Anisotropic free-discontinuity functionals as the Γ-limit of second-order elliptic functionals

We provide an approximation result for free-discontinuity functionals of the form         𝓕(u) = ∫Ωf(x, u, ∇u)dx + ∫Su∩Ωθ(x, νu)d𝓗n−1,     u ∈ SBV2(Ω), where f is quadratic in the gradient-variable and θ is an arbitrary smooth Finsler metric. The approximating functionals are of Ambrosio-Tortorelli...

Full description

Saved in:
Bibliographic Details
Published inESAIM. Control, optimisation and calculus of variations Vol. 24; no. 3; pp. 1107 - 1139
Main Author Bach, Annika
Format Journal Article
LanguageEnglish
Published Les Ulis EDP Sciences 2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We provide an approximation result for free-discontinuity functionals of the form         𝓕(u) = ∫Ωf(x, u, ∇u)dx + ∫Su∩Ωθ(x, νu)d𝓗n−1,     u ∈ SBV2(Ω), where f is quadratic in the gradient-variable and θ is an arbitrary smooth Finsler metric. The approximating functionals are of Ambrosio-Tortorelli type and depend on the Hessian of the edge variable through a suitable nonhomogeneous metric ϕ.
AbstractList We provide an approximation result for free-discontinuity functionals of the form          ( u ) = ∫ Ω f ( x, u,  ∇ u )d x  + ∫ S u ∩ Ω θ ( x, ν u )d n −1 ,      u  ∈  SBV 2 ( Ω ), where f is quadratic in the gradient-variable and θ is an arbitrary smooth Finsler metric. The approximating functionals are of Ambrosio-Tortorelli type and depend on the Hessian of the edge variable through a suitable nonhomogeneous metric ϕ .
We provide an approximation result for free-discontinuity functionals of the form ??(u) = ∫Ωf(x, u, ∇u)dx + ∫Su∩Ωθ(x, νu)d??n−1, u ∈ SBV2(Ω), where f is quadratic in the gradient-variable and θ is an arbitrary smooth Finsler metric. The approximating functionals are of Ambrosio-Tortorelli type and depend on the Hessian of the edge variable through a suitable nonhomogeneous metric ϕ.
We provide an approximation result for free-discontinuity functionals of the form         𝓕(u) = ∫Ωf(x, u, ∇u)dx + ∫Su∩Ωθ(x, νu)d𝓗n−1,     u ∈ SBV2(Ω), where f is quadratic in the gradient-variable and θ is an arbitrary smooth Finsler metric. The approximating functionals are of Ambrosio-Tortorelli type and depend on the Hessian of the edge variable through a suitable nonhomogeneous metric ϕ.
Author Bach, Annika
Author_xml – sequence: 1
  givenname: Annika
  surname: Bach
  fullname: Bach, Annika
  email: a_bach10@uni-muenster.de
  organization: Angewandte Mathematik, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, 48149 Münster, Germany
BookMark eNpFkM1KAzEUhYMo2FZ3PsCAW2OTSSaZLEv9qaUgSEVwEzKZBFPbSU0yYp_D9_KZnKFFV-csvnu4fENw3PjGAHCB0TVGBR5rrz_HOcIc5fwIDHDOckgI58d9FzksMRanYBjjCiHMCKUDICeNiz4Fv3U6s8EYWLuofZNc07q0y2zb6OR8o9YxUzFLbyb7-YZrt3Ep8zaLpmNr6ENtQmbWa7dN_c7_0Rk4sV2Y80OOwPPd7XI6g4vH-4fpZAF1jlmCoiisEBWpLK9KRQWjpEKaKYQNoQZpaylXhjKlaReoIDUSpalJV5SxFSMjcLnf3Qb_0ZqY5Mq3of9A5liwggqcFx11tad08DEGY-U2uI0KO4mR7BXKXqE8KOxwuMddTObrj1XhXTJOeCFL9CL5DX-dPy3nckZ-AcsbeCQ
CitedBy_id crossref_primary_10_1007_s00526_023_02540_4
crossref_primary_10_1016_j_cma_2020_112858
Cites_doi 10.1137/15M1020848
10.1137/S0036141099356830
10.1007/BF00251230
10.1017/CBO9780511840371
10.1093/oso/9780198502456.001.0001
10.1007/s00526-010-0356-9
10.1002/cpa.3160430805
10.1088/0951-7715/26/5/1271
10.1007/s002080050277
10.14492/hokmj/1351516749
10.1007/BF00376024
10.1007/s00205-002-0220-y
10.1007/BFb0097344
10.1137/0523060
10.1142/S0218202501001045
10.1512/iumj.2011.60.4346
10.1007/BF01758994
10.1002/cpa.3160420503
10.1016/S0362-546X(98)00132-1
10.1007/BF00052492
ContentType Journal Article
Copyright 2018. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-cocv.org/articles/cocv/abs/2018/03/cocv160139/cocv160139.html .
Copyright_xml – notice: 2018. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-cocv.org/articles/cocv/abs/2018/03/cocv160139/cocv160139.html .
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1051/cocv/2017027
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1262-3377
EndPage 1139
ExternalDocumentID 10_1051_cocv_2017027
ark_67375_80W_7D7ZJRTJ_H
GroupedDBID -E.
.FH
0E1
3V.
4.4
5GY
5VS
74X
74Y
7WY
7~V
8FE
8FG
8FL
AADXX
AAOTM
ABDBF
ABJCF
ABKKG
ABUBZ
ACACO
ACGFS
ACIMK
ACIPV
ACIWK
ACQPF
AEMTW
AFAYI
AFHSK
AFKRA
AFUTZ
AJPFC
ALMA_UNASSIGNED_HOLDINGS
ARABE
ARAPS
AZPVJ
BENPR
BEZIV
BPHCQ
BSCLL
C0O
DC4
EBS
EJD
ESX
FAM
FRP
GI~
GROUPED_ABI_INFORM_COMPLETE
HCIFZ
HG-
HST
HZ~
I.6
IL9
I~P
J36
J38
J3A
K60
K6V
K6~
K7-
L6V
L98
LO0
M-V
M0C
M0N
M7S
O9-
OAV
OK1
P2P
P62
PQQKQ
PROAC
RCA
RED
RR0
S6-
TR2
TUS
WQ3
WXU
WXY
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c216t-955f99b3bf7b8a49643b0c6a01e34e0cff47ae46ac4ae4053d098ed353daefb63
ISSN 1292-8119
IngestDate Thu Oct 10 20:49:59 EDT 2024
Fri Aug 23 05:02:22 EDT 2024
Wed Oct 30 09:49:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c216t-955f99b3bf7b8a49643b0c6a01e34e0cff47ae46ac4ae4053d098ed353daefb63
Notes istex:A70910AE7104486B105F40CA3E31F99DE0C096D1
publisher-ID:cocv160139
href:https://www.esaim-cocv.org/articles/cocv/abs/2018/03/cocv160139/cocv160139.html
ark:/67375/80W-7D7ZJRTJ-H
PQID 2196549125
PQPubID 626363
PageCount 33
ParticipantIDs proquest_journals_2196549125
crossref_primary_10_1051_cocv_2017027
istex_primary_ark_67375_80W_7D7ZJRTJ_H
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle ESAIM. Control, optimisation and calculus of variations
PublicationYear 2018
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Fonseca (R22) 1992; 23
Bouchitté (R12) 2002; 165
Modica (R27) 1977; 14
Bellettini (R9) 2000; 22
Ambrosio (R3) 1989b; 17
Focardi (R20) 2001; 11
Modica (R26) 1987; 98
Bellettini (R11) 1996; 170
Chermisi (R16) 2011; 60
R24
R29
Ambrosio (R7) 1992; 6
Ambrosio (R2) 1989a; 3
Ambrosio (R6) 1990; 43
Cortesani (R18) 1999; 38
De Giorgi (R23) 1988; 82
R1
Ambrosio (R4) 1990; 111
R5
Baía (R8) 2013; 26
Burger (R15) 2015; 13
Bellettini (R10) 1996; 25
Fonseca (R21) 2000; 31
Kristensen (R25) 1999; 313
R30
Cicalese (R17) 2011; 41
R14
R13
R19
Mumford (R28) 1989; 42
References_xml – volume: 13
  start-page: 1354
  year: 2015
  ident: R15
  publication-title: SIAM Multiscale Model. Simul
  doi: 10.1137/15M1020848
  contributor:
    fullname: Burger
– volume: 31
  start-page: 1121
  year: 2000
  ident: R21
  publication-title: SIAM J. Math. Anal
  doi: 10.1137/S0036141099356830
  contributor:
    fullname: Fonseca
– volume: 98
  start-page: 123
  year: 1987
  ident: R26
  publication-title: Arch. Ration. Mech. Anal
  doi: 10.1007/BF00251230
  contributor:
    fullname: Modica
– volume: 14
  start-page: 285
  year: 1977
  ident: R27
  publication-title: Bol. Unione. Mat. Ital
  contributor:
    fullname: Modica
– ident: R24
  doi: 10.1017/CBO9780511840371
– ident: R5
  doi: 10.1093/oso/9780198502456.001.0001
– volume: 41
  start-page: 127
  year: 2011
  ident: R17
  publication-title: Calc. Var.
  doi: 10.1007/s00526-010-0356-9
  contributor:
    fullname: Cicalese
– volume: 43
  start-page: 999
  year: 1990
  ident: R6
  publication-title: Commun. Pure Appl. Math
  doi: 10.1002/cpa.3160430805
  contributor:
    fullname: Ambrosio
– volume: 26
  start-page: 1271
  year: 2013
  ident: R8
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/26/5/1271
  contributor:
    fullname: Baía
– volume: 313
  start-page: 653
  year: 1999
  ident: R25
  publication-title: Math. Ann
  doi: 10.1007/s002080050277
  contributor:
    fullname: Kristensen
– volume: 25
  start-page: 537
  year: 1996
  ident: R10
  publication-title: Hokkaido Math. J
  doi: 10.14492/hokmj/1351516749
  contributor:
    fullname: Bellettini
– volume: 111
  start-page: 291
  year: 1990
  ident: R4
  publication-title: Arch. Ration. Mech. Anal
  doi: 10.1007/BF00376024
  contributor:
    fullname: Ambrosio
– volume: 165
  start-page: 187
  year: 2002
  ident: R12
  publication-title: Arch. Ration. Mech. Anal
  doi: 10.1007/s00205-002-0220-y
  contributor:
    fullname: Bouchitté
– ident: R13
  doi: 10.1007/BFb0097344
– ident: R1
– volume: 3
  start-page: 857
  year: 1989a
  ident: R2
  publication-title: Boll. Un. Mat. Ital
  contributor:
    fullname: Ambrosio
– volume: 82
  start-page: 199
  year: 1988
  ident: R23
  publication-title: Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur
  contributor:
    fullname: De Giorgi
– ident: R14
– volume: 23
  start-page: 1081
  year: 1992
  ident: R22
  publication-title: SIAM J. Math. Anal
  doi: 10.1137/0523060
  contributor:
    fullname: Fonseca
– volume: 11
  start-page: 663
  year: 2001
  ident: R20
  publication-title: Math. Models Methods App. Sci
  doi: 10.1142/S0218202501001045
  contributor:
    fullname: Focardi
– volume: 6
  start-page: 105
  year: 1992
  ident: R7
  publication-title: Boll. Un. Mat. Ital
  contributor:
    fullname: Ambrosio
– volume: 60
  start-page: 591
  year: 2011
  ident: R16
  publication-title: Indiana Univ. Math. J
  doi: 10.1512/iumj.2011.60.4346
  contributor:
    fullname: Chermisi
– volume: 22
  start-page: 87
  year: 2000
  ident: R9
  publication-title: Asymptotic Anal
  contributor:
    fullname: Bellettini
– volume: 170
  start-page: 329
  year: 1996
  ident: R11
  publication-title: Ann. Mat. Pura Appl
  doi: 10.1007/BF01758994
  contributor:
    fullname: Bellettini
– volume: 42
  start-page: 577
  year: 1989
  ident: R28
  publication-title: Comm. Pure Appl. Math
  doi: 10.1002/cpa.3160420503
  contributor:
    fullname: Mumford
– ident: R29
– volume: 38
  start-page: 585
  year: 1999
  ident: R18
  publication-title: Nonlinear Anal
  doi: 10.1016/S0362-546X(98)00132-1
  contributor:
    fullname: Cortesani
– volume: 17
  start-page: 1
  year: 1989b
  ident: R3
  publication-title: Acta Appl. Math
  doi: 10.1007/BF00052492
  contributor:
    fullname: Ambrosio
– ident: R19
– ident: R30
SSID ssj0016344
Score 2.2041836
Snippet We provide an approximation result for free-discontinuity functionals of the form         𝓕(u) = ∫Ωf(x, u, ∇u)dx + ∫Su∩Ωθ(x, νu)d𝓗n−1,     u ∈ SBV2(Ω), where...
We provide an approximation result for free-discontinuity functionals of the form          ( u ) = ∫ Ω f ( x, u,  ∇ u )d x  + ∫ S u ∩ Ω θ ( x, ν u )d n −1...
We provide an approximation result for free-discontinuity functionals of the form ??(u) = ∫Ωf(x, u, ∇u)dx + ∫Su∩Ωθ(x, νu)d??n−1, u ∈ SBV2(Ω), where f is...
SourceID proquest
crossref
istex
SourceType Aggregation Database
Publisher
StartPage 1107
SubjectTerms 49J45
68U10
74G65
Ambrosio-Tortorelli approximation
anisotropic free-discontinuity functionals
Control theory
Discontinuity
Finsler metrics
Mathematical analysis
Γ-convergence
Title Anisotropic free-discontinuity functionals as the Γ-limit of second-order elliptic functionals
URI https://api.istex.fr/ark:/67375/80W-7D7ZJRTJ-H/fulltext.pdf
https://www.proquest.com/docview/2196549125
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfY9gIPaPwT3caUB8rLlK1JnH-P0dZSqnVDkELFi2U7tlRtJFWTTYivwffiM3GXuCHVJgS8pIkbW9Xd-Xx3vfsdIa9jGoInKzCr0ZE2WOChLTwhbKqlpJkGfaix3nl6EYxndDL357-79NXVJZU4lt_vrSv5H67CGPAVq2T_gbPtojAA98BfuAKH4fpXPE7yRVlUq2K5kEd6pZSNNbYF9n64QeMaz6wm1FdiOxk0Mfunw37s2ddY1oR2Yon-cGbXAJxHiM25RADXzsSNyP3H5N30GIsEMbsdmVPA619NQlBTIcevMZ5Y54fcghveiQfW4dKm8VSS54sr3g04GO1Yx7_O3q81TieQCAYD6FTHKD5lxgLX9jzToMXo2aZW2siTd6_6Bg0BNIeT4BYLVRDapwEO2MTJvrhko9n5OUuH83SL7LigYjCZ8zL51P5_FHh1G9_2t5mSB1j_BFc_MWtvGCM7uK--3TmTa0Mj3SWPjYdgJQ27n5AHKn9KHnVwI-Fp2oLtls8I64iBdVcMrA43LV5aMNP6-aMRAavQVlcErLUIdCc9J7PRMD0d26Zvhi1dJ6js2Pd1HMOW06GIOEXENTGQAR84yqNqILWmIVc04JLCB2jhbBBHKvPghistAu8F2c6LXL0kVgbuvcdFoCIEbowc7vPAjTIquZZga4oe6a8JyJYNPAqr0xp8hyGhmSF0j7ypqdu-xFdXmFIY-iwafGbhWfhl8iGdsHGPHKzJz8xOK5mLsJc0Blt8789f75OHKLFNiOyAbFerG_UKjMZKHJKtaPT2sJaSXxoadBU
link.rule.ids 315,783,787,4031,27935,27936,27937,33385
linkProvider Cellule MathDoc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anisotropic+free-discontinuity+functionals+as+the+%CE%93-limit+of+second-order+elliptic+functionals&rft.jtitle=ESAIM.+Control%2C+optimisation+and+calculus+of+variations&rft.au=Bach%2C+Annika&rft.date=2018&rft.pub=EDP+Sciences&rft.issn=1292-8119&rft.eissn=1262-3377&rft.volume=24&rft.issue=3&rft_id=info:doi/10.1051%2Fcocv%2F2017027&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1292-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1292-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1292-8119&client=summon