_1_3_4_17_1 doi: 10.1016/j.jde.2019.03.033 – ident: e_1_3_4_34_1 doi: 10.1051/m2an/2015075 – ident: e_1_3_4_14_1 doi: 10.1016/0020-7683(81)90065-2 – ident: e_1_3_4_45_1 doi: 10.2514/1.J052245 – ident: e_1_3_4_2_1 doi: 10.1080/01630560701381005 – volume: 34 start-page: 203 year: 2005 ident: e_1_3_4_21_1 article-title: A regularized Newton method in electrical impedance tomography using shape Hessian information publication-title: Control Cybern. – volume-title: Linear and Nonlinear Programming year: 1984 ident: e_1_3_4_35_1 – ident: e_1_3_4_23_1 doi: 10.1007/s00158-020-02742-w – ident: e_1_3_4_19_1 doi: 10.1137/050624108 – ident: e_1_3_4_30_1 |
SSID | ssj0004146 |
Score | 2.3071802 |
Snippet | We consider optimal design problems in stationary diffusion for mixtures of two isotropic phases. The goal is to find an optimal distribution of the phases... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2259 |
SubjectTerms | Ascent gradient method Mathematical analysis Optimal design Perturbation methods Quasi Newton methods quasi-Newton method second-order shape derivative shape derivative Shape optimization |
Title | A quasi-Newton method in shape optimization for a transmission problem |
URI | https://www.tandfonline.com/doi/abs/10.1080/10556788.2022.2078823 https://www.proquest.com/docview/2754996991 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdge4EHxKcYDOQH9jSlJK4Tp4_RWFXBtL2kUPFiOclFlEE6LZmQ-Ou5i53FUye-pMpKXSVu7349n-27-zH2RhWgIhmHQYpzRSCrKg5MCmEQq6pOqzoyYdUHyJ4mi6V8v4pXY1hzn13SFZPy5615Jf-jVexDvVKW7D9o9vqh2IHXqF9sUcPY_pWOM8qJbNcBWiqqjmHZoGkHo_1iLuBwg-bgu8uztNGSxAjRtKha2iM7dGQyvn965t9in9f26GjRXP8wY6Tsh6vm4Cg-yKIOzl2cr7mO8_14WW2-fTXnQzLQxt9bwGUp7ZeOK9F8i-bDizUiaxnGlLlgefkm4PoE0dbZSi6DiXXv1tv2UlgiEzf3CmHZkrbsug2E7Mk8cbgJfVds8FJMx4lsOLw_PdPz5cmJzo9X-V22K5SiA_zdbPHu86cxZ9Zlng0_YcjuSsO3tw5zw2-5UdV2axbvXZP8IXvg1hQ8swB5xO5A85jd9ypNPmHzjPtQ4Va1fN3wHirchwrHQbnhPlS4g8pTtpwf50eLwFFoBKWIki4wgg7aVZHOjKwFJPGsiAwQ0ytAKas0LSAtSzA1-p0mAnxRAToznQEViC3l9BnbaTYNPGe8VrEydVwmFQhpSmnIW5SRMIWk7GvYY5NBQPrCVkrRkStAO0hUk0S1k-gem_li1F2PttoCTU__cO_-IHPt_pCtFoo2OxJc8bz4_ccv2b0R7ftsp7u8glfoW3bFaweTXxdMdYY |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1Eo4IHVJXHsPMYKURUonVqpm-U4tqgQaaHpwq_HlziiBSGGShkiRbZi-3wP-77vELqJUh35jHsktraCsCzjRMbaIzzKTJwZX3pZmSA7CHsj9jjm4yUsDKRVQgxtKqKIUlfD5obD6Dol7rYs6mhjNxveUQBT2VcabKItbn13kPLAG3xjIx3CyDYh0KZG8fzVzYp9WmEv_aWtSxPU3Ueq_vkq8-S1vSjStvr8weu43ugO0J7zUHGnEqlDtKHzI7S7xFt4jLod_L6Q8wmxKtL6jrgqQ40nOZ6_yJnGU6uH3hzAE9uhYYkLsIlWpuBwDrsqNido1L0f3vWIK8hAFPXDgkgK17ZRGieSGapDnqS-1FA3VGvFsjhOdayUlsZ6MdLX9gE6MxkkGuhGFQtOUSOf5voMYRPxSBquwkxTJhWT4Hswn8qUAZZXN1G7XgYxq3g3hO_oTOsJEjBBwk1QEyXLiyWK8sDDVNVJRPBP21a9ssJt4bmgEYTOofWfz9fo-hpt94bPfdF_GDxdoB34VCIZaQs1io-FvrQuTZFelTL7BUzd6J0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86QfTgtzidmoPXzDVNv45DLfOD4cGBt5CkLzjEbtru4l9v0qa4KeJh0EOhJLT5eO_30vf7PYQuIgmRx4IeiY2vICzLAiJi6JEgynScaU_0sipBdhgORuzuOWiyCQuXVmljaF0LRVS22m7uaaabjLjLqqajCd1MdEctl8rcUn8VrYUGntisPr83_KZGOoKRaUJsm4bE81c3C-5pQbz0l7GuPFC6jWTz7nXiyWt3Vsqu-vwh67jUx-2gLYdPcb9eULtoBfI9tDmnWriP0j5-n4liTIyBNMgR10Wo8TjHxYuYAp4YK_Tm6J3YfBkWuLQe0awoezSHXQ2bAzRKb56uBsSVYyCKemFJBLU_bSMZJ4JpCmGQSE-ArRoKoFgWxxJipUBog2GEB-ayYmbCT8CKjSrmH6JWPsnhCGEdBZHQgQozoEwoJizyYB4VklkmL7RRt5kFPq1VN7jnxEybAeJ2gLgboDZK5ueKl9Vxh65rk3D_n7adZmK528AFp5ENnEODno-X6PocrT9ep_zhdnh_gjbsk4rGSDuoVX7M4NTgmVKeVSv2C3xJ50E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+quasi-Newton+method+in+shape+optimization+for+a+transmission+problem&rft.jtitle=Optimization+methods+%26+software&rft.au=Kun%C5%A1tek%2C+Petar&rft.au=Vrdoljak%2C+Marko&rft.date=2022-11-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=37&rft.issue=6&rft.spage=2273&rft.epage=2299&rft_id=info:doi/10.1080%2F10556788.2022.2078823&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon |