A quasi-Newton method in shape optimization for a transmission problem

We consider optimal design problems in stationary diffusion for mixtures of two isotropic phases. The goal is to find an optimal distribution of the phases such that the energy functional is maximized. By following the identity perturbation method, we calculate the first- and second-order shape deri...

Full description

Saved in:
Bibliographic Details
Published inOptimization methods & software Vol. 37; no. 6; pp. 2259 - 2285
Main Authors Kunštek, Petar, Vrdoljak, Marko
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 02.11.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1055-6788
1029-4937
DOI10.1080/10556788.2022.2078823

Cover

Abstract We consider optimal design problems in stationary diffusion for mixtures of two isotropic phases. The goal is to find an optimal distribution of the phases such that the energy functional is maximized. By following the identity perturbation method, we calculate the first- and second-order shape derivatives in the distributional representation under weak regularity assumptions. Ascent methods based on the distributed first- and second-order shape derivatives are implemented and tested in classes of problems for which the classical solutions exist and can be explicitly calculated from the optimality conditions. A proposed quasi-Newton method offers a better ascent vector compared to gradient methods, reaching the optimal design in half as many steps. The method applies well also for multiple state problems.
AbstractList We consider optimal design problems in stationary diffusion for mixtures of two isotropic phases. The goal is to find an optimal distribution of the phases such that the energy functional is maximized. By following the identity perturbation method, we calculate the first- and second-order shape derivatives in the distributional representation under weak regularity assumptions. Ascent methods based on the distributed first- and second-order shape derivatives are implemented and tested in classes of problems for which the classical solutions exist and can be explicitly calculated from the optimality conditions. A proposed quasi-Newton method offers a better ascent vector compared to gradient methods, reaching the optimal design in half as many steps. The method applies well also for multiple state problems.
Author Vrdoljak, Marko
Kunštek, Petar
Author_xml – sequence: 1
  givenname: Petar
  orcidid: 0000-0003-3961-8556
  surname: Kunštek
  fullname: Kunštek, Petar
  organization: University of Zagreb
– sequence: 2
  givenname: Marko
  orcidid: 0000-0001-8623-2598
  surname: Vrdoljak
  fullname: Vrdoljak, Marko
  email: marko@math.hr
  organization: University of Zagreb
BookMark eNp9UFFLwzAQDjLBOf0JQsHnziRN0uTNMZwKQ1_0OaTdlWW0TZdkjPnrTdl8lTvujrvvu-O-WzTpXQ8IPRA8J1jiJ4I5F6WUc4opTSGVtLhCU4KpypkqyslYc56PoBt0G8IOY8wIE1O0WmT7gwk2_4BjdH3WQdy6TWb7LGzNAJkbou3sj4k2DRvnM5NFb_rQ2RDG1uBd1UJ3h64b0wa4v-QZ-l69fC3f8vXn6_tysc5rSkTMDS1Hq6QyrKEguKqIAVEWEqBmGykrkHUNphEFNwSSc6W4KRQIwmTNihl6PO9Nd_cHCFHv3MH36aSmJWdKCaVIQvEzqvYuBA-NHrztjD9pgvUomf6TTI-S6Ytkifd85tk-vdqZo_PtRkdzap1v0te1Dbr4f8Uv64d0pQ
Cites_doi 10.1016/j.jcp.2014.01.005
10.1137/1.9781611973365
10.1016/j.jcp.2003.09.032
10.1515/jnum-2012-0013
10.1007/s10440-018-0204-z
10.1016/j.acha.2006.07.004
10.1137/16M1099972
10.1007/s10208-014-9200-5
10.1088/0266-5611/20/3/003
10.1016/j.matpur.2015.02.004
10.1007/s00158-006-0017-y
10.1137/070687438
10.1007/s00158-016-1514-2
10.1023/A:1022370419231
10.1016/S0045-7825(02)00656-4
10.1088/0266-5611/18/6/201
10.1137/15100477X
10.1137/080745134
10.1137/1.9780898718690
10.1007/978-3-642-58106-9
10.1007/978-3-319-17563-8_9
10.1016/j.jde.2019.11.077
10.4171/178
10.1137/S0036139902403901
10.1137/15M1049749
10.1016/j.jde.2019.03.033
10.1051/m2an/2015075
10.1016/0020-7683(81)90065-2
10.2514/1.J052245
10.1080/01630560701381005
10.1007/s00158-020-02742-w
10.1137/050624108
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/10556788.2022.2078823
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4937
EndPage 2285
ExternalDocumentID 10_1080_10556788_2022_2078823
2078823
Genre Research Article
GrantInformation_xml – fundername: Croatian Science Foundation
  grantid: IP-2018-01-3706
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMPGV
AMVHM
AQRUH
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
TASJS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c216t-a272727b89a4f2e659b1ae6738eec4d88be8cceaf635a1ea1e5995a39e6148c43
ISSN 1055-6788
IngestDate Wed Aug 13 07:33:47 EDT 2025
Tue Aug 05 11:59:07 EDT 2025
Tue Jun 17 04:10:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c216t-a272727b89a4f2e659b1ae6738eec4d88be8cceaf635a1ea1e5995a39e6148c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8623-2598
0000-0003-3961-8556
PQID 2754996991
PQPubID 186278
PageCount 27
ParticipantIDs proquest_journals_2754996991
informaworld_taylorfrancis_310_1080_10556788_2022_2078823
crossref_primary_10_1080_10556788_2022_2078823
PublicationCentury 2000
PublicationDate 2022-11-02
PublicationDateYYYYMMDD 2022-11-02
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-02
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Optimization methods & software
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_4_3_1
Dambrine M. (e_1_3_4_16_1) 2002; 96
Mohammadi B. (e_1_3_4_37_1) 2010
e_1_3_4_9_1
e_1_3_4_42_1
e_1_3_4_7_1
e_1_3_4_40_1
e_1_3_4_5_1
e_1_3_4_23_1
e_1_3_4_46_1
e_1_3_4_44_1
e_1_3_4_27_1
Hadamard J. (e_1_3_4_24_1) 1908
e_1_3_4_25_1
e_1_3_4_48_1
e_1_3_4_29_1
e_1_3_4_53_1
e_1_3_4_30_1
e_1_3_4_51_1
e_1_3_4_13_1
e_1_3_4_34_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_17_1
Delfour M.C. (e_1_3_4_20_1) 2001
e_1_3_4_15_1
e_1_3_4_36_1
e_1_3_4_19_1
e_1_3_4_2_1
Allaire G. (e_1_3_4_4_1) 2012
e_1_3_4_8_1
e_1_3_4_41_1
e_1_3_4_6_1
Eppler K. (e_1_3_4_21_1) 2005; 34
e_1_3_4_45_1
e_1_3_4_22_1
e_1_3_4_43_1
e_1_3_4_28_1
e_1_3_4_49_1
e_1_3_4_26_1
e_1_3_4_47_1
Murat F. (e_1_3_4_38_1) 1974
e_1_3_4_31_1
Luenberger D.G. (e_1_3_4_35_1) 1984
e_1_3_4_52_1
e_1_3_4_50_1
e_1_3_4_12_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_39_1
e_1_3_4_14_1
e_1_3_4_18_1
References_xml – ident: e_1_3_4_52_1
– volume: 96
  start-page: 95
  issue: 1
  year: 2002
  ident: e_1_3_4_16_1
  article-title: On variations of the shape Hessian and sufficient conditions for the stability of critical shapes
  publication-title: Racsam
– volume-title: Shape Optimization by the Homogenization Method
  year: 2012
  ident: e_1_3_4_4_1
– ident: e_1_3_4_18_1
  doi: 10.1016/j.jcp.2014.01.005
– ident: e_1_3_4_10_1
  doi: 10.1137/1.9781611973365
– ident: e_1_3_4_6_1
  doi: 10.1016/j.jcp.2003.09.032
– ident: e_1_3_4_26_1
  doi: 10.1515/jnum-2012-0013
– ident: e_1_3_4_51_1
– ident: e_1_3_4_13_1
  doi: 10.1007/s10440-018-0204-z
– ident: e_1_3_4_15_1
– ident: e_1_3_4_36_1
  doi: 10.1016/j.acha.2006.07.004
– ident: e_1_3_4_44_1
  doi: 10.1137/16M1099972
– ident: e_1_3_4_46_1
  doi: 10.1007/s10208-014-9200-5
– ident: e_1_3_4_40_1
– ident: e_1_3_4_8_1
  doi: 10.1088/0266-5611/20/3/003
– ident: e_1_3_4_9_1
  doi: 10.1016/j.matpur.2015.02.004
– ident: e_1_3_4_31_1
– volume-title: Shapes and Geometries: Analysis, Differential Calculus, and Optimization
  year: 2001
  ident: e_1_3_4_20_1
– ident: e_1_3_4_5_1
  doi: 10.1007/s00158-006-0017-y
– ident: e_1_3_4_3_1
  doi: 10.1137/070687438
– ident: e_1_3_4_7_1
  doi: 10.1007/s00158-016-1514-2
– ident: e_1_3_4_42_1
  doi: 10.1023/A:1022370419231
– ident: e_1_3_4_48_1
– ident: e_1_3_4_11_1
  doi: 10.1016/S0045-7825(02)00656-4
– ident: e_1_3_4_12_1
  doi: 10.1088/0266-5611/18/6/201
– volume-title: Applied Shape Optimization for Fluids
  year: 2010
  ident: e_1_3_4_37_1
– ident: e_1_3_4_22_1
  doi: 10.1137/15100477X
– ident: e_1_3_4_47_1
– ident: e_1_3_4_28_1
  doi: 10.1137/080745134
– ident: e_1_3_4_25_1
  doi: 10.1137/1.9780898718690
– ident: e_1_3_4_49_1
  doi: 10.1007/978-3-642-58106-9
– ident: e_1_3_4_33_1
– ident: e_1_3_4_43_1
  doi: 10.1007/978-3-319-17563-8_9
– ident: e_1_3_4_41_1
– volume-title: Mémoire Sur Le Problème D'Analyse Relatif À L'Équilibre Des Plaques Élastiques Encastrées
  year: 1908
  ident: e_1_3_4_24_1
– ident: e_1_3_4_32_1
  doi: 10.1016/j.jde.2019.11.077
– volume-title: Quelques Résultats Sur Le Contrôle Par Un Domaine Géométrique
  year: 1974
  ident: e_1_3_4_38_1
– ident: e_1_3_4_27_1
  doi: 10.4171/178
– ident: e_1_3_4_29_1
  doi: 10.1137/S0036139902403901
– ident: e_1_3_4_53_1
  doi: 10.1137/15M1049749
– ident: e_1_3_4_39_1
– ident: e_1_3_4_50_1
– ident: e_1_3_4_17_1
  doi: 10.1016/j.jde.2019.03.033
– ident: e_1_3_4_34_1
  doi: 10.1051/m2an/2015075
– ident: e_1_3_4_14_1
  doi: 10.1016/0020-7683(81)90065-2
– ident: e_1_3_4_45_1
  doi: 10.2514/1.J052245
– ident: e_1_3_4_2_1
  doi: 10.1080/01630560701381005
– volume: 34
  start-page: 203
  year: 2005
  ident: e_1_3_4_21_1
  article-title: A regularized Newton method in electrical impedance tomography using shape Hessian information
  publication-title: Control Cybern.
– volume-title: Linear and Nonlinear Programming
  year: 1984
  ident: e_1_3_4_35_1
– ident: e_1_3_4_23_1
  doi: 10.1007/s00158-020-02742-w
– ident: e_1_3_4_19_1
  doi: 10.1137/050624108
– ident: e_1_3_4_30_1
SSID ssj0004146
Score 2.3071802
Snippet We consider optimal design problems in stationary diffusion for mixtures of two isotropic phases. The goal is to find an optimal distribution of the phases...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 2259
SubjectTerms Ascent
gradient method
Mathematical analysis
Optimal design
Perturbation methods
Quasi Newton methods
quasi-Newton method
second-order shape derivative
shape derivative
Shape optimization
Title A quasi-Newton method in shape optimization for a transmission problem
URI https://www.tandfonline.com/doi/abs/10.1080/10556788.2022.2078823
https://www.proquest.com/docview/2754996991
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdge4EHxKcYDOQH9jSlJK4Tp4_RWFXBtL2kUPFiOclFlEE6LZmQ-Ou5i53FUye-pMpKXSVu7349n-27-zH2RhWgIhmHQYpzRSCrKg5MCmEQq6pOqzoyYdUHyJ4mi6V8v4pXY1hzn13SFZPy5615Jf-jVexDvVKW7D9o9vqh2IHXqF9sUcPY_pWOM8qJbNcBWiqqjmHZoGkHo_1iLuBwg-bgu8uztNGSxAjRtKha2iM7dGQyvn965t9in9f26GjRXP8wY6Tsh6vm4Cg-yKIOzl2cr7mO8_14WW2-fTXnQzLQxt9bwGUp7ZeOK9F8i-bDizUiaxnGlLlgefkm4PoE0dbZSi6DiXXv1tv2UlgiEzf3CmHZkrbsug2E7Mk8cbgJfVds8FJMx4lsOLw_PdPz5cmJzo9X-V22K5SiA_zdbPHu86cxZ9Zlng0_YcjuSsO3tw5zw2-5UdV2axbvXZP8IXvg1hQ8swB5xO5A85jd9ypNPmHzjPtQ4Va1fN3wHirchwrHQbnhPlS4g8pTtpwf50eLwFFoBKWIki4wgg7aVZHOjKwFJPGsiAwQ0ytAKas0LSAtSzA1-p0mAnxRAToznQEViC3l9BnbaTYNPGe8VrEydVwmFQhpSmnIW5SRMIWk7GvYY5NBQPrCVkrRkStAO0hUk0S1k-gem_li1F2PttoCTU__cO_-IHPt_pCtFoo2OxJc8bz4_ccv2b0R7ftsp7u8glfoW3bFaweTXxdMdYY
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1Eo4IHVJXHsPMYKURUonVqpm-U4tqgQaaHpwq_HlziiBSGGShkiRbZi-3wP-77vELqJUh35jHsktraCsCzjRMbaIzzKTJwZX3pZmSA7CHsj9jjm4yUsDKRVQgxtKqKIUlfD5obD6Dol7rYs6mhjNxveUQBT2VcabKItbn13kPLAG3xjIx3CyDYh0KZG8fzVzYp9WmEv_aWtSxPU3Ueq_vkq8-S1vSjStvr8weu43ugO0J7zUHGnEqlDtKHzI7S7xFt4jLod_L6Q8wmxKtL6jrgqQ40nOZ6_yJnGU6uH3hzAE9uhYYkLsIlWpuBwDrsqNido1L0f3vWIK8hAFPXDgkgK17ZRGieSGapDnqS-1FA3VGvFsjhOdayUlsZ6MdLX9gE6MxkkGuhGFQtOUSOf5voMYRPxSBquwkxTJhWT4Hswn8qUAZZXN1G7XgYxq3g3hO_oTOsJEjBBwk1QEyXLiyWK8sDDVNVJRPBP21a9ssJt4bmgEYTOofWfz9fo-hpt94bPfdF_GDxdoB34VCIZaQs1io-FvrQuTZFelTL7BUzd6J0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86QfTgtzidmoPXzDVNv45DLfOD4cGBt5CkLzjEbtru4l9v0qa4KeJh0EOhJLT5eO_30vf7PYQuIgmRx4IeiY2vICzLAiJi6JEgynScaU_0sipBdhgORuzuOWiyCQuXVmljaF0LRVS22m7uaaabjLjLqqajCd1MdEctl8rcUn8VrYUGntisPr83_KZGOoKRaUJsm4bE81c3C-5pQbz0l7GuPFC6jWTz7nXiyWt3Vsqu-vwh67jUx-2gLYdPcb9eULtoBfI9tDmnWriP0j5-n4liTIyBNMgR10Wo8TjHxYuYAp4YK_Tm6J3YfBkWuLQe0awoezSHXQ2bAzRKb56uBsSVYyCKemFJBLU_bSMZJ4JpCmGQSE-ArRoKoFgWxxJipUBog2GEB-ayYmbCT8CKjSrmH6JWPsnhCGEdBZHQgQozoEwoJizyYB4VklkmL7RRt5kFPq1VN7jnxEybAeJ2gLgboDZK5ueKl9Vxh65rk3D_n7adZmK528AFp5ENnEODno-X6PocrT9ep_zhdnh_gjbsk4rGSDuoVX7M4NTgmVKeVSv2C3xJ50E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+quasi-Newton+method+in+shape+optimization+for+a+transmission+problem&rft.jtitle=Optimization+methods+%26+software&rft.au=Kun%C5%A1tek%2C+Petar&rft.au=Vrdoljak%2C+Marko&rft.date=2022-11-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=37&rft.issue=6&rft.spage=2273&rft.epage=2299&rft_id=info:doi/10.1080%2F10556788.2022.2078823&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon